
Distributed Constraint Satisfaction and Optimization with Privacy Enforcement∗

Marius C. Silaghi and Debasis Mitra
Florida Institute of Technology, Computer Sciences Department

Abstract

Several naturally distributed negotiation/cooperation
problems with privacy requirements can be modeled within
the distributed constraint satisfaction framework, where the
constraints are secrets of the participants. Most of the exist-
ing techniques aim at various tradeoffs between complexity
and privacy guarantees, while others aim to maximize pri-
vacy first [12, 7, 3, 4, 11]. In [7] we introduced a first
technique allowing agents to solve distributed constraint
problems (DisCSPs), without revealing anything and with-
out trusting each other or some server. The technique we
propose now is a dm times improvement for m variables
of domain size d. On the negative side, the fastest versions
of the new technique require storing of O(dm) big integers.
From a practical point of view, we improve the privacy with
which these problems can be solved, and improve the effi-
ciency with which bn−1/2c-privacy can be achieved, while
it remains inapplicable for larger problems. The technique
of [7] has a simple extension to optimization for distributed
weighted CSPs. However, that obvious extension leaks to
everybody sensitive information concerning the quality of
the computed solution. We found a way to avoid this leak,
which constitutes another contribution of this paper.

1. Introduction

CSPs can model problems like meeting scheduling,
timetabling, stable matching, and resource allocation. One
cannot always gather easily the parameters needed to for-
malize the problem. Some of the constraints may contain
private information of different participants. We develop
techniques that can be used by the agents in a distributed
CSP to find a solution without losing any of their secrets,
except for what is inherently revealed by the solution itself.

CSP A constraint satisfaction problem (CSP) is defined
by three sets: (X , D, C). X = {x1, ..., xm} is a set of
variables and D = {D1, ..., Dm} is a set of domains such
∗We thank Richard Wallace and Markus Zanker whose comments

helped to clarify the paper.

that xi can take values only from Di = {vi1, ..., vidi}. C =
{φ1, ..., φc} is a set of constraints, φi involving an ordered
subset Xi = {xi1 , ..., xiki} of the variables in X , Xi ⊆ X .

An assignment is a pair 〈xi, vik〉 meaning that the vari-
able xi is assigned the value vik. φi constrains the legality
of each combination of assignments to the variables in Xi.
A tuple is an ordered set. The projection of a tuple ε of
assignments over a tuple of variables Xi is denoted ε|Xi .
A solution of a CSP (X ,D,C) is a tuple of assignments ε
with one assignment for each variable in X such that each
φi∈C is satisfied by ε|Xi . CSPs do not model optimization
requirements. An extension allowing for modeling some
optimization concerns is given by Weighted CSPs.

Definition 1 A Weighted CSP (WCSP) is defined by a
triplet of sets (X,D,C) and a bound B. X and D are
defined as in CSPs. In contrast to CSPs, C={φ1, ..., φc} is
a set of functions, φi : Di1×...×Diki

→ [0..bi] where bi is
a maximal value (aka weight) for φi.

Its solution is argmin
ε∈D1×...×Dm

∑c
i=1 φi(ε|Xi), if the corre-

sponding sum (aka. weight of solution) is smaller than B.

A Distributed CSP (DisCSP) is defined by four sets
(A,X,D,C). A={A1, ..., An} is a set of agents. X , D, C
and the solution are defined like in CSPs. Each constraint φi
is known only by one agent, being the secret of that agent.

Definition 2 (DisWCSP) A Distributed Weighted CSP is
defined by four sets (A,X,D,C) and a bound B. A,X,D
are defined as for DisCSPs. In contrast to DisCSPs, the el-
ements of C are functions φi : Di1×...×Diki

→ [0..bi],
like for WCSPs. Its solution is argmin

ε∈D1×...×Dn

∑c
i=1 φi(ε|Xi),

if the corresponding weight of solution is smaller than B.

We assume that agents know the variables involved in
the constraints of each other (variables can be falsely de-
clared as involved). Agents want to avoid that others find
details about their secret constraints. The secrets of an agent
are the satisfiability/weight specified by her constraints for
each combination. The solving protocol should avoid re-
vealing any secret except for what is inherently leaked by
the solution itself, namely that all agents accept the selected
solution. A leak is an involuntary revelation of a secret.

