
Parallel Proposals in Asynchronous Search

Technical Report No. TR-01/371

Marius-Călin Silaghi and Boi Faltings

Laboratoire d’Intelligence Artificielle
Département d’Informatique

EPFL, Ecublens
CH-1015 Lausanne

E-mail :

{

silaghi
faltings

}

@lia.di.epfl.ch

Fax: ++41-21-693.52.25

August, 2001

Parallelism and distribution are two distinct concepts that are confusingly close.
Parallel Search refers in this work to the distribution of the search space and Dis-
tributed Asynchronous Search to the distribution of the constraint predicates.
A certain amount of parallelism exists in any Distributed Asynchronous Search
and it increases with the degree of asynchronism. However, in comparison to
Parallel Search [10], the parallel effort in Distributed Asynchronous Search can
be more redundant. Moreover, agents in Asynchronous Search can have peri-
ods of inactivity which are less frequent in Parallel Search. Since Distributed
Search is the only solution for certain classes of naturally distributed problems,
we show here how one can integrate the idea of Parallel Search in Distributed
Asynchronous Search. A technique for dynamic reallocation of search space is
then presented. This technique builds on the procedure for marking concurrent
proposals for conflicting resources, that we have formalized in [11].

1 Introduction

Distributed combinatorial problems can be modeled using the general frame-
work of Distributed Constraint Satisfaction (DisCSP). A DisCSP is defined
in [21] as: a set of agents, A1, ..., An, where each agent Ai controls exactly one
distinct variable xi and each agent knows all constraint predicates relevant to its
variable. The case with more variables in an agent can be obtained quite easily
from here, while the case of one variable in several agents can be adapted as
shown in [12]. Asynchronous Backtracking (ABT) [20] is the first complete and
asynchronous search algorithm for DisCSPs. A simple modification was men-
tioned in [6, 21] to allow for versions with polynomial space complexity. In [13]
we present a technique for maintaining consistency in asynchronous search. [11]
describes a general technique that allows the agents to asynchronously and con-
currently propose changes to their order. Using a special type of markers, the
completeness of the search is ensured with polynomial space complexity.

Parallelism and distribution are two distinct concepts that are confusingly
close. Parallel Search refers in this work to the distribution of the search space
and Distributed Asynchronous Search to the distribution of the constraint predi-
cates. This is somewhat different from the definitions in [3]. A certain amount of
parallelism exists in any Distributed Asynchronous Search and it increases with
the degree of asynchronism. However, in comparison to Parallel Search [10],
the parallel effort in Distributed Asynchronous Search can be more redundant.
Moreover, agents in Asynchronous Search can have periods of inactivity which
are much less important (less long and frequent) in Parallel Search. Since Dis-
tributed Search is the only solution for certain classes of naturally distributed
problems, we show here how one can integrate the idea of Parallel Search in
Distributed Asynchronous Search. A technique for dynamic reallocation of the
search space is then presented. This technique builds on the procedure for
marking concurrent proposals for conflicting resources, that we have formalized
in [11].

The main idea of this paper results from considering that before search,
each agent agrees on using a number of K distributed processes (slots). A
set of processes, containing one process from each agent, is the equivalent of
a processor in Parallel Search approaches [10]. The tasks of the slots can be
defined previous to search. For dynamic reallocation of the processes, these
slots are considered here as conflict resource [11] and the agents make proposals
about their allocation.

This is the first asynchronous search algorithm that allows for parallel pro-
posals which cannot be gathered into one Cartesian product. It is also the
first protocol where non-redundant parallelism is explicitly generated in Asyn-
chronous Search. This is neither a generalization1 nor an instance of AAS,
since the different proposals can be considered separately in consistency main-
tenance. Here we build on ABT since it is an algorithm easier to describe
than its subsequent extensions. The techniques can nevertheless be integrated

1If not built on AAS.

1

in a straightforward manner in most extensions of ABT, such as AAS and R-
MAS [14]. In certain settings, especially in combination with R-MAS, parallel
proposals can also offer additional opportunities for improving privacy besides
improving efficiency.

