
Security by Decentralized Certification of Automatic-Updates for Open Source
Software controlled by Volunteers

Khalid Alhamed and Marius C. Silaghi and Ihsan Hussien and Yi Yang
Florida Tech

Abstract

Currently many users trust binaries downloaded from repos-
itories such as sourceforge.net. As with any system
connected to the Internet, such repositories can be subject
to attacks tampering with the distributed binaries (inserting
viruses, changing behavior). We propose a mechanism to
reduce the level of trust that users are required to have into
repositories for open source software that is maintained by
volunteers. In fact, with the proposed method, it is sufficient
for the user to trust that his flexibly specified constellation of
independent testers are safe to each given attack, even as all
may be subject to different attacks. The interesting configu-
ration when any majority t out of n testers of the given
user’s choice have to be believed safe, is just a special case. A
new integrated framework of open source development, test-
ing, distribution and updating is defined, implemented and
made available.

A tester is a person that builds and tests an existing source
code revision from a repository, and then distributes a signed
binary release of it, tagged with a Quality of Test (QoT) and
a Result of Test (RoT). An ontology for the QoT and RoT is
defined and managed by the developers of the source code,
and is fixed at each given revision. The final management
of the mirrors distributing binaries tested by several testers
is done by the mirror maintainers, who may or may not be
from among the trusted testers. Some testers can be defined as
reference (a new release is not automatically accepted without
their signature and minimum RoT).

Introduction

We propose an integrated model for development, testing
and secure automatic updates distribution of open source
software. The model yields an architecture for automatic up-
dates based on signed recommendations from a user-defined
constellation (e.g., fraction) out of a set of testers that the
user trusts. An essential feature of any software application
is the provision of an automatic updates system. Without au-
tomatic updates, users are exposed to new and unexpected
security attacks. Lack of automatic updates also leads to
long term coexistence of many versions, increasing the com-
plexity of ensuring inter-operation. On the other side, up-
dates with erroneous patches have been causing troubles on
famous applications like Apple TV (Bonnington 2012). Up-
dates to a lower quality release can significantly decrease the
quality of user experience, as applications can no longer be

used for certain purposes. An erroneous update can destroy
the updates system and block any opportunity for a future
automatic fix. Attacks on the updates system can replace an
application with a similarly looking malware, and divert any
further updates from the original source.

Traditionally testers announce their results directly to de-
velopers and/or publish them in specialty magazines. With
automatic updates, this may already be too late. With open
source software this problem is even more acute, since de-
velopment can be transferred from one group of volunteers
to another, leading to discontinuities in support of features
and in general vision of the project. By the time that a user
finds out negative implications of an update, an automatic
update system may have already upgraded her to the new
release.

If a team of developers changes their philosophy for a
given application and decides to discontinue a feature that
is essential for a group of users, this decision amounts to
an attack from the perspective of those users. This attack is
even more likely when the application is passed from some
developers to others.

If an attacker manages to tamper source files in a reposi-
tory used for open source development, it can achieve a pow-
erful attack against all new users of the system and all users
of a classical automatic updates mechanisms. This is what
actually happens in the aforementioned case of discontinued
features.

In the proposed model, the main idea exploits the ob-
servation that each given release can be built separately by
each independent tester, while obtaining an identical binary.
Therefore many testers can independently verify and certify
that a given binary comes from the sources that the tester
was able to study. Moreover, these testers can attach warn-
ings concerning new usability problems, disappearance of
features, as well as praises of improvements. Developers are
able to provide an ontology defining supported features and
qualities of the software, such that testers can provide stan-
dard evaluations. This in turn enables users to select a full
automation of the upgrading process.

Rather then depending on a single tester/distributor, and
on the security of a single (root) key, users can specify a
set of available testers of their choice. The selection of the
testers the user trusts can be based on personal experience or
on external reputation systems. Further, users may specify

that automatic upgrades should be executed only if a certain
constellation (e.g., majority) of her trusted testers provide
positive reviews of the same new release.

While we assume that the public keys of the testers can
be obtained by end users via external secure channels, the
framework defines mechanisms to revoke these keys when
they are compromised.

Usually the server from which updates will be down-
loaded are not owned by the same organization/tester that
created the updates. These third-party mirrors are owned by
content delivery networks (CDNs) or by volunteers (Bellis-
simo, Burgess, & Fu 2006). In our framework, such mirrors
can compile together certified reports from multiple testers
for the same release. While defense is needed to prevent a
mirror from performing attacks such as the “Endless Data
Attacks” (Cappos et al. 2008), mirrors do not have to be
trusted themselves for the quality of the upgrade.

A reference implementation is provided and is used for
providing automatic updates to the open source peer-to-peer
DDP2P agents. After we describe the state of the art in the
next section, we will introduce in detail the employed con-
cepts. Further we present the architecture of the framework
and we analyze its properties. A description of the current
reference implementation is given.