X −

x y z

+ +

X

f

X

g

Figure 1. An arithmetic circuit: g = yz+(x−z)
and f=(xz + yz)g.

Example 1 In a problem P, three persons Alice (A1),
Bob (A2), and Carol (A3) want to find a common place
(x1) and time (x2) for meeting. x1 is either Shanghai
(S) or Halifax (H), i.e. D1 = {S,H}. x2 is either
Monday (M) or Thursday (T), i.e. D2 = {M,T}. Each
of them has a secret constraint on the possible time and
place of their meeting. The users know attached costs
to the arrangements that they accept. The bound on the
total cost of an accepted solution, B, is $3000. We can
consider the costs in units of $500, such that we take
B=6. Alice accepts only {〈(H,M), $500〉 〈(H,T), $500〉}
which defines φ1, such that φ1(H,M)=φ1(H,T)=1 and
φ1(S,M) = φ1(S, T)=6, i.e. B. Bob accepts either
of {〈(S,M), $1000〉, 〈(H,M), $500〉, 〈(H,T), $1000〉},
defining φ2. φ2(S,M)=φ2(H,T)=2, φ2(H,M)=1,
and φ2(S, T)=6. Carol’s constraint is φ3 defined as
φ3(S,M)=6, φ3(S, T)=1, φ3(H,M)=φ3(H,T)=0.

The problem is to find values for x1 and x2 minimizing
the sum of φ1, φ2, and φ3, such that it is lower than B, and
without revealing anything else about φ2 and φ3 to Alice,
about φ1 and φ3 to Bob, and about φ1 and φ2 to Carol.

Definition 3 (Arithmetic Circuit [1]) An arithmetic cir-
cuit is a function f with one or several inputs and outputs,
using solely the addition/subtraction and multiplication op-
erations (see Figure 1).

∑e
i=b f(i) and

∏e
i=b f(i) can be

part of an arithmetic circuit if b and e are public constants.

Several multi-party techniques are known to compute
general functions with secret inputs. These are mainly ver-
sions of oblivious evaluation of boolean circuits (boolean
operations over {0, 1}), or arithmetic circuit evaluation [1].
But a DisWCSP is not a function. For a given input prob-
lem, a DisWCSP can have several solutions or no solution.

In [7] we proposed an algorithm for solving DisCSPs,
called SecureRandomSolution. We will refer it from now
on as MPC-DisCSP1 [9]. It uses evaluations of some arith-
metic circuits as one of its building blocks. The algorithm
described here, MPC-DisCSP2, is based on faster arith-
metic circuits than the ones of MPC-DisCSP1. It also al-
lows the n participating agents to securely find a solution by

interacting directly without any external arbiters and with-
out divulging any secrets. It is a threshold scheme, namely
guaranteeing that no subset of t malicious agents that fol-
low the protocol, t<dn/2e, can find anything about others’
problems except for what is revealed by the solution.

As it was suggested for MPC-DisCSP1, MPC-DisCSP2
can be extended to perform optimization in Distributed
Weighted CSPs. The extension consists in first redesign-
ing one of the basic arithmetic circuits involved in MPC-
DisCSP2 such that the algorithm is enabled to find a solu-
tion with a predefined weight. Then one can simply find the
optimal solution of the DisWCSP by scanning for a solution
with weight 0, then weight 1, etc. until the first solution is
found. However, this reveals to everybody the weight of the
found solution! We propose a new technique called MPC-
DisWCSP2 which reveals the weight of the solution only to
a set of agents chosen by the participants, or to nobody.

Overview of MPC-DisCSP1. MPC-DisCSP1 is a multi-
party computation technique. Former multi-party computa-
tions can solve securely certain functions, one of the most
general classes of solved problems being the arithmetic cir-
cuits over fields. A Distributed CSP is not a function. A
DisCSP can have several solutions for a given problem in-
stance, or can even have no solution. Two of the three refor-
mulations of DisCSPs as a function (see [8]) are relevant:

i A function DisCSP1() returning the first solution in
lexicographic order, respectively an invalid valuation
τ when there is no solution.

ii A probabilistic function DisCSP() which picks ran-
domly a solution if it exists, respectively returns τ
when there is no solution.