2 Related Work

The first complete asynchronous search algorithm for DisCSPs is the Asyn-
chronous Backtracking (ABT)[20]. The approach in [20] considers that each
agent maintains only one variable. More complex definitions were given later [22,
18]. Other definitions of DisCSPs [23, 16, 12] have considered the case where
the interest on constraints is distributed among agents. [16] proposes versions
that fit the structure of a real problem (the nurse transportation problem).
The Asynchronous Aggregation Search (AAS) [12] algorithm actually extends
ABT to the case where the same variable can be instantiated by several agents
(e.g. at different levels of abstraction, or (dichotomous) splitting [14]) and an
agent may not know all constraint predicates relevant to its variables. AAS of-
fers the possibility to aggregate several branches of the search. An aggregation
technique for DisCSPs is then presented in [8] and allows for simple under-
standing of privacy/efficiency mechanisms, also discussed in [4]. The strong
impact of the ordering of the variables on distributed search is so far addressed
in [19, 16, 1, 11]. [2] shows how add-link messages can be avoided in ABT. [5]
studies the usefulness of Petri-Nets for analyzing asynchronous protocols.

The Parallel Search has been analyzed in [10, 7, 9, 3]. It consists in dynam-
ically splitting the problem and redistributing it to free processors. Important
nogoods discovered by individual processors can be distributed and reused. [17]
discusses how one can exchange nogoods between independent solvers running
concurrently.

3 Asynchronous Backtracking (ABT)

In asynchronous backtracking, the agents run concurrently and asynchronously.
Each agent owns exactly one distinct variable. The variable of Ai is xi. Each
agent instantiates its variable and communicates the variable value to the rel-
evant agents. Since here we don’t assume generalized FIFO channels, in our
version a local counter, Cxi

i , is incremented each time a new instantiation is
proposed, and its current value tags each generated assignment.

Definition 1 (Assignment) An assignment for a variable xi is a tuple 〈xi, v, c〉
where v is a value from the domain of xi and c is the tag value (current value
of Cxi

i).

Among two assignments for the same variable, the one with the higher tag
(attached value of the counter) is the newest. A static order is imposed on
agents and we assume that Ai has the i-th position in this order. If i>j then
Ai has a lower priority than Aj and Aj has a higher priority then Ai.

2

when received (ok?,〈xj , dj , cxj
〉) do

if(old cxj
) return;

add(xj ,dj ,cxj
) to agent view;

eliminate invalidated nogoods;
check agent view;

end do.
when received (nogood,Aj ,¬N) do

when any 〈x, d, c〉 in N is invalid (old c) then
send (ok?,〈xi, current value, C

i
xi
〉) to Aj ;

return;
when 〈xk, dk, ck〉, where xk is not connected, is contained in ¬N

send add-link to Ak;
add 〈xk, dk, ck〉 to agent view;

put ¬N in nogood-list for xi=d;
add other new assignments to agent view;

1.1 eliminate invalidated nogoods;
old value ← current value;
check agent view;
when old value = current value

1.2 send (ok?,〈xi, current value, C
i
xi
〉) to Aj ;

end do.
procedure check agent view do

when agent view and current value are not consistent
if no value in Di is consistent with agent view then

backtrack;
else

select d ∈ Di where agent view and d are consistent;
current value ← d; Ci

xi
++;

send (ok?,〈xi, d, Ci
xi
〉) to lower priority agents in outgoing links;

end
end do.
procedure backtrack do

nogoods ← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods

broadcast to other agents that there is no solution, terminate this
algorithm;
for every V ∈ nogoods;

select (xj ,dj ,c) where xj has the lowest priority in V ;
send (nogood,Ai,V) to Aj ;
eliminate invalidated explicit nogoods;
remove (xj ,dj ,c) from agent view;

check agent view;
end do.

Algorithm 1: Procedures of Ai for receiving messages in ABT with nogood removal.

3

Rule 1 (Constraint-Evaluating-Agent) Each constraint C is evaluated by
the lowest priority agent whose variable is involved in C.

Each agent holds a list of outgoing links represented by a set of agents.
Links are associated with constraints. ABT assumes that every link is directed
from the value sending agent to the constraint-evaluating-agent.

Definition 2 (Agent View) The agent view of an agent, Ai, is a set con-
taining the newest assignments received by Ai for distinct variables.

Based on their constraints, the agents perform inferences concerning the as-
signments in their agent view. By inference the agents generate new constraints
called nogoods.

