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Abstract—Much of the Distributed Constraint Satisfaction
Problem (DisCSP) solving research has addressed cooperating
agents, and privacy was frequently mentioned as a significant
motivation of the decentralization. While privacy may have
a role for cooperating agents, it is easier understood in the
context of self-interested utility-based agents, and this is the
situation considered here. With utility-based agents, the DisCSP
framework can be extended to model privacy and satisfaction
under the concept of utility. We introduce Utilitarian Distributed
Constraint Satisfaction Problems (UDisCSP), an extension of the
DisCSP that exploits the rewards for finding a solution and
the costs for losing privacy as guidance for the utility-based
agents. A parallel can be drawn between Partially Observable
Markov Decision Processes (POMDPs) and the problems solved
by individual agents for UDisCSPs. Common DisCSP solvers
are extended to take into account the utility function. In these
extensions we assume that the planning problem is further
restricting the set of communication actions to only the ones
available in the corresponding solver protocols. The solvers
obtained propose the action to be performed in each situation,
defining thereby the policy of the agents.

I. INTRODUCTION

In distributed problems, prviacy of intelligent agents is a
major concern.. In Distributed Constraint Satisfaction Prob-
lems (DisCSP), agents have to find values to a set of shared
variables while respecting given constraints, frequently as-
sumed to have unspecified privacy implications. To find such
assignments, agents exchange messages until a solution is
found or until one agent detects that there is no solution to the
problem. Thus, agents commonly reveal information during
the solution search process, causing privacy to be a major
concern in DisCSPs [1].

The artificial intelligence assumption is that utility-based
agents are able to associate each state with a utility value [2].
As such, each action is associated with the difference between
initial and final utilities. If a user is concerned about its
privacy, then such a user can associate a utility value with
the privacy of each piece of information in the definition of
their local problem. Since the users are interested in solving
the problem, they must be also able to quantify the utility each
of them draws from finding the solution. Here we approach
the problem by assuming that privacy has a utility that can
be aggregated with the utility value of solving the problem.

We evaluate how much privacy is lost by the agents during the
problem solving process, by the total utility of the information
that was revealed. The availability of a value from the domain
of a variable for the DisCSP in the presence of the constraints
for an agent, is the kind of information that the agents want
to keep private. For example, an assignment of a value to
a variable has a cost quantifying the desire of the agent
to maintain its feasibility private. In traditional algorithms,
agents participate in the search process until an agreement
is found. We investigate the case where, being utility-driven,
an agent may stop its participation if the utility of the privacy
expected to be lost overcomes the reward for finding a solution
of the problem. Simple extensions to basic algorithms are
investigated to exploit the utilitarian model of privacy.

We introduce Utilitarian Distributed Constraint Satisfaction
Problems (UDisCSP), an extension of the DisCSPs that ex-
ploits the utilities and costs of agreements and privacy as
guidance for the utility-based agents, where the utility of each
state (aka worth) is estimated as the difference between the
expected rewards for agreements on assignments for shared
variables, and the expected cost of privacy loss. With the
help of the UDisCSP we can now define the problem of each
agent as a planning problem. In UDisCSPs, each agent has
a planning problem, where solving methods can be seen as
consisting both of (a) policies recommending actions for each
state, as well as of (b) mechanisms to update belief states. We
show that a parallel can be drawn between Partially Observable
Markov Decision Processes (POMDPs) and the problems that
individual agents have to solve in UDisCSPs. Therefore, a
traditional DisCSP with privacy requirements is viewed as a
planning problem. Further, we investigate some simple exten-
sions where these solvers can be adjusted to take into account
the utility function. In these extensions, we assume that the set
of communication actions possible in the planning problems
is further restricted to only the communication primitives
available in the corresponding solver protocols. The solvers
obtained for the new type of problems propose the action
(communication/inference) to be performed in each situation,
defining thereby the policy of the agents.

We then evaluate and compare synchronous and asyn-
chronous algorithms according to how well they preserve



privacy. To do so, we generate distributed meeting scheduling
problems, as described in [3], [4]. In these problems, each
agent owns one variable, corresponding to the status of his
agreement for the meeting to schedule, and the domain is
the same for all variables. In each problem there is a global
constraint that requires all the variables to be equal, and also
a unary constraint for each agent.

The paper is organized as follow: after a brief introduction
in Section I, Section II presents existing research concern-
ing planning, algorithms for solving DisCSPs, as well as
approaches to privacy in DisCSPs and their limits. Further,
Section III describes the concepts involved in UDisCSPs and
the extensions to common DisCSP solvers that exploit the
UDisCSP model to preserve privacy. After a discussion on
theoretical implications in Section IV, Section V presents our
experimental results. Section VI concludes the paper.