For privacy purposes only the 2nd alternative is satis-
factory. DisCSP() only reveals what we usually expect to
get from a DisCSP, namely some solution. DisCSP1() in-
trinsically reveals more [10]. MPC-DisCSP1 implements
DisCSP() in three phases:

1. The input DisCSP problem is shuffled in a cooper-
ative way by reordering values (and eventually vari-
ables) randomly, by composing secret permutations
from each participant agent.

2. A version of DisCSP1() where operations performed
by agents are independent of the input secrets, is com-
puted by simulating arithmetic circuit evaluation with
the technique in [1].

3. The solution returned by the DisCSP1() at Step 2 is
translated into the initial problem formulation using a
transformation that is inverse of the shuffling at Step 1.

function value-to-unary-constraint2(v, M)
{xi}0≤i≤M , x0=1, xi+1=xi ∗ (v−i)
{yi}0≤i≤M , yM=1, yi−1=yi ∗ (i−v)

{uk}0≤k≤M , uk = 1
k!(M−k)!

xkyk , where 0!
def
= 1.

Return u.

Algorithm 1: Transforming secret value v∈{0, ...,M} to a
shared secret unary constraint, i.e. u[x]=1 iff u=v.

Overview of Multi-party computations. In shuffling,
we use (+,×)-homomorphic encryption functions EKE :
DP→DC i.e. respecting:

∀m1,m2 ∈ DP : EKE (m1)EKE (m2) = EKE (m1 +m2).

Some encryption functions take a randomizing parameter r.
We write Ei(m) instead of Ei(m, r), to simplify the no-
tation. A good example of a (+,×)-homomorphic scheme
with randomizing parameter is the Paillier encryption [5].

To destroy the visibility of the relations between the ini-
tial problem formulation and the formulation actually used
in computations one can exploit random joint permutations
that are not known to any participant. Here we reformulate
the initial problem by reordering its parameters. Related
permutations appeared in Chaum’s mix-nets [2]. The shuf-
fling is obtained by a chain of permutations (each being the
secret of a participant) on the encrypted secrets.

The secure arithmetic circuit evaluation technique in [1]
exploits Shamir’s secret sharing [6]. This sharing is based
on the fact that a polynomial f(x) of degree t−1 with un-
known parameters can be reconstructed given the evaluation
of f in at least t distinct values of x, using Lagrange inter-
polation. Instead, absolutely no information is given about
the value of f(0) by revealing the valuation of f in any at
most t−1 non-zero values of x. In order to share a secret
number s to n participants A1, ..., An, one first selects t−1
random numbers a1, ..., at−1 that will define the polynomial
f(x) = s+

∑t−1
i=1(aix

i). A distinct non-zero number ki is
assigned to eachAi. The value of the pair (ki, f(ki)) is sent
securely to Ai. This is called a (t, n)-threshold scheme.

Once secret numbers are split and shared with a (t, n)-
scheme, computations of an arbitrary agreed function of a
certain class can be performed over the shared secrets, in
such a way that all results remain shared secrets with the
same security properties (the number of supported collud-
ers, t−1) [1]. For [6]’s technique, one knows to perform
additions and multiplications when t ≤ (n+ 1)/2.

2. New Arithmetic Circuits for DisCSP1()

The main building block of DisCSP1() consist of evalu-
ating some arithmetic circuits. It is for this step that we are
proposing a simpler and faster version. An implementation
of DisCSP1() can be easily obtained by checking all tuples
until one satisfies all the constraints. Such a solution has a

number of operations dependent on the secret constraints of
the problem. This is why it cannot be used in DisCSP().

Consider the CSP P=(X,D,C). One can interpret the
constraints of C as functions with results in the set {0, 1} (0
is infeasible and 1 is feasible). The solutions of P are the
tuples of assignments ε∗ (of type 〈(x1, v

1
ε1), ..., (xm, v

m
εm)〉)

with
∏
φk∈C φk(ε∗|Xk

)=1. The size of the search space (i.e.
total number of tuples) is Θ =

∏m
k=1 dk. Let us detail now

MPC-DisCSP2. If p(ε) =
∏
φk∈C φk(ε|Xk), and εk denotes

the kth tuple in the lexicographic order, then define:

h1(P) = 1

hi(P) = hi−1(P) ∗ (1− p(εi−1))

The index of the lexicographically first solution can be com-
puted by accumulating the weighted terms of the h series:

id(P) =

Θ∑

i=1

i ∗ p(εi) ∗ hi(P) (1)

A result of 0 means that there is no solution. The cost
of this computation is (c + 1)Θ multiplications of secrets,
O(md) times less than the technique in MPC-DisCSP1,
which is O((cm+m2)dm+1), where d= maxi(di).