Definition 3 (Nogood) A nogood has the form ¬N where N is a set of as-
signments for distinct variables.

The following types of messages are exchanged in ABT: ok?, nogood, and
add-link. An ok? message transports an assignment and is sent to a constraint-
evaluating-agent to ask whether a chosen value is acceptable. Each nogood
message transports a nogood. It is sent from the agent that infers a nogood ¬N ,
to the constraint-evaluating-agent for ¬N . An add-link message announces Ai

that the sender Aj owns constraints involving xi. Ai inserts Aj in its outgoing
links and answers with an ok?.

The agents start by instantiating their variables concurrently and send ok?
messages to announce their assignment to all agents with lower priority in their
outgoing links. The agents answer to received messages according to the Algo-
rithm 1 [11].

Definition 4 (Valid assignment) An assignment 〈x, v1, c1〉 known by an agent
Al is valid for Al as long as no assignment 〈x, v2, c2〉, c2>c1, is received.

A nogood is invalid if it contains invalid assignments. The next property
is a consequence of the fact that ABT is an instance of AAS [12].

Property 1 If only one nogood is stored for a value then ABT has polynomial
space complexity in each agent, O(dn), while maintaining its completeness and
termination properties. d is the domain size and n is the number of agents.

4 Parallel Proposals

In this section we describe the concept of slots. The slots are at the heart of
parallel proposals in asynchronous search. The dynamic reallocation of the slots
is discussed in subsequent sections.

4

A1,1

A1,2

A1,3

A2,1

A2,2

A2,3

A3,1

A3,2

A3,3

A4,1

A4,2

A4,3

Slot 1

Slot 2

Slot 3

Agent A 1 2Agent A 3Agent A 4Agent A

Figure 1: A slot is a set of abstract agents, one for each initial agent.

4.1 Slots as abstract distributed processors

For simplicity, we assume that prior to search each agent allocates K processes
for solving the current DisCSP. This assumption can be slightly relaxed, as
mentioned later. For an agent Ai, these processes, are ordered and are identified
using an additional index: Ai,k, k ∈ 1,K.

Definition 5 The slot j is defined as the set of processes Ai,j , i ∈ 1, N (Fig-
ure 1).

The agents own private predicates, but every process Ai,j knows all the pred-
icates of Ai. Therefore a slot can be used to perform a distributed computation
independently from other slots. Any asynchronous protocol can be used in any
slot, with the simple modification that the index of the current slot has to tag
any message for identifying the target process. Obviously, different distributed
computations launched in such slots could exchange some nogoods to improve
search similarly as computations on real processors do in [17]. This version will
be referred to as Parallel Asynchronous Search I (PAS1).

When the order of the agents is different in distinct slots, the computational
load of different agents can become more balanced.

Further in this paper we rather discuss techniques that distribute the search
space among different slots. A family of nogood sharing techniques is naturally
obtained when the nogoods involve common segments of the search tree.

4.2 Slots Statically Allocated (SSA)

The simplest way to distribute a search space among existing slots, is to stati-
cally split the domain of a variable prior to search and to distribute it among
the slots. Imagine that the agents in Figure 1 work on a DisCSP P . Assume
that in P , the domain of x1, D1 has at least K values (here K = 3). Let Pi

be the problem P where the domain of xi is restricted to D1,i. D1 can then
be split in K nonempty disjoint partitions, here D1,1, D1,2, D1,3. Any slot i can
work independently on the problem Pi, eventually exchanging some nogoods as
in PAS1. This technique can always be used for continuous domains.

When D1 has less than K values, the splitting of the problem can continue
with domains of subsequent variables. We want to equilibrate the effort in

5

D1={a} D1={b} D1={c} D1={d}

D2={a,b} D2={c} D2={a,b} D2={c}

P1 P2 P3 P4

P5 P6

Figure 2: Weak performance of the greedy-split algorithm.

distinct slots. The split has to ensure that the number of tuples (volume) of the
search space in slots is not very different. A greedy approximate technique is to
choose the allocation by a breadth first technique, calling greedy-split(1,K,P).
The variables are ordered according to the descending size of their domains.

Procedure greedy-split(i,K,P)

• If |Di|≥K, split Di in K partitions, as equally as possible. Return.

