
Optimization in Private Stable Matching with Cost of Privacy Loss

Marius C. Silaghi1, Prashant Doshi2, Toshihiro Matsui3, Makoto Yokoo4, Markus Zanker5

1Florida Tech,2University of Georgia,3Nagoya Institute of Technology,4Kyushu University,5University of Klagenfurt

Abstract

We introduce, model and solveprivate non-transitive-
preference-based stable matchingusing a new optimization
framework that models privacy-loss as utility loss. Classic
stable matching problems are a well known tractable appli-
cation with many uses. However, some versions of stable
matching problems are not tractable. One such version that
we identified earlier is the stable matching with privacy of
preferences. Privacy of preferences requirements preclude
centralization of the data for running efficient algorithms.
Distributed solving has to minimize privacy loss.
A further version of stable matching that is not tractable is
when preferences are not transitive, namely when somebody
prefers A over B, and prefers B over C, but prefers C over A.
This situation occurs in nature under the nameRock-Paper-
Scissors mating pattern(RPS). RPS stable matching (RPS-
SMs) does not always have stable solutions and we define
it as an optimization problem minimizing the number of in-
stabilities. Private RPS stable matching problems can be
represented as distributed constraint optimization problems
(DCOPs), but DCOPs do not have a formal way to repre-
sent privacy requirements. We show how to represent RPS-
SMs using a new framework, distributed private constraint
optimization (DPCOP) which models privacy-loss as a utility
loss, of the same nature as the utility loss specified by con-
straint weights.

Introduction
Classic stable matching is a well studied problem. It is

known to be tractable, since the Gale-Shapley algorithm
solves it in quadratic time. However, some of its variants
are not solved by the Gale-Shapley, and remain a good re-
search motivation for the constraint community. One such
variant that we introduce here is characterized by:

• preferences are private to their agent, precluding central-
ization,

• preferences are not transitive, making it is possible that no
stable solution exists.

We introduce these problems, proposing a random genera-
tor. Then we model and solve them with a new framework.
The distributed private constraint satisfaction (DisPrivCSPs)
framework (Silaghi & Faltings 2002) models problems with

Copyright of authors

privacy requirements and enables qualitative and quantita-
tive comparison of distributed CSP solvers. Here we will
introduce a similarly powerful framework extending Dis-
PrivCSPs to distributed constraint optimization (DCOP).
Significant attention was previously given to the definition
and analysis of privacy requirements in distributed con-
straint satisfaction problems (DisCSP) (Yokooet al. 1998).
For a given agentAi, all the solutions of a DisCSP have the
same reward (utility),Ui. At the basis of the DisPrivCSP
theory is the observation that a rational agentAi will drop
out of search when it expects that the price of its future pri-
vacy loss is higher thanUi (intuitively leading to a negative
total utility). Past privacy loss does not matter since its value
was already lost. The quality of a solution to be searched for
by a DisCSP algorithm is therefore defined only by the pri-
vacy criteria.

Distributed constraint optimization problems (DCOPs)
are an extension of DisCSP where constraints have differ-
ent costs. Some attention was already given to privacy in
distributed constraint optimization (Silaghi & Mitra 2004;
Maheswaranet al. 2006; Silaghi, Faltings, & Petcu 2006;
Greenstadt, Grosz, & Smith 2007). In prior work, DCOPs
with privacy requirements are treated as a multi-criteria op-
timization where the constraint weights are of a different
nature from privacy (often perceived from an information
theoretic perspective). The changes needed for generalizing
the DisPrivCSP framework have not yet been analyzed in
the original direction (a usage with DCOPs appears in (Ma-
heswaranet al. 2006)). We start by noting that its original
idea does not immediately apply to DCOPs, since in DCOPs
the value of the optimal solution is not known in advance
(otherwise the problem would become a constraint satisfac-
tion problem). While DisPrivCSPs are optimization prob-
lems for the privacy criterion, DCOPs were so far seen as
multi-criteria optimization problems along two incompara-
ble metrics (privacy/entropy and cost/utility). We explicitly
model the loss of privacy as a cost and we assume that this
cost is provided as a part of the input specification. When the
costs of revealing each secret can be obtained like this, they
allow for much better targeted strategies, keeping the most
valuable secrets and revealing less valuable secrets (rather
than just maximizing the entropy by guarding many irrele-
vant secrets).