Background
Significant work exists both on updates of software and
updates of documents (Bellissimo, Burgess, & Fu 2006;
Bertino et al. 2003). Sometimes the software handles its
own updates, while in other cases the operating system per-
forms the automatic updates via package managers (Cap-
pos et al. 2008; Greg & Mark 2013). The issues that have
to be addressed by systems for automatic updates to free
software can be substantially different from issues with up-
dates to commercial software, where licenses have to be ver-
ified (Adi et al. 2004; Nilsson et al. 2008) but responsibil-
ity for the updates quality is centralized by the merchant.
A schema for disseminating large updates based on a chain
of fragments authenticated efficiently by including the hash
of the next fragment in the previous authenticated fragment
is proposed in (Lanigan, Gandhi, & Narasimhan 2006). A
technique for asynchronously rekeying secure communica-
tion for updates is proposed in (Nilsson et al. 2008).

A set of attacks against updates systems described
in (Cappos et al. 2008) include: arbitrary package (replace
legitimate with attacker package), replay attacks (send older
package instead of a new one), freeze attacks (block infor-
mation about new updates), extraneous dependencies (in-
duce user to download attacking package) and endless data
(crash client system by sending him a huge file).

A set of general purpose security principles identified
in previous research as relevant to updates is composed
of: end-to-end authentication (Bellissimo, Burgess, & Fu
2006), responsibility separation (based on roles), multi-
signature trust (role-based signatures, each of them po-
tentially using threshold-based signature schemes), both
explicit (CRL/OCSP-based) and implicit (expiration date-
based) revocation (Myers et al. 1999), and minimization of
risks (off-line storage for secret keys) (Samuel et al. 2010).

Recent research has already identified the fact that using
more then one keys can help to improve security of updates
systems against attacks. The observation was that when up-
dates are signed with several keys, the work of the attacker
is more difficult than for breaking a single key. The solution
proposed in (Samuel et al. 2010) generates the various keys
starting from a root key, and the whole process is executed
under the control of one entity. An attack against this entity
or against its root key is still able to compromise the whole
system, and its suggested mechanism to minimize risks con-
sists of storing root keys on offline computers (Samuel et
al. 2010). The implementation suggested in (Samuel et al.
2010) for the aforementioned idea is to use separate keys
for various roles, such as: the content of updates (targets
role and delegated targets role), the availability of updates
(timestamp role).

A recent suggestion for addressing unstable updates is
to have users install the new versions in parallel with old
versions, in a so called multi-version software updates ap-
proach (Cadar & Hosek 2012). This approach introduces
strong requirement on the whole code development (where
all different versions have be designed to coexist and share
data), and the provided prototype requires the capture of
all system calls. The synchronization of the different pro-
gram versions when data has to be sent or received from the
network is a significant challenge. The resulting coupling
between the old and new versions may be so strong that it
can alter the behavior of both versions. Moreover, if the
weaknesses of the new versions are not immediately visible
(security issues, etc), then they may not be obvious to the
user in useful time (before dropping the old version). Nev-
ertheless, this approach can be used in conjunction with the
tester-provided recommendations proposed here.

Threat Model

In this paper we discuss the cases when attackers can per-
form the following feats:

• The attacker can take control over the source repository.

• The attacker can take control over mirrors and their secret
keys.

• The attacker can eavesdrop, intercept, modify, or inject
messages into the communication (Dolev & Yao 1981).

• The attacker can take control over the computers and se-
cret keys of certain testers that build binaries and certify
the quality of releases.

Concepts

Open Source Software: Open source software (OSS) is
a paradigm whereby the source code of the applications
is made available to testers and users. The open source
paradigm can be used both for commercial and for free soft-
ware. By revealing their sources, commercial software de-
velopers can gain more trust from their users and can get
help in detecting and fixing errors.

There exists a significant number of open source projects
driven by volunteers, where the result of the development

can be freely used, distributed and extended. The Linux ker-
nel is an example of free open source software (FOSS).

Under certain licenses (GPL, AGPL, LGPL,..), users are
allowed, free of charge, to use, distribute, change and ex-
tend FOSS. Most FOSS development relies on develop-
ers who voluntarily contribute their time and effort. Such
collaboration commonly employs a system that helps in
their coordination. For example, a centralized subversion
(CVS/SVN) repository can manage the software develop-
ment activities: add, delete and update of source files.
Volunteers use mailing lists for discussing and coordinat-
ing (Antwerp & Madey 2008). Among the most famous
repositories one finds: github.com, code.google.
com and sourceforge.net.

Repositories: Some of the main features and functions of
a repository are to:

• export (used by programmers and distributors to extract
releases).

• checkin (used by programmers to submit contribu-
tions).

• releases (used by programmers to tag snapshots).

Quality Definitions: Often programmers develop soft-
ware trying to achieve a set of predefined requirements spec-
ified in a Requirements Document. In the proposed ap-
proach, for each new release programmers provide a stan-
dard definition of the claimed qualities of the provided soft-
ware: Quality Definitions (QDs). The QDs specify the
software requirements that are considered to be success-
fully accomplished in this release (Dromey 1996; Nichols
& Twidale 2003).