• If |Di| < K, split P by splitting Di in domains of one value. p = K%|Di|.
For each obtained subproblem Pk,k>1, call greedy-split(i + 1,K/|Di| +
(k≤p),Pk).

In the example of Figure 2, K = 6, D1 = {a, b, c, d} and D2 = {a, b, c}. The
problems obtained for slots are: P1 = {D1 = {a}×D2 = {a, b}}, P2 = {D1 =
{a}×D2 = {c}}, P3 = {D1 = {b}×D2 = {a, b}}, P4 = {D1 = {b}×D2 = {c}},
P4 = {D1 = {c}×D2 = {a, b, c}}, P5 = {D1 = {d}×D2 = {a, b, c}}. Their size
varies between 1 and 3.

In order to obtain a better equilibrium between the size of search spaces
for slots, we introduce another heuristic. This is obtained by calling prime-
split(K,P).

Procedure prime-split(K,P)

• Let a decomposition of K in prime numbers be p1p2, ..., pn. Choose (i, j)
such that |Di| is divided by pj . If this is not possible, choose (i, j) =
argmax

i,j

[|Di|/pj]. [f] denotes the truncated integer of f . Among remaining

competitor pairs, choose the one with highest pj .

• If |Di|≥pj , split Di in pj partitions, as equally sized as possible. For each
obtained subproblem Pk, call prime-split(K/pj ,Pk).

• If |Di|<pj , split P by splitting Di in domains of one value. p = pj%|Di|
For each obtained subproblem Pk,k>1, call prime-split(K/|Di|+(k≤p),Pk).

As shown in Figure 3, the algorithm prime-split can obtain better partitions.
The protocol where the slots solve independently problems partitioned according
to algorithms similar to those presented in this subsection are referred to as

6

D1={a,b} D1={c,d}

D2={a} D2={b} D2={b} D2={c}

P1 P2 P5 P6

D2={a}D2={c}

P3 P4

Figure 3: Results of the prime-split algorithm.

PAS2. As for PAS1, it is recommended to order the agents very differently in
distinct slots in order to balance their load.

4.3 Slots Statically Allocated to Agents (SSAA)

The main drawback in PAS2 is that the partitioning of the problem does not
take into account the constraint predicates. One search space may be much
harder than another and some slots can end their activity immediately. Now we
propose to give certain agents power to split the search space among groups of
slots. A hierarchy of agents can have a hierarchical control on the distribution
in slots.

A1,1 A2,1

A2,2

A3,1

A3,2

A3,3

A4,1

A4,2

A4,3

Slot 1

Slot 2

Slot 3

Agent A 1 2Agent A 3Agent A 4Agent A

A1,4 A2,4 A3,4 A4,4 Slot 4

Figure 4: Agent-based static allocation.

The example in Figure 4 shows a case where the first process of agent A1,
A1,1, takes the first position in all asynchronous search protocols for the slots
1 to 3. The second process of agent A2, A2,2, takes the second position in the
asynchronous search protocols for the slots 2 and 3.

For this case, the initial domain D1 of the variable x1 of agent A1 is statically
split in two partitions: D1,1 for the slots 1 to 3, respectively D1,4 for the slot 4.
The slot 4 behaves like in PAS2. A1,1 starts by making two different proposals
in parallel, by sending a set of ok? messages in the slot 1 and another set of
ok? messages with the second instantiation of x1 to the slots 2 and 3. A2,2 also
sends two sets of ok? messages, one to slot 2 and the other to slot 3. Whenever
a proposal of one of these two agents is refused (eg. by a nogood message)
in a slot, that agent sends a new proposal for that slot. Any nogood message
(or propagate message in R-MAS) that has to be sent to A2 by lower priority

7

processes in slots 2 and 3, are sent to A2,2. Those from slots 2 and 3 towards
A1, are sent to the process A1,1. This can be implemented very efficiently by
defining the addresses of processes A1,1, A1,2, and A1,3 (respectively A2,2 and
A2,3), as synonyms.

The processes A1,1 and A2,2 are a bottleneck, but in general this drawback
is reduced when the branching factor is low and the agents that are sources of
branching have high priority. Instead, the computational load can be dynami-
cally adjusted to different slots. The domain of x2 is incrementally distributed
to the slots 2 and 3 on request. Only when A2,2 has exactly one valid proposal
available, a possible value for x2, then one of the slots 2 and 3 remains unused.
The generalization of these rules for general trees of access to slots is obvious
and the obtained protocol is called PAS3.