We now introduce a new framework called Distributed

Private Constraint Optimization (DPCOP) where the two –
previously incomparable – metrics of DCOPs are redefined
and merged under the utility theory, yielding a unique and
easy to analyze optimization criteria. Stable Matching is
presented as a set of benchmarks for the new framework,
and baseline algorithms are proposed and evaluated experi-
mentally.

The DPCOP framework also defines a new hybrid be-
tween the DCOP and the multi-agent planning research ar-
eas, since a DPCOP solver becomes a planner (where the
actions taken during search have an impact on the solution).

Classic stable matching have been modeled previously
in the DCOP framework (Silaghi, Zanker, & Bartak 2004).
Its modeling was also proposed in other distributed frame-
works (Brito & Meseguer 2005), that also do not explicitly
quantify privacy loss. Here we deal with the new type of sta-
ble matching and show results with the DPCOP framework.

Related Work
Privacy has been a fundamental motivation for distributed

constraint optimization, since the early beginning of the
field (Yokooet al. 1998). However, due to wide disagree-
ment on how to formalize privacy requirements, proposed
techniques are often evaluated not from the privacy per-
spective but solely from the perspective of efficiency and
cost. The first quantitative measurement of privacy loss was
based on simply counting the number of disclosed tuple val-
ues (Freuder, Minca, & Wallace 2001). The distributed pri-
vate constraint satisfaction problems introduced in (Silaghi
& Faltings 2002) label each secret with a number corre-
sponding to the cost induced by its privacy loss. The privacy
loss incurred during a computation is given by the sum of the
the privacy values of each leaked secret. Other approaches
to quantifying privacy loss are based on information theory,
maximizing entropy. The privacy loss is therefore expressed
in bits of information, or some related units (Maheswaranet
al. 2006). All these approaches lack a clear way to trade
off privacy for solution quality, resulting in a difficult multi-
criteria optimization.

Distributed Private CSPs
With DisPrivCSPs (Silaghi & Faltings 2002), each secret

(cost/weight of a constraint or combination thereof) is asso-
ciated with aprivacy value. The privacy value of a secret
specifies the incremental loss of utility due to the revela-
tion of that secret. Note that DisPrivCSPs could only model
additive privacy loss, restriction also removed in the defini-
tion proposed here. Thereward for solving the problemis
given as a constant. The weights (satisfying/unsatisfying) of
a constraint have no direct relation to the utility. Agents in
DisPrivCSPs abandon the search when the utility loss due
to predictable privacy loss (next incremental privacy loss) is
higher than the reward for finding a solution. A qualitative
comparison of algorithms was possible based on the ability
to solve problems without abandoning the search. Quanti-
tative comparison is also possible and agents can minimize
their privacy loss (Wallace & Silaghi 2004).

Baseline Algorithms

The simplest distributed algorithm for solving distributed
CSPs is the one proposed in (Freuder, Minca, & Wallace
2001). In this algorithm, an agent proposes a value for the
variables (a solution) at a time, and the other agents answer
with messages specifying whether their constraints are sat-
isfied by that assignment.

There are other algorithms for solving DCOPs such as
ADOPT (Modi et al. 2005), DPOP (Petcu & Faltings
2005), and DisAO (Mailler & Lesser 2004). There also exist
DCOP optimization techniques using cryptographic proto-
cols (Silaghi, Zanker, & Bartak 2004; Greenstadt, Grosz, &
Smith 2007), and which offer significantly high levels of pri-
vacy guarantees.

Stable matching.
We have earlier modeled classic stable matching in the

DCOP framework (Silaghi, Zanker, & Bartak 2004). Its
modeling was also proposed in other distributed frame-
works (Brito & Meseguer 2005) that like DCOP do not
model explicitly the privacy loss. Cryptographic solutions
are given in (Silaghi, Zanker, & Bartak 2004; Golle 2006).

DPCOP Framework
Prior work treated distributed constraint optimization

problems (DCOPs) with privacy requirements as a multi-
criteria optimization, where the constraint weights are mea-
sured in utility, and privacy is measured in information bits
or related metrics. Here we propose to measure privacy in
the same type of utility as the constraint weights.