Example 1 The DDP2P software has as claimed qualities:

• support of Windows 7.

• support of Linux version 3.2.6.

• resistance to buffer overflow attacks.

• easy to learn and use (usability).

Binary Builder: A binary builder is a deterministic func-
tion:

V : (~Σ, ε)→ β

which associates a unique binary β with a given source ~Σ
and set of compilation parameters ε (compiler version, op-
tions and target architecture).

Testers: Our framework brings independent testers in the
center of the mechanism for ensuring quality of FOSS. The
assumptions are that:

• testers can study each release independently.

• testers provide Quality of Test (QoT) and Results of Test
(RoT) information

• testers append their signature to the release, signing the
data identifying it (version, file names, hashes) and their
quality evaluation (QoT, RoT).

Example 2 For the case in Example 1, for the first QD, sup-
port of Windows 7:

• quality of test: the possible values are (empty or 0: not
tested, 0.5: only binaries were tested, 1: binaries were
tested and source was inspected). In Table 1, tester A has
tested only the binaries, so she specified 0.5 as value for
QoT on support of Windows 7

• result of test: the possible values are (0: not compiling,
0.5: executing with flaws, 1: running well). In Table 1,
tester A has tested the binaries and found some flaws, so
she specified 0.5 as value for RoT on support of Windows
7

Table 1: QD and Testers certificates on QoT & RoT

Quality Review: The quality review1 (or certificate) pro-
vided by a tester for a given binary release consists of a dig-
itally signed package describing the name of the release, the
compilation parameters and target architecture, the names,
sizes and digest values of each file in the binary release, as
well as the definition and quality of his own tests and a score
quantifying the result of these tests.

Mirror/Distributor: The binary releases and binary up-
dates are available on various servers, typically called mir-
rors since currently they simply duplicate data from a given
site. In our framework the function of the mirrors is ex-
tended. A mirror maintainer, referred to as distributor,
can aggregate quality certificates for a binary update from
several independent testers and can certify the information
about the location (URLs) of the binaries, into an update
descriptor. The update descriptor together with the signed
binaries constitute an update package.

Architecture

A binary release of open source software undergoes four
processes (see Figure 1):

A) Development process. Developers keep improving the
OSS by adding new features or solving current faults.
They use a centralized source repository and versioning
operations (e.g., export, checkout, checkin) to manipulate
files and produce the next release candidate (Dinh-Trong
& Bieman 2004). To help testers and users tune their ex-
pectations for the new release, developers provide a set

1We thank Cem Kaner for the perspective of the testing com-
munity on the difference between quality review and quality certi-
fication.

Figure 1: Overall Architecture of Integrated Development,
Testing and Updates

Symbol Description
~Σ release sources
ν version identifier (i.e., 1.2.0)
~Φ quality definitions (see concepts section)
d release date
τ tester ID
β binary software
~η information for release files
ε release building parameters
ǫ Boolean flag, false for ε = ⊥
t the date of the test data
~Υ quality definitions added by tester
~Θ vector of Qualities of Tests
~Ψ vector of the Result of Tests
S digital signature
δ secret key
⊥ empty value (i.e. null)

Table 2: Symbols Description Table

of quality definitions (QDs). Information about the lat-
est release candidate, including version number, releasing
date, source code and QDs is always available to users,
testers, distributors (and the general public) in the source
repository.

Formally, the output of the development process is the tu-

ple 〈~Σ, ν, ~Φ, d〉 where ~Σ stands for the release sources, ν

is the version identifier, ~Φ represents the quality defini-
tions and d is the release date.

B) Testing process. Testers use the source repository to ex-
port (download) the source code of the new update. They
are expected to perform the necessary testing based on
the QDs provided by the OSS developers. They can also
test additional properties (based on their judgment). Such
tests are made to inform the users (and implicitly devel-
opers) about the qualities of the release. As a result of
this process, testers will provide both: an assessment of
the Quality of Tests (QoTs) and a report on the Result of

Tests (RoTs).

Each tester has the freedom to only test a subset of the
specified QDs. For example, a security specialist tester
may want to only test properties related to security(see
tester C in Table 1). Similarly, a tester specialized on
Linux can test properties related to Linux (see tester B in
Table 1). Each tester compiles and builds her own bina-
ries from the source, to be able to guarantee that the bi-
naries she signs are the ones corresponding to the source
that she inspects. The tester certifies the binary update by
providing a digitally signed package with the necessary
information such as version number, releasing date, QDs,
and her QoTs and RoTs.

Formally, the output of the testing process is a tuple

〈τ, β, ~η, ν, ε, ~Φ, ~Υ, ~Θ, ~Ψ, d,S〉 where τ is the ID of this
tester, β is the binary software, ~η is a set of files infor-
mation including (file names, size and hash values of files
content), ε is the release building parameters (target archi-

tecture and compiler version and options), ~Υ is the set of

additional quality definitions added by this tester, ~Θ is the

vector of Qualities of Tests, ~Ψ is the vector of the Result

of Tests and S = SIGN(δ, 〈~η, ν, ε, ~Φ, ~Υ, ~Θ, ~Ψ, d〉) is the
associated digital signature created with the secret key δ
of the tester.