The only modification to the messages in ABT (and its extensions) is that
each message has to be tagged with the name of its slot, so that the target pro-
cess can be discriminated by the receiving agent. The procedures for receiving
nogoods and the procedure check agent view have to be modified as shown in
Algorithm 2.

Assumption 1 We assume in the following that all the processes of an agent
can share data.

Given the previous assumption, A1,1 needs to send ok? messages only to the
processes in the slot 2, instead of sending them to the slots 2 and 3. This reduces
the number of exchanged messages, but special care is required in implementing
the agents such that they do not become bottlenecks.

5 Histories

Now we recall [11] a marking technique that allows for the definition of a total
order among the proposals made concurrently and asynchronously by a set of
ordered agents on a shared resource (e.g. a label-AAS, an order-ABTR, an
allocation of a slot).

Definition 6 A proposal source for a resource R is an entity (e.g. an ab-
stract agent) that can make specific proposals concerning the allocation (or val-
uation) of R.

We consider that an order ≺ is defined on proposal sources. The proposal
sources with lower position according to ≺ have a higher priority. The proposal
source for R with position k is noted PR

k , k ≥ xR
0 . xR

0 is the first position.

Definition 7 A conflict resource is a resource for which several agents can
make proposals in a concurrent and asynchronous manner.

Each proposal source PR

i maintains a counter CR

i
for the conflict resource

R. The markers involved in our marking technique for ordered proposal sources
are called histories.

8

when received (nogood,Aj,slot,¬N) do
when any 〈x, d, c〉 in N is invalid (old c) then

send (ok?,〈xi, current value[slot], C
i
xi
〉) to Aj,slot;

return;
when 〈xk, dk, ck〉, where xk is not connected, is contained in ¬N

send add-link to Ak;
add 〈xk, dk, ck〉 to agent view;

put ¬N in nogood-list for xi=d;
add other new assignments to agent view;

2.1 eliminate invalidated nogoods;
old value ← current value[slot];
check agent view;
when old value = current value[slot] (= d)

2.2 send (ok?,〈xi, current value[slot], C
i
xi
〉) to Aj,slot;

end do.
procedure check agent view do

when agent view and any current value are not consistent
if no value in Di,k is consistent with agent view then

if no current value is consistent with agent view then
backtrack

else
set inconsistent current values to -1

end
else

select d ⊆ Di,k where agent view and d are consistent;
inconsistent current values ← elements of d;
for every modified slot, s, do

Ci
xi
(s)++;

send (ok?,〈xi, d, Ci
xi
〉) to lower priority processes of slot s

for agents in outgoing links
end do

end
end do.

Algorithm 2: Procedures of Ai,k for receiving nogoods in PAS3.

Definition 8 A history is a chain h of pairs, |a:b|, that can be associated to
a proposal for R. A pair p=|a:b| in h signals that a proposal for R was made
by PR

a when its CR
a had the value b, and it knew the prefix of p in h.

An order ∝ (read “precedes”) is defined on pairs such that |i1:l1| ∝ |i2:l2| if
either i1 < i2, or i1 = i2 and l1 > l2.

Definition 9 A history h1 is newer than a history h2 if a lexicographic com-
parison on them, using the order ∝ on pairs, decides that h1 precedes h2.

PR

k builds a history for a new proposal on R by prefixing to the pair
|k:value(CR

k)|, the newest history that it knows for a proposal on R made by

9

any PR
a , a<k. The CR

a in PR
a is reset each time an incoming message announces

a proposal with a newer history, made by higher priority proposal sources on R.
CR

a is incremented each time PR
a makes a proposal for R.

P1
x

P2
x

P3
xm1:x={..}|1:k1l|

m3:x={..}|2:k2h|

m1:x={..}|1:k1l|

m2:x={..}|1:k1f|

a) b)

x

x

x x

x
x

P1
x P3

x

m3:x={..}|1:k1f|2:k2g|

P2
x

Figure 5: Simple scenarios with messages for proposals on a resource, x.