In order to extend the DisPrivCSP framework to DCOPs,
we start from the observation that the DCOP constraint
weights, normally used in the objective function of the op-
timization, can also be considered to be a positive (or nega-
tive) utility – or cost – of the same nature as the cost induced
by privacy loss. As such, in DCOPsminimizingthe sum of
the constraint weights (i.e., where weights represent a cost,
with negative utility), the total cost is given by the sum be-
tween the value of the total lost privacy and the cost of the
selected solution. The reward for each agent of solving the
problem will still be considered in this setting to be a pre-
viously known (possible infinite) value, like with DisPrivC-
SPs. A rational participating agent is expected toabandon
the search if its next revelation would lead to a value for
the incremental privacy losswhich, together with a lowest
bound on the cost of the solution, becomes larger than the
reward for solving the problem.

For maximizationDCOP problems, namely problems
seeking a solution maximizing the sum of the constraint
weights (i.e., where constraint weights represent rewards),
privacy loss becomes the only cost. The utility is defined
by the difference between the reward of the solution and the
value of the privacy lost during the search. A rational agent
will therefore abandon the search problem if its next (or ex-
pected) disclosures leads to anincremental privacy lossthat
is larger than the expected total reward of the solution.

In order to formally define the framework described so
far, we first formalize the concept of privacy leaks in a way
general enough to model non-additive functions. Given a set

of secrets, a leaked information about some of these secrets
will be calledrevelation.

DEFINITION 1 (REVELATION). Given a set of secrets
S and a set of agentsA, the set of possible revelations
R(S, A) is a functionR(S, A) : A → (S → [0, 1]) which
maps each peer agent to a functional relation specifying the
probability learned by that agent for each secret.

Note that this definition of revelation is more general than
the version used by DisPrivCSPs, as here it can model sta-
tistical privacy losses. While the above definition has a rich
modeling power, one can assume that sometimes users may
find it difficult to provide the data related to all possible rev-
elations defined in this way. We therefore also consider a
simplified version that requires less data (but is somewhat
less general):

DEFINITION 2 (SIMPLIFIED REVELATION). Given a
set of secretsS and a set of agentsA, the set of possible
revelationsR(S, A) is the function,R(S, A) : A→ PS(S),
which maps each agent to an element in the power-set of the
set of secrets,PS(S).

The simplified revelation definition assumes that privacy
is lost only when a secret is completely revealed. It does not
account for secrets about which other probabilistic informa-
tion is made available.

DEFINITION 3 (DPCOP).A (minimization) Dis-
tributed Private Constraint Optimization Problem (DP-
COP) is defined by a tuple(A, X, D, C, P, U). A is a set of
agents{A1, ..., AK}. X is a set of variables{x1, ..., xn},
and D is a set of domains{D1, ..., Dn} such that each
variable xi may take values only from the domainDi.
The variables are subject to a setC of sets of weighted
constraints{C0, C1, ..., CK}, where Ci = {φ1

i , ..., φ
ci

i }
holds the secret weighted constraints of agentAi, andC0

holds the public constraints. Each weighted constraint
is defined as a functionφi : Xi → IR+ whereXi ⊆ X .
The value of such a function in an input point is called
constraint entry. EachCi can be viewed as the set of the
secret constraint entries in its weighted constraints.

P is a set of privacy loss cost functions{P1, ..., PK}, one
for each agent.Pi defines the cost inflicted toAi by each
revelationr of its secrets, i.e.,Pi(r) : R(Ci, A)→ IR+.

A solution is an agreement between agents inA on a tuple
ε∗ of assignments of values to variables that minimizes the
total cost:

ε∗ = argminε

∑

i

(
∑

j

φj
i (ε)) + Pi(Πi(ε))

whereΠi(ε) is the revelation inR(Ci, A) performed during
the process leading to the agreement on the assignmentsε.

U is a set of rewardsU1, ..., UK , one for each agents, that
the corresponding agent receives if a solution is found, and
that agents use for deciding whether to abandon a search
given their foreseen incremental privacy loss.

The set of rewardsU can be used to qualitatively compare
DCOP solvers, as to which solver can solve more problems
than another solver without any agent abandoning the pro-
cess. Such a hierarchy of solvers was built for DisPrivCSPs

in (Silaghi & Faltings 2002). Formally, the agentAi aban-
dons the search if:

Pi(r∗) − Pi(r) + W≥Ui

wherer is the revelation performed byAi up to this mo-
ment,r∗ is the revelation after the next planned sequence of
actions, andW is a low bound on the quality of the expected
solution.