A tester can issue a review based on her study of the
source code of the OSS. Such a review is applicable to
any ε, it which case it is issued with a special value for ε,
ε = ⊥ (empty). The signature is this case is computed for

~η = ⊥. S = SIGN(δ, 〈⊥, ν,⊥, ~Φ, ~Υ, ~Θ, ~Ψ, d〉)

C) Integration process. A mirror maintainer integrates β as
obtained from a binary builder with the quality reviews,

each of them of type (τi, β, ν, ε, ~Φ, ~Υi, ~Θi, ~Ψi, d,Si),
from n different testers for the release candidate (ν, ε)
or (ν,⊥) into a single update/release package, where i
is used to enumerate over the available testers. If a tester
issue reviews both for (ν, ε) and for (ν,⊥), keep only the
one for (ν, ε). This integration improves both OSS quality
evaluation and end-user security. Each tester has signed
the new release information and evaluation and this signa-
ture is part of the integrated update/release package. Fi-
nally, mirror maintainers make the release package avail-
able via their distribution channel (e.g., mirror servers,
CDs).

Formally we describe the release package with the

tuple 〈β, ν, ε, ~Φ, d,Γ〉 where Γ is a set of tuples

{〈τi, ~Υi, ~Θi, ~Ψi, ǫ, t,Si〉}, τi is the ID of tester i, ǫ is
a Boolean specifying whether the review is issued for

ε = ⊥, t is the date of the test data, ~Θi is the Quality

of Tests vector from tester i, and ~Ψi is the Result of Tests
vector from tester i.

D) Update/Install process. A client keeps polling his trusted
mirrors for new updates. If a new update (ν, ε) is avail-
able at a mirror m, then its information and associated

quality reviews in 〈~η, ν, ε, ~Φ, d,Γm〉 are downloaded from
all mirrors where it is available. All the available Γm

from all mirrors m are integrated into a single set of

quality reviews: Γ =
⋃

m Γm. The quality reviews in

〈~η, ν, ε, ~Φ, d,Γ〉 are then evaluated. If automatic updates
are enabled and user-defined criteria concerning required
tester support and minimal quality levels are satisfied,
then the binary will be downloaded, authenticated and
installed. Any user u can specify complex criteria for
triggering automatic acceptance of a new update package,
such as the special constellation of testers and QoT/RoT
values, of which a (tu, nu) threshold scheme for trusting
any tu out of nu user-selected testers is just a special case
(see Algorithm 1 in next section). If automatic updates are
disabled, users can inspect the quality reviews and make
their decision.

Decision Making for Accepting Automatic

Updates

In this section we detail the procedure followed by an agent
to decide whether to download and install new updates au-
tomatically. The function evaluteUpdate() verifies that the
conditions set by user for automatically accepting new up-
dates are satisfied and returns true on success. The two
parameters used by it are:

• The quality reviews of an update binary release, aggre-

gated in the tuple: 〈~η, ν, ε, ~Φ, d,Γ〉

• The user predefined conditions, aggregated in the tuple:

〈w, c, µ, ~∆〉 where w is the minimum total weight of
trusted testers supporting the update, c is the minimum
number of trusted testers supporting the update, µ is the
method used to evaluate trusted testers (with possible val-

ues: WEIGHT and COUNT), ~∆ is the list of all testers
trusted by the user.

After ε is found relevant for the current system,
the algorithm compares the current software version
(currentV ersion) with the newly received update ver-
sion (ν). If currentV ersion is not older, then reject the
update. The total weight of the trusted testers support-
ing this update and their count is computed and stored
in the variables total wt and cnt testers, respectively
(Lines 4, 5, 18 and 22). The combined quality of tests and
results are maintained in the vectors crt QoT and crt RoT
(see Lines 6, 7, 19 and 21). A sample combination function
for QoT is max and for RoT is min. crtWeight returns
the weight of tester given user configuration and her own
evaluation of her quality of tests.

In order to calculate: total wt, cnt testers, crt QoT and
crt RoT , we need to iterate over all testers in Γ (Line 9).
If a tester’s identifier, τ (digest of its public key), is not

found in the list of trusted testers, ~∆, then its review is ex-
cluded from Γ (Lines 12 and 13). The revocation status of
the public key from τ is checked using available methods,
e.g.: CRL, OCSP (Line 15). Reviews from revoked or un-
known testers are discarded by the continue operation. Re-
views from trusted testers are verified using stored public
keys (Line 16). This public key is returned by PK(τ). If
the signature of the review is not valid then that review is
excluded from Γ (Line 24). Function getRequiredTesters()

Algorithm 1: End-user algorithm for accepting automatic
updates

1 function evaluateUpdates(〈~η, ν, ε, ~Φ, d,Γ〉, 〈w, c, µ, ~∆〉)
−→ Boolean

2 if (ν not newer than currentVersion) then
3 return false;