II. BACKGROUND

A. Planning and POMDPs

Research has already been conducted about the case where
multiple agents have synchronous or asynchronous exchanges,
resulting in extending Partially Observable Markov Decision
Process (POMDP) [5] into event-driven Multiagent POMDP
(MPOMDP) [6] as well as with work on Interactive POMDP
(I-POMDPs) [7]. A cooperative model for teams solving
Distributed Constraint Optimization Problems (DCOPs) with-
out explicit privacy considerations was proposed under the
name of Networked Distributed POMDPs (ND-POMDPs) [8].
However, in this work we assume that agents have explicit
privacy considerations and are self-interested with personal
utilities, and therefore we can see each agent as solving his
independent POMDP:
• A multiagent Partially Observable Markov Decision Pro-

cess (MPOMDP) is a tuple 〈d, S,A,Ω, T,O,R〉, where
d is the number of agents, S is the set of possible
states, A is the set of joint actions, Ω is the joint space
of observations, T is the transition function, O is the
observation function, and R is the reward function.

• Event-Driven MPOMDPs [6], is an alternative framework
for multi-agent decision making under uncertainty, based
on the operation of real-time discrete-event systems [9].
In this approach, team decisions are caused by changes in
the state of the system. When an agent detects a change,
it selects the appropriate action and communicates it to
the other agents. This method implies that there are many
possible observations to be considered.

B. Backtracking Algorithms

We now present standard algorithms for solving DisCSPs.
1) Synchronous Backtracking: The baseline algorithm for

DisCSPs is the Synchronous Backtracking (SyncBT), as pre-
sented in [10], [11]. SyncBT is a simple distribution of the
standard backtracking algorithm. The agents start by determin-
ing a hierarchy between them. The higher priority agent then
sends a satisfying assignment of its variable to the next agent
with an ok? message. The recipient completes the received

assignment with an instantiation of its own variable while
respecting its constraints, and continues likewise. If an agent
is unable to find an instantiation compatible with the current
partial assignment it has received, the agent sends a nogood
message to the previous agent in the hierarchy. The process
repeats until a complete solution is built, or until the whole
search space is explored. The main efficiency concern is that,
since the messages are being sent sequentially, it does not take
advantage of possible parallelism.

2) Asynchronous Backtracking: Asynchronous BackTrack-
ing (ABT) [10], allows agents to run concurrently. Each agent
finds an assignment of its variable and communicates it to
the others agent having constraints involving this variable.
Agents then wait for incoming messages. They receive an
ok? message containing an assignment from a related higher
priority agent, at the beginning of the resolution and also each
time such an agent changes its assignment to avoid constraint
violation. An agent eventually receives values proposed by
the agents it is connected to by incoming links. These values
form a context called agent view. When an agent receives
an ok? message, it integrates the received assignment into its
agent view and checks if its own solution is consistent with
it. If it is not the case, the agent’s assignment is changed. The
negation of a subset of an agent view preventing an agent
from finding an assignment that does not violate any of its
constraints is called a nogood. If an agent infers a nogood from
its constraints and its agent view, the assignment of the
lowest priority agent involved in the nogood has to be changed.
A nogood message communicates to that agent the nogood,
which is treated by its recipient as a new constraint and can
cause it to change its assignment and generate corresponding
ok?, addlink() or nogood messages.

C. Privacy

Privacy is an important problem in a lot of applications [12].
In distributed scheduling problems, problems of confidentiality
also happen when information is exchanged between agents.
Indeed, we know that the assignment of time slots can be diffi-
cult if participants do not want to reveal their constraints [13],
[14]. Such coordinated decisions are in conflict with the need
to keep constraints private [15].

In existing works, several approaches have been developed
to deal with privacy in DCOPs. The first approach using cryp-
tographic techniques is [16]. While ensuring privacy [17], [18],
cryptographic techniques are usually slower, and sometimes
require the use of external servers or computationally intensive
secure function evaluation techniques that may not always be
available or justifiable for their benefits [19]. Another family
of approaches is based on using different search strategies to
minimize privacy loss, as defined by certain privacy metrics.

D. Existing Approaches

1) Sample Cryptographic Technique: The approach de-
scribed in [16], achieves a high level of privacy using encryp-
tion, giving more importance to privacy than to the efficiency
of the resolution. It consists of using a randomizable public



key encryption scheme. In this algorithm, three servers (value
selector, search controller and decryptor) receive encrypted
information from agents and cooperate to find an encrypted
solution. Relevant parts of the solution are then sent to each
agent. When restricted to one single global variable as in [18],
this method guarantees that no information is leaked to other
agents, except what can be inferred from the value of the
agreed solution. We now introduce methods that do not use
cryptography.