The privacy-loss cost functionsPi are a new concept.
These functions are part of a problem model (just like utili-
ties of auction outcomes, used to infer bids in Vickrey auc-
tions). Just as utilities are an agent’s input for auctions,a
privacy-loss cost function is an agent’s input for DPCOPs.
An agent can infer a privacy-loss cost function by simulat-
ing how much utility it may lose when each revelation is
performed.

The above DPCOP definition is for the general case where
the constraint of an agent may involve all variables (Silaghi
& Yokoo 2008). Many approaches consider a simplified
version (equivalent in expressive power) where each agent
ownssome variables, and agents enforce only constraints
with variables assigned by previous agents. We provide next
the corresponding DPCOP simplification, allowing for most
existing DCOP algorithms.

DEFINITION 4 (SIMPLIFIED DPCOP). A (minimiza-
tion) distributed private constraint optimization problem
is defined by a tuple(A, X, D, C, P, U). A is a set of
agents{A1, ..., An}. X is a set of variables{x1, ..., xn},
and D is a set of domains{D1, ..., Dn} such that each
variablexi may take values only from the domainDi. The
variables are subject to a setC of sets of weighted con-
straints{C0, C1, ..., Cn}, whereCi = {φ1

i , ..., φ
ci

i } holds
the secret weighted constraints of agentAi, andC0 holds
public constraints. Each weighted constraint is defined as a
functionφj

i : Xi → IR+ whereXi ⊆ {x1, ..., xi}.
P is a set of privacy loss cost functions{P1, ..., Pn}, one

for each agent.Pi defines the cost inflicted by the revelation
of any subset of secret elements ofPi : R(Ci, A)→ IR+.

A solution is an agreement between the agents inA on a
tupleε∗ of assignments of values to variables that minimizes
the total cost:

ε∗ = argminε

∑

i

(
∑

j

φj
i (ε)) + Pi(Πi(ε))

whereΠi(ε) is the revelation inR(Ci, A) performed during
the process of agreeing on the assignmentsε.

U is a set of rewardsU1, ..., UK , one for each agents, that
the corresponding agent receives if a solution is found.

Maximization.
Maximization DPCOPs are defined similarly, but without

the elementU , and redefining the solution as:

ε∗ = argmaxε

∑

i

(
∑

j

φj
i (ε))− Pi(Πi(ε)).

An agent abandons the maximization search if:

W − (Pi(r∗)− Pi(r))≤0

wherer is the revelation performed byAi up to this mo-
ment,r∗ is the revelation after the next planned sequence
of actions, andW is an upper bound on the quality of the
expected solution.

Simplified cost functions.
While (in general) privacy-loss cost functions are not ad-

ditive, we expect that additive randomly generated bench-
marks have the simplicity that can help in the theoretical un-
derstanding of the new framework. In a simplified version,
the value of privacy leaks towards a peer agent can also be
considered independent of privacy leaks towards other peers
(assumption not applicable to all problems). Foradditive
privacy cost functions, an array of privacy costs can simply
be attached to each constraint tuple.

An important case ofnon-additiveprivacy-loss cost func-
tion is where the cost of a leak is independent of the agent
(revelation to an agent being considered to be a revelation to
all agents), while being additive along the dimension of the
secrets. Such a privacy cost function can be represented by
a single cost associated with each constraint tuple.

Comparison with previous frameworks
The closest previous framework is the Distributed Pri-

vate CSPs (DisPrivCSPs) introduced in (Silaghi & Faltings
2002), which deals with distributed constraint satisfaction
problems (DisCSPs). DisPrivCSPs also have costs for pri-
vacy loss, but that cost is not integrated in any way with the
cost of the agreement tuples.

DisCSPs can be modeled as a special case of DCOPs,
namely when the constraints are functions with results only
in {0,∞}, rather than in IR+. This is because:

∑

i

(
∑

j

φj
i (ε))

has the same value for all the satisfying tuples of the Dis-
PrivCSP.