4 total wt← 0;
5 cnt testers← 0;
6 crt QoT ← [0, ...0];
7 crt RoT ← [0, ...0];
8 remove double occurrence of testers in Γ (prefer

occurrences with newer date t and more specific,
ε 6= ⊥);

9 foreach (〈τ, ~Υ, ~Θ, ~Ψ, ǫ, t,S〉 ∈ Γ) do
10 ε′ ← vaco; ~η′ ← ~η;
11 if (not ǫ) then ε′ ← ⊥; ~η′ ← ⊥;

12 if (τ 6∈ ~∆) then

13 Γ← Γ \ {〈τ, ~Υ, ~Θ, ~Ψ,S〉};
14 continue;

15 if (revoked(PK(τ))) then continue;

16 r ← verify(PK(τ), 〈~η′, ν, ε′, ~Φ, ~Υ, ~Θ, ~Ψ, d,S〉);
17 if r = true then

18 total wt← total wt+ getWeight(τ, ~Θ);

19 crt QoT ← combineQoT (crt QoT, ~Θ, τ);
20 crt RoT ←

21 combineRoT (crt RoT, ~Ψ, ~Θ, τ);
22 cnt testers← cnt testers+ 1;

23 else

24 Γ← Γ \ {〈τ, ~Υ, ~Θ, ~Ψ,S〉};

25 if (getRequiredTesters() 6⊆ Γ) then return false;
26 if (crt QoT 6≥ getRequiredQoT ()) then
27 return false;

28 if (crt RoT 6≥ getRequiredRoT ()) then
29 return false;

30 if (µ = WEIGHT) then
31 return (total weight ≥ w);

32 if (µ = COUNT) then
33 return (cnt testers ≥ c);

return a list of the testers without whose supporting reviews
the user refuses any automatic update (Line 25).

Function getRequiredQoT() (used in Line 26) returns
the vector containing the minimum amount of testing as
required by the user for accepting an automatic update.
This condition is evaluated in Line 26 where each entry of
crt QoT must be greater or equal to the corresponding re-
quired value. Function getRequiredRoT() (used in Line 28)
returns the vector containing the minimum result for each
test as required by the user for accepting an automatic up-
date. If any entry in the crt RoT is smaller than the cor-
responding entry in the result of getRequiredRoT , then

the update is abandoned. Based on the value of a given µ,
trusted testers can be evaluated either based on their total
weight (Line 30) or based on their total number (Line 32).

Updates Protocol

To download updates, a software repeatedly connects
to each mirror, url, from its set of preferred mir-
rors (M). On each connection, the software sends a
message update request taking as parameters the tuple
〈ClientID, url, d, ver, crt,S〉 (see procedure onClock() in
Algorithm 3). In our implementation, procedure OnClock()
is set to be called at fix intervals of time. Here ClientID
is a unique client identifier (a public key of the user), d is
a timestamp specifying the UTC time of the server as esti-
mated by the client at the moment when the request is made
(see Algorithm 3 - Lines 3 and 11), ver is an optional pa-
rameter that can specify the version that is requested and
crt is the current version used by the client. When ver is
not specified, the default requested version is the newest re-
lease available, and the server does not have to provide it
when it is not newer than crt. The signature S is com-
puted as S = SIGN(SK(ClientID), 〈url, d, ver, crt〉),
SK(ClientID) being a notation specifying the secret key
of the client identified by ClientID.

Also, the server can probabilistically verify the signature
in the update request (see Algorithm 2 - Line 2). The mir-
ror server can log requests to enable blacklisting DoS attack-
ers (see Algorithm 2 - Line 6). To mitigate DoS attacks, the
server only answers requests where its address is the same
as the url parameter in the request (Algorithm 2 - Line 5).
If a client sends an invalid signature S or invalid parameter
url, blocking her IP has to be made only when IP spoof-
ing attacks can be ruled out (e.g., with TCP connections).
When the difference between the time at the mirror and the d
parameter is larger than a reasonable threshold max skew,
then the server replies with a message time fault passing as
parameter its actual time (see Algorithm 2 - Line 7). A hon-
est client can use this answer to correct its estimation of the
time at server (see Algorithm 3 - Line 11).

If all the aforementioned tests succeed, then the mirror
returns a message update response that contains as param-
eter a digitally signed update descriptor (see Algorithm 2 -
Lines 12, 18). This update descriptor contains the update
package data described in the section Architecture, except
for the binary files β. The client can verify the signature of
the mirror using its stored public keys and can eventually
deliberate and decide to download the corresponding files β,
based on the Algorithm 1. The actual detailed formats of the
exchanged messages are described in Figures 2 and 3.

Data Formats for Information Exchange

In this section, we explore the structure of the data exchange
between clients and mirrors. First, we identify the elements
in the Updates Descriptor. Then we describe the structure
of the messages (request and response) exchanged between
clients and mirrors. In the current implementation the ex-
changed messages are encoded using standard representa-
tions for web services (XML, WSDL, SOAP).