Definition 10 A history h1 built by PR

i for a proposal is valid for an agent A
if no other history h2 (eventually known only as prefix of a history h′

2) is known
by A such that h2 is newer than h1 and was generated by PR

j , j ≤ i.

For example, in Figure 5 the agent P x
3 may get messages concerning the

same resource x from P x
1 and P x

2 . In Figure 5a, if the agent P x
3 has already

received m1, it will always discard m3 since the proposal source index has pri-
ority. However, in the case of Figure 5b the message m1 is the newest only if
k1f < k1l and is valid only if k1f ≤ k1l. In each message, the length of the
history for a resource is upper bounded by the number of proposal sources for
the conflict resource.

6 Dynamic Allocation in Parallel Asynchronous
Search

Here we show how the marking technique presented in the previous section can
be used by agents to make parallel proposals while dynamically allocating slots.
In [11], an order on agents is modeled as a resource while each proposal defines
guidelines for reordering and a recommended order. The guidelines from high
priority agents have priority, and are followed by the recommended orders of
lower priority agents that respect the valid guidelines.

To asynchronously and dynamically allocate slots to parallel proposals, we
consider each slots as a conflict resource. The proposal sources for each slot
consists of an ordered set of N − 1 abstract agents. The delegations of these
abstract agents to processes of initial agents can be modified identically as for
reordering. Each proposal consists in:

• a working slot, and

• a set of free slots.

The free slots are the ones that can theoretically receive the control of this slot,
but the working slot is the recommended one.

10

The next convention helps to aggregate messages containing proposals on
the allocations of several slots into messages called slots.

Convention 1 By convention, when a proposal source for a slot s, proposes
s as working slot, the proposed set of free slots is empty. The receiving slots
interprete the proposals in this way, even if the set of free slots that they receive
is not empty.

Convention 2 By convention, the proposal sources for a slot, s, are delegated
to the processes in the current working slot for s, and are ordered according to
the current order of the processes in the asynchronous protocol.

When a process is proposal source for several slots and the proposals for
those slots are identical, those proposals need to be sent only once.

By PAS4 we refer the protocol where:

• Proposals are made according to the previous conventions.

• When a reallocation is proposed, all the proposal sources for the corre-
sponding slots, placed on higher positions, are announced. On the receipt
of newer allocations, data tagged with invalidated histories of slot alloca-
tion is removed.

• Each message is tagged with the newest allocation for the receiving slot,
as known at sender. For propagate messages in DMAC and R-MAS, this
corresponds to the tag of their level.

• A proposal source only makes a finite number of proposals on slot alloca-
tions after a proposal of variable instantiation was refused for the delegated
process.

• In ABTR, the order of successor agents can only be modified when a
reallocation of their slot is made. (In order to reorder the agents, a new
proposal for reallocation has to be defined and it has to tag the proposal
on order)

The pair added in the history of a proposal on slots reallocations has the
form|(i : cS) : c|, where cS is the slot of the process delegated as the proposal
source which builds this pair. i is its position. c is the value of the counter of
proposals for this proposal source. Termination detection can be run indepen-
dently in distinct slots.

Proposition 1 When the protocols used in slots are complete extensions of
polynomial space ABT (e.g. AAS, R-MAS), PAS algorithms are complete, cor-
rect and terminate, and require only polynomial space.

Proof. The proof is obvious for PAS1-PAS3 and results from the corresponding
properties of the used asynchronous algorithms, and on the completeness of the
problem partitioning.

11

In PAS4, the working slots elected by the first agents cannot be continuously
disturbed and interrupted until a solution is found or the proposal launched on
them is refused. Whenever a reallocation is proposed, all involved processes are
announced and they will update their proposals. When any complete extension
of ABT (AAS, R-MAS) is used in slots, the termination of PAS4 results by
induction. Namely, once a process and its predecesors are no longer refused,
the reasoning applies to the process on the next position in the working slots.
The completeness is a consequence of using only logic inference. The use of
histories for slot reallocations leads to coherent views in processes for each given
allocation. The soundness is ensured by the fact that coherent views lead to
generation of nogood messages at any contradiction. Actually, the complete
extensions of ABT ensure that processing of such valid nogood messages leads
to soundness when they are tagged with valid histories.

The required space complexity is K times the highest space complexity re-
quired by the asynchronous protocols used in slots.