2) Distributed Private Constraint Satisfaction Problems:
A framework called Distributed Private Constraint Satisfaction
Problems (DisPrivCSPs), is introduced in [20], modeling the
privacy loss for individual revelations. It also models the effect
of the privacy loss by assuming that agents may abandon
when the incremental privacy loss overcomes the expected
gains from finding a solution. Each agent pays a cost if the
feasibility of some of its tuple is determined by other agents.
The reward for solving the problem is given as a constant.
Those concepts were so far used for evaluating qualitatively
existing algorithms, but were not integrated as heuristics in
the search process.

3) Valuations of Possible States: The Valuations of Possible
States (VPS) framework [21], [22], [19] measures privacy loss
by the extent to which the possible states of other agents
are reduced [23]. Privacy is interpreted as a valuation on
the other agents’ estimates about the possible states that
one lives in. During the search process, agents propose their
values in an order of decreasing preference. At the end of
the search process, the difference between the presupposed
order of preferences and the real one observed during search
determines the privacy loss: the greater the difference, the
more privacy has been lost.

4) Partially Known Constraints: The Partially Known Con-
straints (PKC) model [24], uses entropy, as defined in infor-
mation theory, to quantify privacy and privacy loss. In this
method, two variables x1 and x2 owned by two different
agents may share a constraint. However, not all the forbidden
couples (x1, x2) are known by both agents. Each agent only
knows a subset of the constraints. During the search process,
assignment privacy is leaked through ok? and nogood mes-
sages, like in standard algorithms. This problem is solved
by not sending the value that is assigned to a variable in
a ok? message, but the set of values compatible with this
assignment. For nogood messages, rather than sending the
actual assignments, an identifier is used to specify the state of
the resolution and is used to check if some assignments are
obsolete or not.

III. CONCEPTS

The Distributed Constraint Satisfaction Problem (DisCSP)
is the formalism commonly used to model constraint problems
distributed between several agents. It is represented by a
quadruplet 〈A, V,D,C〉 where:

• A is a set of agents.
• V is a set of variables, each one being owned by a distinct

agent.

• D is a set of domains, each of them defining available
values for the corresponding variable.

• C is a set of constraints, each constraint being a relation
imposed between variables (i.e., x1 = x2).

An agent that reveals an assignment to another agent,
incurs a cost. For simplicity, for now we consider that once
the information is revealed it becomes public, meaning that
revealing it to yet another agent will not degrade its privacy.

Example 1. Suppose a meeting scheduling problem between
a professor and two students. They all consider to agree on a
time to meet on a given day, to choose between 8 am, 10 am
and 2 pm. Professor A1 is unavailable at 2 pm, Student A2

is unavailable at 10 am, and Student A3 is unavailable at
8 am.

There can exist various reasons for privacy. For example,
Student A2 does not want to reveal the fact that he is busy at
10 am (because he secretly took a second job at that time).
The value Student A2 associates with not revealing the 10 am
unavailability is the salary from the second job ($2, 000).
The utility of finding an agreement for each student is the
stipend for their studies ($5, 000), while for professor it is
the a fraction of the value of his project ($4, 000). This is an
example of privacy for absent values or constraint tuples.

Further Student A3 had recently boasted to Student A2 that
at 8 am he interviews for a job, and he would rather pay
$1, 000 than to reveal that he is not. This is an example of
privacy for feasible values of constraint tuples.

Similarly, participants associate a cost to the revelation
of each availability and unavailability. Thus, corresponding
agents associate a cost of 1 to the revelation of their avail-
ability at 8 am, a cost of 2 to the one at 10 am, and a cost
of 4 to the one at 2 pm. The reward from finding a solution
is 4 for A1 and 5 for bot Student A2 and Student A3.

a) DisCSP: The DisCSP framework models this problem
as follow. For simplicity, in the next sections, we will refer to
the possible values by their identifier: 1, 2, and 3.
• A = {A1, A2, A3}
• V = {x1, x2, x3}
• D = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}}
• C = {x1 = x2, x2 = x3, x1 = x3,

x1 6= 3, x2 6= 2, x3 6= 1}
As it can be observed, DisCSPs cannot model the infor-

mation concerning privacy. Now we will show how existing
extensions model them.

b) DisPrivCSP: The additional parameters are P , to
specify the privacy coefficient of each value, and R, to specify
the rewards of each coefficient.
• P = {PA1

, PA2
, PA3

} = {(1, 2, 4), (1, 2, 4), (1, 2, 4)}
• R = {RA1

, RA2
, RA3

} = {(4), (5), (5)}
As we see, this framework successfully models all the

information described in the initial problem and also measures
the privacy loss for each agent. However, it was not yet
investigated what is the impact of the interruptions when
privacy loss exceeds the revenue threshold, or how agents



could use this information to modify their behavior during
the search process to preserve more privacy.