Previous research related to privacy in DCOPs has already
found inspiration in DisPrivCSPs (Maheswaranet al. 2006),
and can be seen as straightforward applications of DisPrivC-
SPs to DCOPs. DPCOPs are a less straightforward exten-
sion of DisPrivCSPs. We think that the main innovation in
DPCOPs versus a straightforward DisPrivCSPs usage with
DCOPs is:

• DPCOPs unify the metric for cost of privacy loss with
the metric used for specifying weights of constraints (in
DisPrivCSPs they were incomparable metrics).

• The revelation is more general in DPCOPs, allowing for
statistical and non-additive privacy loss functions.

Among smaller differences, while with DisPrivCSPs an
agentAi will abandon the search when incremental costs
are higher thanUi, with maximization DPCOPs there may
be no known finite limit on the reward of the agent. Also,
for DisPrivCSPs we provided only theoretical and qualita-
tive comparison of techniques, while with DPCOPs we pro-
vide benchmarks, random problem generators, and exper-
imental analysis of techniques (http://www.cs.fit.
edu/ ˜ msilaghi/DPCOP).

Baseline DPCOP Solvers
Any of the existing DCOP techniques can be used to

solve DPCOPs. Techniques using cryptographic meth-
ods, such as the ones in (Silaghi, Zanker, & Bartak 2004;
Greenstadt, Grosz, & Smith 2007), can guarantee optimal-
ity with minimal privacy leak. Other techniques may of-
fer more efficiency at the expense of optimality. We eval-
uate simple algorithms for solving DPCOPs. Probably the
simplest technique consists of an agent consecutively ask-
ing each publicly possible tuple one after another, while the
other agents answer with their costs. This is an adaptation to
optimization of the technique proposed in (Freuder, Minca,
& Wallace 2001). The agent asking the questions in this
1-leader version is calledthe leader. In theN-leaders vari-
ant, the search space is distributed between agents (related
to (Hamadi 2001)), and each agent asks costs for his part.
The baseline version we evaluate in the N-leaders version is
even simpler, with agents acting in turn rather than simulta-
neously, each question also delegates the leader for the next
question. At the end, the agents publish the best tuples for
their sub-parts, and the best overall tuple is selected.

procedure leaderdo
foreach next tupleε with better local weight than cur-
rently best tupledo

decide nextleader // only N-leaders version;
send ask(ε,next leader);
set next leader // only N-leaders version;
wait answers;
update identity of best tuple;

end
end do.
procedure slavesdo

when ask (ε, next leader)do
compute local cost forε;
send answer(ε, cost) to leader;
recompute privacyloss;
leader := nextleader // only N-leaders version;
if (leader = myself)then

change to leader mode // N-leaders version;
end

end do.
end do.

Algorithm 1: Baseline (1-leader and N-leaders versions)

Leaders may propose tuples that are suboptimal (with
worse local cost than their currently best tuple), lying to
increase privacy (lying occurs also in (Brito & Meseguer
2007)).

RPS Stable Matchings Benchmarks
It is easy to learn a secret weight of a constraint entry for

an agent when a message sent by this agent is based solely
on the weight of that secret constraint entry. If an agent con-
trols a single secret constraint, each message that the agent
sends in response to a leader’s challenge reveals a secret
weight. If an agent holds several secret constraints, a mes-
sage is an aggregation of secrets from those constraints, and
learning the component secrets is sometimes possible, but

more computationally involved (solving the corresponding
systems of equations, when they are determined). First we
perform an experimental study for the simpler case where
each agent enforces a single private constraint.

DPCOP files.
Each randomly generated stable matching DPCOP is

stored in a file in the following format:

<nb variables>
<var_name1> <dom_size> <val_1> ... <val_d>
<var_name2> <dom_size> <val_1> ... <val_d>
...
<nb constraints>
<arity1>
<owner>
<var1_name>
...
<size privacy-vector/tuple>
<weight1> [<privacy vector>] ...

Stable matching.
Distributed stable matching consist in matchingm par-

ticipants of a type tom participants of another type. We
developed a generator for DPCOP models of stable match-
ing betweenm agents of a type andm agents of another
type. The firstm agents are of one type, and the lastm
agents are of the second type. To model secret preferences
we introduce a variableP i

j,k for each pairj, k, 0 ≤ j <
k ≤ m (Silaghi 2004b; Silaghi, Zanker, & Bartak 2004;
Silaghi 2004a). In a version with 2 preferences, variableP i

j,k

has one of two values (0 meaning thatAi prefersA2m−j

to A2m−k, and 1 meaning that it does not preferA2m−j to
A2m−k. Each agentAi receivesm∗(m−1)/2 private unary
constraints on the variablesP i

j,k. In a version with 3 prefer-
ences, a private variable has one of three values: 0 meaning
thatAi prefersA2m−j to A2m−k, 1 meaning that it equally
prefersA2m−j andA2m−k, and 2 stands for the remaining
situation.