A1
A2

A3

A4

=

=

=

==

Figure 6: A graph coloring problem with 3 colors, {a,b,c}.

In Figure 7 is given a simple example of a trace of PAS4 with ABT in 3 slots,
for the coloring problem shown in Figure 6. When a message is sent to several
agents, a single message is shown and the list of target agents is shown on the
right-hand side. The proposal on the slots relevant for each message is shown
in parentheses after the other parameters. It is followed by the history for that
proposal. All the processes start having by default available as free slots all the
slots, and having the slot 1 as current working slot. The proposal sources in
agent A1 propose to split the free slots in two. These proposals are attached
to the ok? messages that have to be sent to processes of agents A3, A4. They
are sent by slots messages to the agent A2 since no other message is scheduled
toward A2. Meanwhile, the agent A2 also made proposals in message 3, but
their tag is recognized as invalid by the receiving processes which know tags
from messages 1 and 2. The slots message 4 is delivered by the process A2,1 to
its both proposal sources for slots 1 and 2.

The example is shown only up to a point where a solution is found, but most
slots are still working. The history of the slot proposals in nogoods are trimmed
as for the history of proposals on orders in ABTR [11]. The target slot for a

12

1: A1,1 ok?〈x1, a, 1, (1, {1, 2})|(1 : 1) : 0|〉 → A3,1, A4,1

2: A1,3 ok?〈x1, b, 1, (3, {3})|(1 : 1) : 0|〉 → A3,1, A4,1

3: A2,1 ok?〈x2, a, 1, (1, {1, 2, 3})|(2 : 1) : 0|〉 → A3,1, A4,1

4: A1,1 slots〈(1, {1, 2})|(1 : 1) : 0|〉 → A2,1

5: A1,3 slots〈(3, {3})|(1 : 1) : 0|〉 → A2,3

6: A2,1 ok?〈x2, a, 1, (1, {1})|(1 : 1) : 0|(2 : 1) : 0|〉→ A3,1, A4,1

7: A2,2 –ok?〈x2, b, 1, (2, {2})|(1 : 1) : 0|(2 : 1) : 0|〉–→ A3,2, A4,2

8: A3,1 ok?〈x3, b, 1, (1, {1})|(1 : 1) : 0|(2 : 1) : 0|〉→ A4,1

Figure 7: Example of a trace with PAS4.

nogood is computed as the slot in the last pair in the trimmed history of the
nogood. If nogoods would have to be sent from the process of A3 in slot 2 to A1,
they would be sent to the process in slot 1 of A1, as read in the pair |(1 : 1) : 0|
found in valid histories.

6.1 Nogood reuse across reallocation (PAS5)

Similarly with the nogood reuse across reordering [15], nogoods can be saved
when new proposals for reallocations are received. For example, in Figure 7, the
inferences resulting from assignments in message 3 can be temporarily stored
as redundant constraints by all the working processes of agents A3, and A4.
When new assignments arrive in messages 6 and 7, if nothing changes, the
corresponding receiving processes only need to update the tags and recover the
corresponding nogoods (e.g. this happens in the slot 1). Otherwise, the stored
invalidated nogoods can be discarded (slot 2). The corresponding protocol is
called PAS5.

6.2 Dynamic reconfiguration in PAS5

During search, a proposal of Ai might be refused and Ai may want to offer
to other existing working slots the set of freed slots. Ai can do it by simply
broadcasting the new proposal on the modified slots using slots messages with
tags with incremented counters.

If the current proposal source wants to make a slot available to predecessor
proposal sources, dedicated heuristic messages can be defined easily without
modifying the properties of PAS5. Let us look again at the example in Figure 7.
If a nogood would be received by the process A1,3, this could either propose c
in slot 3, or allocate the slot 3 to the proposal in A1,1. In the last case, the
current computation in the slots already allocated to the current instantiations
proposed by A1,1 will not be disturbed by reallocation.

The proposal sources in the process in slot 1 for agent A2, can detect after
receiving nogoods for two proposals that A2 can make only one more proposal
and that they have two available slots in the current allocation. In this situation
heuristic messages can be sent to proposal sources in A1 such that the slot 2
can be reallocated (e.g. to the proposal in message 2).