One can then compute the values of the different vari-
ables in the found solution. We first transform the index id
of the solution computed with Equation 1 into a shared vec-
tor S, of size Θ where only the idth element is 1 and all
other elements are 0. This is achieved using Equation 2.
The technique for transforming the solution to a vector,
shown in Algorithm 1, has 3M multiplications,M less than
Algorithm value-to-unary-constraint1, proposed in [7].

The value of the uth variable in the tth tuple of the search
space is ηu(t), computed with Equation 3. An arithmetic
circuit, fi(P), (see Equation 4), can now be used to com-
pute the value of each variable xi in the solution.

S=value-to-unary-constraint2(id−1,Θ−1) (2)

ηu(t) = b(t− 1)/

u−1∏

k=1

dkc mod du (3)

fi(P) =
Θ∑

t=1

(ηi(t) + 1) ∗ S[t−1] (4)

The space required for computing S is O(dm). This
can be reduced by not reusing intermediary results in Algo-
rithm 1 and computing S on demand during the evaluation
of f functions, but with efficiency losses of O(d2m) rounds
of messages. We call this circuit, DisCSP21().
Example 2 Consider a DisCSP induced by Example 1, i.e.
p(S,M)=0, p(H,M)=1, p(S, T)=0, p(H,T)=1.
h1(P)=1, h2(P)=1, h3(P)=0, h4(P)=0.

The index of the solution is computed with Equation 1,
yielding id(P)=2. This is used according to Equation 2 to
generate the vector S={0,1,0,0}.

The vector S is used to compute the values of the vari-
ables in the solution, using Equations 3 and 4:
η1(1)=0, η1(2)=1, η1(3)=0, η1(4)=1. η2(1)=0, η2(2)=0,
η2(3)=1, η2(4)=1. f1(P)=2, f2(P)=1.

This signifies that the solution chosen by this arithmetic
circuit is x1=Halifax and x2=Monday.

3. Computation of DisCSP()

Revealing the first solution, ε0, in a lexicographic order
leaks two distinct things: ε0 is a solution (or at least that
the elements communicated to each participant are part of a
solution ε0), and there exists no solution lexicographically
ordered before ε0. To avoid the second leak, MPC-DisCSP2
(similar to MPC-DisCSP1) returns a solution picked ran-
domly from the existing solutions by rephrasing the input
DisCSP with a hidden permutation after sharing its secrets.

MPC-DisCSP2’s mix-net for reordering shared secret
DisCSPs. MPC-DisCSP2 shuffles the DisCSP’s domains
(and eventually variables). Each agent chooses a random
secret permutation πi for each domain Di:

πi : [1..di]→ [1..di], i ∈ [1..m]

The secret shares, of the {0,1} value associated by the ex-
tensional representation of each constraint φ to a tuple, are
encrypted with the owner’s publick key and then are seri-
alized according to the current lexicographic order on do-
mains. The serialized encrypted constraints are passed to
each agent in a predefined order, each agent Ai shuffling
them according to her secret permutations πi (mix-net).

To avoid that agents get a chance to learn the final per-
mutation by matching final shares with the ones they gen-
erated, a randomization step is applied at each shuffling.
Each agent applies a randomization step on the set of shares
for each secret constraint value, by adding corresponding
Shamir shares of a 0 (a distinct sharing for each randomiza-
tion). Because of the encryption, this randomization step is
based on (+,×)-homomorphic encryption, multiplying en-
cryptions of shares to obtain encryptions of their sums [8].

Decoding the solution After DisCSP1 is run on the
shared problem shuffled as shown by the previous tech-
nique, the shares of the results of functions f (processed
with Equation 5) have to be revealed without revealing the
permutation. Randomization steps are performed as for en-
coding. Therefore, each agent Ak generates md random
sets of shares of zero, zjk[t] being Aj’s share of the tth zero.