In general someones preferences may not be transitive
(as in rock/paper/scissors mating patterns (Sinervo & Liv-
ley 1996)). For such problems it is possible thatP i

j,k and
P i

k,t are both 0, butP i
j,t is 1. We call this version RPS Sta-

ble Matching Problems, and remark that instances of such
problems may not have any stable solution.

The definition of the problem is based onm additional
variables,xi, each of them withm values. The value ofxi

give the index of the participant that is matched withAi in
a stable solution. The conditions of stability and the fact
that each agent can be matched with exactly one agent of
the other type, are specified using a set of public quaternary
constraints. A quaternary constraint is created between each
quadrupletxi, xj , P i

u,v, andPu
j,i. This constraint specifies

that:
“If Ai is matched withA2m−u and Aj is matched with

A2m−v, thenu must be different fromv; and if Ai prefers
A2m−u to A2m−v, thenA2m−v prefersAj to Ai.”

In the generated DPCOP models, the private constraints

are hard constraints (with weights in{0,∞}), to anchor in
reality the evaluation of a solution. The public constraints
are soft constraints, each unstable matching having cost 1.
The fact that each agent is matched with exactly one other
agent of the opposite type remains a hard constraint. The
rewards generated for reaching a solution with minimization
DPCOPs are infinite.

A pseudocode of the RPS-SM problem generator is given
in Algorithm 2.

print the number of variables;
print the variables with their domains;
print total number of constraints;
foreach participantAi do

foreach participant pair (Ak, Aj) of opposite typedo
print i’s unary secret constraint onP i

k,j ;
end

end
foreach guadruple: (xi, xj , P i

u,v, Pu
j,i) do

print the public constraintxi, xj , P i
u,v, andPu

j,i. This
constraint specifies that, ifAi is matched withA2m−u

andAj is matched withA2m−v, thenu must be differ-
ent fromv; and if Ai prefersA2m−u to A2m−v, then
A2m−v prefersAj to Ai.

end

Algorithm 2: Random RPS Stable Matching generator

An example file (with additive privacy costs) is:

generated with ./stableGenMax 2 2 4 2
4 # nb agents
6 # nb variables
variable_name
domain_size list_of_values
x0 2 0 1
x1 2 0 1
PA_0_1_0 2 0 1
PA_1_1_0 2 0 1
PB_0_1_0 2 0 1
PB_1_1_0 2 0 1

8 # nb constraints

1 # arity
0 # owner agent
PA_0_1_0 # variable
4 # size of privacy-cost list

0 [0.012 2.1 3.3 0.32]
INF [2.2 1.1 2.1 3.7]

1 # arity
1 # owner agent
PA_1_1_0 # variable
4 # size of privacy-cost list
INF [1.4 4 2.9 3]

0 [2.5 2.7 2.3 0.72]

1
2

PB_0_1_0
4
INF [3.5 2 2.3 2.4]

0 [2.1 0.65 3.5 0.42]

1
3
PB_1_1_0
4
INF [0.058 0.46 3.3 3.3]

0 [1.8 1.4 1.8 3.9]

4 # arity
-1 # owner: public - no owner
x0 # variable
x1 # variable
PA_0_1_0 # variable
PB_0_1_0 # variable
0 # privacy loss: no private element

INF INF
INF INF
0 0
0 0
1 0
0 0
INF INF
INF INF

4 # arity
-1 # owner: public - no owner
x0 # variable
x1 # variable
PA_0_1_0 # variable
PB_1_1_0 # variable
0 # privacy loss: no private element

INF INF
INF INF
0 0
1 0
0 0
0 0
INF INF
INF INF

4 # arity
-1 # owner: public - no owner
x1 # variable
x0 # variable
PA_1_1_0 # variable
PB_0_1_0 # variable
0 # privacy loss: no private element

INF INF
INF INF
0 0
0 0
0 1
0 0
INF INF
INF INF

4 # arity
-1 # owner: public - no owner
x1 # variable
x0 # variable
PA_1_1_0 # variable
PB_1_1_0 # variable
0 # privacy loss: no private element

INF INF
INF INF
0 0
0 1
0 0
0 0
INF INF
INF INF

These files are meant as inputs to simulators of DPCOP
solvers. In real solvers, each agent could take as inputs a
similar file, but where the constraints owned by other agents
are empty (detection of an owner field naming another agent
signifies that the token after the last variable belongs to the
next constraint).