13

7 Conclusions

We have presented a family of techniques for introducing parallelism in Asyn-
chronous Search (extensions of ABT). This family is called Parallel Asynchronous
Search, and 5 members of its members are detailed. The techniques PAS1 and
PAS2 are expected to work well especially for problems where the agents use
distinct network connections and processors for their processes. PAS3 to PAS5
are reasonable mostly in combination with techniques such as R-MAS which
allow for a better balance in computation and communication load, and give
agents additional flexibility.

8 Acknowledgements

The authors are supported by the Swiss National Science Foundation under
project number 21-52462.97.

References

[1] A. Armstrong and E. F. Durfee. Dynamic prioritization of complex agents
in distributed constraint satisfaction problems. In Proceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence IJCAI97.
IJCAI, 97.

[2] C. Bessière, A. Maestre, and P. Meseguer. Distributed dynamic backtrack-
ing. In Proc. IJCAI DCR Workshop, pages 9–16, 2001.

[3] J. Denzinger. Tutorial on distributed knowledge based search. IJCAI-01,
August 2001.

[4] E.C. Freuder, M. Minca, and R.J. Wallace. Privacy/efficiency tradeoffs in
distributed meeting scheduling by constraint-based agents. In Proc. IJCAI
DCR Workshop, pages 63–72, 2001.

[5] M. Hannebauer. On proving properties of concurrent algorithms for dis-
tributed csps. In Proc. of CP-01 DisCS Workshop. EPFL, 2000.

[6] W. Havens. Nogood caching for multiagent backtrack search. In Proc.
AAAI’97 Constraints and Agents Workshop, ’97.

[7] Q.Y. Luo, P.G. Hendry, and J.T. Buchanan. Comparison of different ap-
proaches for solving distributed constraint satisfaction problems. Technical
Report No. RR-93-74, University of Strathclyde, University of Strathclyde,
26 Richmond Street, Glasgow, G1 1XH, Scotland, UK, 93.

[8] P. Meseguer and M. A. Jiménez. Distributed forward checking. In Proceed-
ings of the International Workshop on Distributed Constraint Satisfaction.
CP’00, 2000.

14

[9] N. Prcovic. Un algorithm distribué pour la résolution des problèmes de
contraintes en domaines finis. Technical Report CERAMICS 95.44, CE-
RAMICS, Novembre 95.

[10] V. N. Rao and V. Kumar. On the efficiency of parallel backtracking. IEEE,
4(4), Apr 93.

[11] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. ABT with Asynch. Re-
ordering. In IAT, 01.

[12] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search with
aggregations. In Proc. of AAAI2000, pages 917–922, 2000.

[13] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Maintaining hierarchical
distributed consistency. In Proc. of CP-00 Workshop on DisCS, 2000.

[14] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Multiply asynchronous
search with abstractions. In IJCAI-01 DCR Workshop, pages 17–32, Seat-
tle, August 2001.

[15] M.-C. Silaghi, D. Sam-Haroud, and B.V. Faltings. Hybridyzing ABT and
AWC into a polynomial space, complete protocol with reordering. Technical
Report #364, EPFL, May 2001.

[16] G. Solotorevsky, E. Gudes, and A. Meisels. Distributed Con-
straint Satisfaction Problems - a model and application. Preprint:
http://www.cs.bgu.ac.il/˜am, 97.

[17] Cyril Terrioux. Cooperative search and nogood recording. In Proc. of
IJCAI-01, pages 260–265, 2001.

[18] M. Yokoo. Distributed Constraint Satisfaction. Springer, 01.

[19] M. Yokoo. Asynchronous weak-commitment search for solving large-scale
distributed constraint satisfaction problems. In Proc. ICMAS, pages 467–
318, 95.

[20] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed
constraint satisfaction for formalizing distributed problem solving. In
ICDCS’92, pages 614–621, June 92.

[21] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The Distributed
CSP: Formalization and algorithms. IEEE Trans. on KDE, 10(5):673–685,
98.

[22] M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm
for complex local problems. In Proceedings of 3rd ICMAS’98, pages 372–
379, 1998.

[23] Y. Zhang and A. K. Mackworth. Parallel and distributed algorithms for
finite constraint satisfaction problems. In Proc. of Third IEEE Symposium
on Parallel and Distributed Processing, pages 394–397, 91.

15