The vectors {〈{Ej(f ′i j [t])}t∈[1..di], j〉}i∈[1..m],
for each j, are sent backward through the mix-
net, where f ′i

j
[t] is Aj’s share for f ′i [t]. When

Ak receives {〈{Ej(f ′i j [t])}t∈[1..di], j〉}i∈[1..m],

it generates and sends to Ak−1 the vector
{〈π−1

i ({Ej(f ′i j [t])Ej(zjk[(i−1)d+t])}t∈[1..d]),
j〉}i∈[1..m]. A1 broadcasts them.

f ′i = value-to-unary-constraint2(fi−1, di) (5)

Complexity The total number of messages that have to
be sent with MPC-DisCSP2 is 3n (for shuffling), n2(c +
1)dm for Equation 1, n23dm for Equation 2, n2m3d for
m Equations 5, and n2 + 2n for decoding the solution. The
total number of messages is n2(dm(c+4)+3md+1)+5n.

Many of these messages can be sent in parallel. Namely,
the number of needed rounds for arithmetic circuit evalua-
tion is given by the depth of the circuit [1]. For our circuits,
the depth is log2(c) for p, log2(Θ) for id(P), log2(Θ) for
value-to-unary-constraint2, and 1 for f . The total number
of rounds is therefore O(m log(d) + log(c)). Nevertheless,
this parallelism requires cΘ(Θ + 1)/4, i.e. O(cd2m), con-
current messages in the first round.

4. MPC-DisWCSP2

The weak extension to distributed weighted CSPs. Let
q(ε)=

∑
φ∈C φ(ε). A solution of a CSP (X,D,C) is a val-

uation ε with q(ε)=c. For addressing Distributed WCSPs,
the function p has to be further adapted as follows. Now the
maximum value of q(ε) is no longer c, but b =

∑c
i=1 bi. We

still want to isolate solutions ε whose q(ε) is some value, x0

(actually we now need the minimal such x0 allowing for a
solution). This is achieved by a p(ε) defined as:

p(ε) =

∏x0−1
i=0 (q(ε)−i)∏b

i=x0+1(i−q(ε))
x0!(b− x0)!

. (6)

A solution with the lowest weight for a DisWCSP can be
found by iterating MPC-DisCSP2 with the Definition 6 for
p, for x0 increasing from 0 toB−1. Note that this technique
reveals to everybody the weight of the solution, i.e. the sum
of constraint weights in the solution.

MPC-DisWCSP2: Solving a DisWCSP while hiding the
weight of the solution. To hide the weight of the solution
to a DisWCSP we must hide the number of rounds needed to
find it with the weak extension. Therefore we will perform
all the B possible rounds, keeping secret the round where a
solution is found. A new set of vectors of secrets {wji }i are
defined, wji holds the value of xi in the best solution found
in rounds 0 to j.

wji
def
=





0 if j=− 1

fi(P) if wj−1
1 =0

wj−1
i if wj−1

1 6= 0

This can be computed with (for i∈[1..d] and j∈[1..(B−1)]):

w−1
i = 0

wji = wj−1
i (1−

∏d
k=1 (k − wj−1

1)

d!
)

+fi(P)

∏
k∈[1..d] (k − wj−1

1)

d!

MPC-DisWCSP2 also consists in three phases:

1. First the DisWCSP is shared and then shuffled through
the mix-net in the same way as it was done with the
DisCSP (except that the values assigned by the con-
straint φk to tuples are in [0..bk] rather than {0,1}).

2. The vector {wBi }i∈1..m is computed by iteratively
building the vectors {wji }i∈1..m for j increasing from
0 to B−1. The computation in each iteration j is per-
formed according to the arithmetic circuit DisCSP21

but with the new definition of p and with x0=j. It is
followed by a secure evaluation of {wji }i∈1..m.

3. The solution is decoded and distributed as in MPC-
DisCSP2, except that the solution vectors are the ones
containing the results of the functions wB−1

i .

The complexity of MPC-DisWCSP2 is B times higher
than the complexity of MPC-DisCSP2. For the most par-
allel version of MPC-DisCSP2, the number of rounds in-
creases with B log d, compared to the weak extension.