Figure 2: Updates Request

Figure 3: Updates Response

Algorithm 2: Mirror Server

1 on update request (IP, 〈ClientID, url, d, ver, crt,S〉
do

2 if (! probabilisticVerification(S)) then
3 block IP;
4 return FAIL;

5 if (url 6= myURL) then block IP and return FAIL;
6 log(ClientID, url, d,S);
7 if (|d− time()| > threshold) then
8 send time fault(time()) to IP and return FAIL;

9 if (ver 6= NULL) then
10 if (having compatible(ver)) then
11 send update response(ver) to IP;
12 return TRUE ;

13 else
14 send version absent to IP ;
15 return FAIL;

16 if (latestVersion() newer than crt) then
17 send update response(latestVersion()) to IP;
18 return TRUE;

19 send version absent to IP and return FAIL;

The format of the updates descriptor defined in section
Architecture is detailed in Figure 4. We have seen that

a tester generates the data: 〈τ, β, ~η, ν, ε, ~Φ, ~Υ, ~Θ, ~Ψ, d,S〉.

Algorithm 3: Updates Client

1 on clock do
2 for url ∈M do
3 d← skew(url)+time();
4 send update request(myID,url,d,ver,crt,S);

5 on update response (update descriptor) do
6 store update descriptor;
7 conds← getUserConditions();
8 if evaluateUpdates(update descriptor, conds) then
9 Install new version;

10 on time fault (url, server time) do
11 skew(url)← server time + roundtrip - time();

Figure 4: Updates Descriptor

This data can be encoded in the updates descriptor used in
the answers of the mirrors. The update descriptor has four
sections: version identification, downloadable items, quality
definitions, and data provided by testers.

In Figure 4, the tester identifier τ appears within the
tag: <digestPK>. The information about files ~η is indi-

cated by <downloadables>. The quality definitions ~Φ
are specified in element <QOTD>, each quality being de-
scribed in a sub-element <testDef>. The data from a
tester is included in the tags <testerInfo> in the sec-
tion <testers> of the descriptor. The entries of the qual-

ity of tests vector ~Θ appear in the sub-elements <QoT>

of the corresponding entry <test>. The entries of the

result of tests vector ~Ψ appear in the corresponding sub-
elements <RoT>, their index into the test vector being spec-
ified by the <ref> element. The additional quality defini-

tions ~Υ of this tester appear in the sub-element <QOTD> of
<testerInfo>. The release date d is in element <date>
and the signature S in the sub-element <signature> of
the <testerInfo>.

The updates descriptor provided by mirrors as answer
to update request has the same structure but can contain
multiple <testerInfo> elements as sub-elements of the
<testers> element.

Reference Implementation

Here we describe issues solved in our reference implementa-
tion of the proposed automatic updates system for the open
source peer-to-peer DDP2P system which is implemented
mainly in Java.

Distribution preparation: While the Java JDK7 compiler
implements a binary builder, this does not hold for the corre-
sponding jar archiever since its output depends on the ex-
act compilation time and date and on the timestamps of the
class files. Similar issues can occur with any other build pro-
cesses that include the build host and -time in the program,
or the randomized stack protection cookies when using the
stack protector features of GCC.

We implement a binary builder based on the Oracle Java
compiler and jar tool by adding a pre-processing on the
class files and a post-processing on the resulting jar file. The
pre-processing sets all the timestamps of all the archived
files to a fix value.

The post-processing removes from the resulting jar

archive file the information concerning the time of the
archiving. For example, since jar is a version of the zip
tool our implementation identifies the first occurrence of the
compilation time and date as the 4 byte integer starting at
offset 10 (starting from 0). Subsequent occurrences are also
removed (see the source code of openjdk as provided by
Oracle).

Client and Server Support: For supporting the server
side (mirror), we make available two packages:

1. A SOAP Toolkit for PHP which is an extension of the Nu-
SOAP toolkit (Ayala 2004). It is a set of PHP classes used
to generate WSDL document and handle SOAP requests
and produce SOAP responses.

2. A Java package to sign SOAP responses before sending
them to clients.

Anybody can query the server using the corresponding stan-
dard methods for web services.

We also make available a Java package that implements
the communication with the web service provided by the
server, as defined in Algorithm 3 with the encoding and de-
coding of the standard messages in Figure 2 and 3. Received
updates are handled according to Algorithm 1 for automatic
installation of updates.

The Decentralized Tester

As future work, we plan to investigate mechanisms for inte-
grating recommendation systems technology into our frame-
work to help building trust into testers. Similarly, a mech-
anism for reporting failures from the client to the mirrors,
testers and developers can be used to improve testing proce-
dure. We want to investigate the possibility of implementing
a virtual decentralized tester based on the bug reports com-
ing from peer users. Users can exchange information about
bug reports and can vote on the quality of releases, updates
as well as on the quality of various properties claimed for
each release. This vote can refer to a RoT q value assigned
by a tester to a quality q. An alternative is for each user i to
vote each quality q by providing their RoT

q

i and QoT
q

i val-
ues, and to aggregate the RoT

q

i values as a weighted sum,
where the QoT

q

i weight is additionally weighted by the trust
Φi in the user i providing it (Equation 1).