With the baseline algorithms, the public constraints are
evaluated only by the leader, while the other agents evaluate
only the private constraints.

Privacy Leaks.
For problems withm = 2 the number of private con-

straints per agent is 1, and therefore secrets are lost each
time that they are used for answering to a leader with a cost
(weight).

For problems with more participants, one positive (0
weight) answer in any of the two baseline techniques will
reveal all three secrets involved, but a infinite weight an-
swer contains an aggregated information about a set of se-
crets. It reveals one secret only if the remaining secrets ag-
gregated with it are revealed by finite weight answers, and
requires additional data storage for reconstructing shadow
COPs (Wallace & Silaghi 2004).

The inference technique is shown in Algorithm 3.
This algorithm creates in each agent a shadow of each se-

cret unary constraint of the other agents. This shadow is
filled with each new information received from the corre-
sponding agent. Each time a finite weight is received from
an agent for a given assignments tuple, the projection of the
tuple on the variables of the secret unary constraints of that
agent are marked as having cost 0. Whenever an infinite cost
is received for a tuple, the set of projections of the tuple on
the variables in the secret unary constraints of the sender is
enqueued in the list of∞ cost answers (if the number of un-
known secrets involved is smaller than a boundk, used to
bound the space complexity). Each time that a set from this
list contains a known infinite cost element, it is removed.
Any 0-cost element is removed from its set. When a set
from this list contains a single unknown element (is unary),
we infer that this element has infinite weight.

For non-RPS Stable Matching problems, where prefer-
ences present transitivity properties, one can also apply

shadow constraint← unknown;
list of∞ cost answers← ∅;
when finite cost answerdo

set values in shadow COP to 0;
remove assignments of newly learned unary constraints
from∞ cost answers;
revisit∞ cost answers becoming unary;

end do.
when∞ cost answerdo

remove variables of known constraints from answer;
if answer less thank-ary then

add answer to list of∞ cost answers;
end
revisit∞ cost answers becoming unary;

end do.
procedure revisit∞ cost answers becoming unarydo

set shadow tuples in unary∞ cost answers to infinity;
remove the cost answer from the list of answers;

end do.

Algorithm 3: SMI: Stable Matching Inference of secrets

Algo DPCOP Size Pref Cost Cycles Time
HP STM 4 2 3 14 1.47
BL STM 4 2 257 9.6 0.85
BL RPSM 4 2 249 8.8 0.56
BL RPSX 4 2 310 27.6 0.82
BL RPSX 4 3 443 116.7 0.7
BL RPSX 6 2 1502 9.6*105 5822

Table 1: Stable matching versions.

Floyd-Warshall to compute the transitive closure of these
preferences, recovering additional secrets.

Privacy loss avoidance.
Inferred shadows for the secret constraints of other partic-

ipants are used by the leader to predict the answers of other
agents and to even skip asking the question if the prediction
proves that the current tuple is suboptimal (e.g., one of the
other agents have preferences that make a matching unsta-
ble).

Experimental Results.
For stable matching problems, results averaged over 25

instances are given in Table 1. The cases are: RPS stable
matching with soft constraints (RPSX), RPS stable match-
ing with hard constraints (RPSM), classic stable matching
with transitive preferences (STM). Results are given for the
baseline algorithm with one leader (BL), and for Hamil-
ton and Premkumar’s (HP) cryptographic implementation of
the (Silaghi 2004a; Hamilton, Premkumar, & Silaghi 2005)
technique. The cryptographic algorithm leaks only the se-
crets implied by the fact that the solution is stable (if an
agentA prefers another than its match in the solution, that
other did not preferA to his match).