In MPC-DisWCSP2 nobody can learn the total weight
of the solution. In some problems one may nevertheless
want to let some particular agents learn the total weight of
the solution, while the rest of the agents should not learn it.
This can be achieved by computing at the end of the second
phase the first element of the solution vector according to:

w0 =
∑

k∈[1..(B−1)]

k(1−
∏
k1∈[1..d] (k1 − wk1)

d!
)

∏
k2∈[1..d] (k2 − wk−1

1)

d!

The single non-zero term in the summation defining w0

is for the round k where wk1 is for the first time non-zero.
w0 specifies the weight of the solution and after decoding,
is revealed only to the agents that should learn it.
Example 3 Let us see a full example of how this arithmetic
circuit is applied to Example 1, (assuming the secret shuf-
fling does not change any order).
w−1

1 =0, w−1
2 =0, η1(1)=0, η1(2)=1, η1(3)=0, η1(4)=1.

η2(1)=0, η2(2)=0, η2(3)=1, η2(4)=1.
x0 = 0: p(S,M)=0, p(H,M)=0, p(S,T)=0, p(H,T)=0.

h1(P)=1, h2(P)=1, h3(P)=1, h4(P)=1.
S={0,0,0,0}, id(P)=0. f1(P)=0, f2(P)=0. w0

1=0, w0
2=0.

x0 = 1: p(S,M)=0, p(H,M)=0, p(S,T)=0, p(H,T)=0. ...
f1(P)=0, f2(P)=0. w1

1 = 0, w1
2 = 0.

x0 = 2: p(S,M)=0, p(H,M)=1, p(S,T)=0, p(H,T)=0.
h1(P)=1, h2(P)=1, h3(P)=0, h4(P)=0.
S={0,1,0,0}, id(P)=2. f1(P)=2, f2(P)=1. w2

1=2, w2
2=1.

x0 = 3: p(S,M)=0, p(H,M)=0, p(S,T)=0, p(H,T)=1.
S={0,0,0,1}, id(P)=4. f1(P)=2, f2(P)=2. w3

1=2, w3
2=1.

x0 = 4: p(S,M)=0, p(H,M)=0, p(S,T)=0, p(H,T)=0. ...
w4

1 = 2, w4
2 = 1. ...

The iteration ends computing for x0 equal to the maximum
admissible cost for P (which according to Definition 2 is
B-1). w5

1 = 2, w5
3 = 1. w0 = 2.

This signifies that the solution chosen by this arithmetic
circuit is x1=Halifax and x2=Monday.

Conclusions. We presented a technique where agents that
need to cooperate and whose problems can be modeled as
CSPs can find a random solution without leaks of additional
information about their constraints. We also show how the
technique can be extended to perform optimization in Dis-
tributed Weighted CSPs. In particular we find a way to
avoid the privacy leaks concerning the solution weight, as
exhibited by the obvious approach.

References

[1] M. Ben-Or, S. Goldwasser, and A. Widgerson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computating. In STOC, pages 1–10, 1988.

[2] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Com. of ACM, 24(2):84–88, 1981.

[3] B. Faltings. Incentive compatible open constraint optimiza-
tion. In Electronic Commerce, 2003.

[4] J. Liu, H. Jing, and Y. Tang. Multi-agent oriented constraint
satisfaction. Artificial Intelligence, 136:101–144, 2002.

[5] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Eurocrypt’99, volume 1592 of
LNCS, pages 223–238, 1999.

[6] A. Shamir. How to share a secret. Comm. of the ACM,
22:612–613, 1979.

[7] M. Silaghi. Arithmetic circuit for the first solution of dis-
tributed CSPs with cryptographic multi-party computations.
In IAT, Halifax, 2003.

[8] M. Silaghi. Solving a distributed CSP with cryptographic
multi-party computations, without revealing constraints and
without involving trusted servers. In IJCAI-DCR, 2003.

[9] M. Silaghi. A suite of secure multi-party algorithms for solv-
ing DisCSPs. Technical Report CS-2004-04, FIT, 2004.

[10] M. Silaghi and V. Rajeshirke. The effect of policies for se-
lecting the solution of a DisCSP on privacy loss. In AAMAS,
2004.

[11] R. Wallace and M. Silaghi. Using privacy loss to guide de-
cisions in distributed CSP search. In FLAIRS’04, 2004.

[12] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed
constraint satisfaction: Reaching agreement without reveal-
ing private information. In CP, 2002.