Rotq =

∑
i
RoT

q

i ∗QoT
q

i ∗ Φi∑
i QoT

q

i ∗ Φi

(1)

Such votes can be aggregated by a server, or can be ex-
changed using a P2P platform to achieve the fully decen-
tralized tester.

Analysis

Requirements on Testers

Testers can release signed reviews for an analysis of the soft-
ware based on its sources. The tester can also issue reviews
for binaries compiled by others, but then she cannot be sure
about her analysis of the resouce code (as she cannot verify
that the binary she studies is indeed based on the source that
she can access).

If the tester want to release reviews for a given binary
release (coupled with results of direct inspection of the
sources), the only requirement is that they use a binary
builder (a compilation process that leads to the same bi-
naries). That is typically achieved if they compile with
the same compiler options, and with the same version of
the compiler. For example, with Java, the same binary is
achieved from any machine and distribution of Linux if the
same java compiler is used. In general, testers contributing
to a given binary release do not need to have identical testing
machines.

The advantage of a Java binary is that it runs on any op-
erating system, and therefore signed test results on any plat-
form (e.g., Linux) are automatically applicable to binaries
running an many platforms (Windows, Mac).

Security Evaluation

Our proposal satisfies all the guidelines for security defined
in the state of the art (listed in the background), includ-
ing the more recent principle of reliance on multiple secret
keys. Moreover we introduce an additional security feature:
namely that the owners of the various secret keys can be in-
dependent (which can only make attacks harder).

Figure 5: Overall Architecture of the Recommender System

Principles for Systems Recommending Testers

While there are various ways to build systems that recom-
mend testers to end-users, we now highlight principles that
can help maximize security. The main one refers to the in-
dependence of the testers,

Definition 1 (Decentralization) The recommendation pro-
cedure should not be under the control of a limited number
of users.

Without this principle an attacker controlling the recom-
mender system can filter only testers that she controls. Even
with a decentralized recommender, the criteria of a recom-
mender can be exploited to focus on a few testers (which
being few can be easier attacked). A heuristic to help dis-
tribute the trust away from a small kernel, is to take into
account proximity (assuming the end-users are themselves
distributed reasonably well).

Definition 2 (Proximity) Preference should be given to
testers that are close to the user (geographically or in terms
of some social network), as a heuristic to improve decentral-
ization.

Recommender Systems for testers in P2P
applications

For P2P applications, such as DDP2P, there exists an intrin-
sic social network as defined by the connections of each peer
(or constituent). In one such scheme, testers used by a peer
are recommended to neighboring peers. Each tester being
associated with a weigh (trust coefficient), this weight can
decrease with each level of forwarding (using an amortiza-
tion coefficient). By default, the recommendation made to a
peer for a tester has the weight given by the maximum value
among the weights coming on all its links. Users can over-
write this default for themselves by increasing or decreas-
ing the weight manually. The recommendation is forwarded
only if the user manually accepts to use the recommended
tester. Users can define and act themselves as testers, or
introduce manually testers they personally know and trust.
Based on this scheme, their neighbors receive high recom-
mendations for them.

For example, assuming the trust coefficient is amortized
with 90% for each new link in the chain of recommenda-
tion, the obtained recommendation in a P2P application is
shown in Figure 5. As shown, there are six peers (P1,..P6)
that use two testers: P3 and T. P3 is a peer that is also a
tester, called in the following internal tester and T is not
part of the P2P network, being referred to as external tester.
The user of P3 is using herself as a trusted tester and she has
started giving herself a 100% as weight. P5 introduces and
uses the external tester T, whom she also assigns a weight of
100%. Both P3 and P5 pass their selected testers informa-
tion to neighboring peers. In Figure 5, P3 announces herself
to her neighbors peers P2, P4 and P5 which see her recom-
mended with the weight 90% (0.9*100%). Also, P5 rec-
ommended T to her neighbors peers P1, P2 and P3 which
see the weight 90%. Based on these recommendations, P2
and P4 have decided to use P3 as trusted tester and forward
P3’s information to P1 which see the associated weight 81%
(0.9 * 90%). In addition, P1 has decided to use T as a trusted
tester (P1 had the choice to use P3[81%] or T[90%] or both).
However, P3 has decided to use T as trusted tester beside
herself.

Conclusions
An integrated framework for development, testing, releas-
ing and distribution of automatic updates is proposed for
the case of open source software maintained by volunteers.
Close source software and open source software managed by
commercial entities are controlled by a central authority that
can be trusted and made responsible for low quality updates
or infiltration of malware in updates. However, no such pro-
tection was so far available for volunteer-based open source
software.