Some cryptographic solvers are guaranteed to find op-
timal solutions for DPCOPs, at the expense of effi-
ciency (Silaghi, Zanker, & Bartak 2004). Assuming that

no two agents exchange information about peers, there ex-
ist partially cryptographic solvers that are quite efficient but
may, rarely, leak information due to solution vulnerabili-
ties (Greenstadt, Grosz, & Smith 2007).

Conclusion
We introduce, model and solve private stable matching

with non-transitive preferences. We define the framework of
Distributed Private Constraint Optimization to model prob-
lems with complex privacy requirements. We show how it
models the application of stable matching with secret non-
transitive preferences. A generator for random stable match-
ing problems is implemented.

Baseline algorithms are evaluated for problems in the new
framework. All existing DCOP solvers apply to DPCOPs.
Some cryptographic solvers provide the optimal solution,
at the expense of efficiency. This set of benchmarks to-
gether with a random DPCOP generator are made available
athttp://www.cs.fit.edu/ ˜ msilaghi/DPCOP .

References
Brito, I., and Meseguer, P. 2005. Distributed stable match-
ing problems. InCP.

Brito, I., and Meseguer, P. 2007. Distributed forward
checking may lie for privacy. InCP DCR Workshop.

Freuder, E.; Minca, M.; and Wallace, R. 2001. Pri-
vacy/efficiency tradeoffs in distributed meeting scheduling
by constraint-based agents. InProc. IJCAI DCR, 63–72.

Golle, P. 2006. A private stable matching algorithm. In
FC.

Greenstadt, R.; Grosz, B.; and Smith, M. D. 2007. SSD-
POP: Improving the privacy of PDCOP with secret sharing.

Hamadi, Y. 2001. Interleaved backtracking in distributed
constraint networks. InICTAI, 33–41.

Hamilton, J.; Premkumar, M.; and Silaghi, M.
2005. Private stable marriages implementation.
http://www.cs.fit.edu/ ˜ msilaghi/SMC/
examples/stable-marriages .

Maheswaran, R. T.; Pearce, J. P.; Bowring, E.; Varakan-
tham, P.; and Tambe, M. 2006. Privacy loss in distributed
constraint reasoning: A quantitative framework for analy-
sis and its applications.Journal of Autonomous Agents and
Multiagent Systems (JAAMAS).

Mailler, R., and Lesser, V. 2004. Solving distributed con-
straint optimization problems using cooperative mediation.
In AAMAS, 438–445.

Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous distributed constraint optimization
with quality guarantees.AIJ 161.

Petcu, A., and Faltings, B. 2005. A scalable method for
multiagent constraint optimization. InIJCAI.

Silaghi, M.-C., and Faltings, B. 2002. A comparison of
DisCSP algorithms with respect to privacy. InAAMAS-
DCR.

Silaghi, M.-C., and Mitra, D. 2004. Distributed constraint
satisfaction and optimization with privacy enforcement. In
3rd IC on Intelligent Agent Technology, 531–535.
Silaghi, M., and Yokoo, M. 2008. Distributed constraint
reasoning. Encyclopedia of AI, Information Science Ref-
erence.
Silaghi, M.-C.; Faltings, B.; and Petcu, A. 2006. Se-
cure combinatorial optimization using DFS-based variable
elimination. InSymposium on AI and Maths.
Silaghi, M.-C.; Zanker, M.; and Bartak, R. 2004. Desk-
mates (stable matching) with privacy of preferences, and
a new distributed CSP framework. InProc. of CP’2004
Immediate Applications of Constraint Programming Work-
shop.
Silaghi, M.-C. 2004a. Incentive auctions and stable
marriages problems solved with privacy of human prefer-
ences. Technical Report TR-FIT-11/2004, Florida Institute
of Technology, Melbourne, FL.
Silaghi, M.-C. 2004b. Secure multi-party computation
for selecting a solution according to a uniform distribu-
tion over all solutions of a general combinatorial prob-
lem. Cryptology ePrint Archive, Report 2004/333.http:
//eprint.iacr.org/ .
Sinervo, B., and Livley, C. M. 1996. The rock-paper-
scissors game and the evolution of alternative male strate-
gies. Nature 340:240-243.
Wallace, R., and Silaghi, M.-C. 2004. Using privacy loss to
guide decisions in distributed CSP search. InFLAIRS’04.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: For-
malization and algorithms.IEEE TKDE10(5):673–685.