The proposed framework introduces a decentralized au-
thority made up of a cloud of independent testers. Each of
these testers can have its own base of users that trust her
based on various reasons: reputation, personal contact, or
based on independent commercial contracts and services.

Each given user can trust multiple testers with various de-
grees of trust and can flexibly specify required constellations
of Quality of Tests and Results of Tests from these testers in
order to automatically accept an update. A threshold trust,
of any tu out of user u’s nu selected testers, is just a special
case of the possibilities enabled by the proposed framework.

The t out on n threshold signature security, offered to au-
tomatic updates by this framework, is stronger than the se-
curity notion offered by known updates techniques for OSS
managed by commercial entities. That trust is restricted
to a fix set of n public keys, (moreover, based on a single
root key whose attack would be disastrous). Meanwhile, the
method proposed here for volunteer based OSS allows each
user to select its own set of n trusted testers with indepen-
dent keys, from an unbounded/open set of volunteer testers.

While the tester does not have to provide either the code
or the infrastructure for mirrors and automatic-updates, they
can directly provide/sell services to end-users and mirrors
in terms of quality reviews for software. These reviews can
be automatically checked in the process of automatic up-
dates. Administrators of mirrors can pack together reviews

from several testers for a given release. Deterministic binary
builder functions are introduced for this purpose.

The framework enables the developers of the software
to provide an ontology to serve as a common language for
testers about claimed achieved requirements of the project.
In this way, test results from fully independent testers can
be automatically combined in meaningful ways for a safe
automatic update scheme.

We provide a reference implementation of the proposed
mechanism, integrating it into DirectDemocracyP2P

(DDP2P), an open source software developed by volun-
teers. A sample deterministic binary builder is implemented
with this system, guaranteeing that any Java archive (jar)
built by independent testers with the same version of the java
compiler from the same source code release is binary iden-
tical (condition required for enabling the composition of re-
views from independent testers).

References

Adi, W.; Al-Qayedi, A.; Negm, K.; Mabrouk, A.; and
Musa, S. 2004. Secured mobile device software update
over ip networks. In SoutheastCon, 271 – 274.

Antwerp, M., and Madey, G. 2008. Advances in the source-
forge research data archive. In Int. Conf. on Open Source
Systems.

Ayala, D. 2004. nusoap-web services toolkit for php.
Novembro, http://dietrich. ganx4. com/nusoap.

Bellissimo, A.; Burgess, J.; and Fu, K. 2006. Secure soft-
ware update:disappointments and new challenges. In In
USENIX Workshop on Hot Topics in Security (HotSec, 37–
38.

Bertino, E.; Correndo, G.; Ferrari, E.; and Mlla, G. 2003.
An infrastructure for managing secure update operations
on xml data. In SACMAT.

Bonnington, C. 2012. Recent software update is
bricking some apple tvs. http://www.wired.com/

gadgetlab/2012/11/apple-tv-problems/.

Cadar, C., and Hosek, P. 2012. Multi-version software
updates. In Hot Topics in Software Upgrades (HotSWUp),
2012 Fourth Workshop on, 36 –40.

Cappos, J.; Samuel, J.; Baker, S.; and Hartman, J. H. 2008.
A look in the mirror: attacks on package managers. In
Proceedings of the 15th ACM conference on Computer and
communications security, CCS ’08, 565–574. New York,
NY, USA: ACM.

Dinh-Trong, T., and Bieman, J. 2004. Open source soft-
ware development: a case study of freebsd. In IEEE Int.
Symposium on Software Metrics, 96–105.

Dolev, D., and Yao, A. C. 1981. On the security of public
key protocols. In Proceedings of the 22nd Annual Sym-
posium on Foundations of Computer Science, SFCS ’81,
350–357. Washington, DC, USA: IEEE Computer Society.

Dromey, R. 1996. Cornering the chimera [software qual-
ity]. IEEE Software 13(1):33 –43.

Greg, and Mark. 2013. Update engine: Software updat-
ing framework for mac os x. http://code.google.
com/p/update-engine/.

Lanigan, P. E.; Gandhi, R.; and Narasimhan, P. 2006.
Sluice: Secure dissemination of code updates in sensor
networks. In 26th IEEE International Conference on Dis-
tributed Computing Systems.

Myers, M.; Ankney, R.; Malpani, A.; Galperin, S.; and
Adams, C. 1999. X.509 internet public key infrastructure
online certificate status protocol - OCSP. IETF Network
Working Group Request for Comments 2560.

Nichols, D. M., and Twidale, M. B. 2003. The usability of
open source software. In First Monday, volume 8, number
1.

Nilsson, D. K.; Roosta, T.; Lindqvist, U.; and Valdes, A.
2008. Key management and secure software updates in
wireless process control environments. In WiSec ’08: Pro-
ceedings of the first ACM conference on Wireless network
security, 100–108. New York, NY, USA: ACM.

Samuel, J.; Mathewson, N.; Cappos, J.; and Dingledine,
R. 2010. Survivable key compromise in software update
systems. In CCS’10, 61.