c) VPS: For this problem, with the VPS framework, the 3
participants have to suppose an order of preference between all
different possible values for each other agent. Agents initially
do not know anything about others agents but the variable
they share a constraint with. Agents have no information
about others agents privacy requirements. Thus, agents do not
expect to receive any value proposal more than another. In this
direction one needs to extend VPS to be able to also model
the kind of privacy introduced in this example.

d) PKC: With PKC, the individual unavailabilities are
only known by the corresponding participant. Only the junc-
tion of information known by the two agents over a given
constraint can reconstruct the whole problem.
• A = {A1, A2, A3}
• V = {x1, x2, x3}
• D = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}}
• C = {{x1 = x2, x1 = x3, x1 6= 3},

{x1 = x2, x2 = x3, x2 6= 2},
{x1 = x3, x1 = x3, x3 6= 1}}

Extensions of PKC can also be proposed to model our
example by adding extra parameters for specifying the quan-
titative information about privacy, as shown below. Next we
introduce a framework that can both specify the quantitative
input details, and can help agents in their search process.

A. Our Approach: UDisCSP

While some previously described frameworks do model the
details of our example, it has until now been an open question
as to how they can be dynamically used by algorithms in the
solution search process.

We propose to recast a DisCSP as a planning problem. It
can be noticed that the rewards and costs in our problem bear
similarities with the utilities and rewards commonly manip-
ulated by planning algorithms [25]. As such, we propose to
define a framework which, while potentially being equivalent
in expressing power to existing DisCSP extensions, would
nevertheless explicitly specify the elements of the correspond-
ing family of planning problems. We introduce the Utilitarian
Distributed Constraint Satisfaction Problem (UDisCSP) [26].
Unlike previous DisCSP frameworks, besides results, we are
also interested in the solution process. A policy is a function
that associates each state of an agent with an action that it
should perform [2].

We define an agreement as a set of assignments for all
the variables with values from their domain, such that all the
constraints are satisfied.

Definition 1. A UDisCSP is formally defined as a tuple
〈A, V,D,C, U,R〉 where:
• A = 〈A1, . . . , An〉 is a vector of n agents
• V = 〈x1, . . . , xn〉 is a vector of n variables. Each agent
Ai controls the variable xi.

• D = 〈D1, . . . , Dn〉 where Di is the domain for the
variable xi, known only to Ai, and a subset of {1, . . . , d}.

• C = {C1, . . . , Cm} is a set of interagent constraints.
• U = {u1,1, . . . , un,d} is a matrix of costs where ui,j is

the cost of agent Ai for revealing whether j ∈ Di.
• R = 〈r1, . . . , rn〉 is a vector of rewards, where ri is the

reward agent Ai receives if an agreement is found.
The state of agent Ai includes the subset of Di that it has
revealed, as well as the achievement of an agreement. The
problem is to define a set of communication actions and a
policy for each agent such that their utility is maximized.

Note that the solution of a UDisCSP does not necessarily
include an agreement. In principle the set of available actions
for agents consists of any communication operator, as well as
any local inference computation. The participants are utility-
based agents [2] and try to reach the optimal state.

Example 2. The DisCSP in Example 1 is extended to
UDisCSP by specifying the additional parameters U and R:
U = {u1,1 = 1, u1,2 = 2, u1,3 = 4,

u2,1 = 1, u2,2 = 2, u2,3 = 4,
u3,1 = 1, u3,2 = 2, u3,3 = 4}.

R = 〈4, 5, 5〉.

B. Algorithms

Now we discuss how the basic ABT and SyncBT algorithms
are adjusted to UDisCSPs. The state of an agent includes the
agent view. After each state change, each agent computes
the estimated utility of the state reached by each possible
action, and selects randomly one of the available actions
leading to the a state with the maximum expected utility.

In our algorithms, agents compute the risk of one of their
assignments to be rejected to estimate the expected utilities.
This risk can be re-evaluated at any moment based on data
recorded during previous runs on problems of similar tightness
(i.e., having the same proportion of forbidden instantiations).
Learning from previous experience has been extensively stud-
ied in [27]. The learning can be online or offline. For offline
learning one calculates the number of messages ok? and
nogood sent during previous executions, called count. One
also counts how many messages previously sent lead to the ter-
mination of the algorithm, in the variable agreementCount.
The risk for a solution to not lead to the termination of
the algorithm, is called agreementProb. For online learning,
one can update the variables count, agreementCount and
agreementProb dynamically whenever the corresponding
events happen. When previous experiences are not available,
the value of agreementProb is set to 0.5 by default.

agreementProb =
agreementCount

count
(1)

When ok? messages are sent, the agent has the choice
of which assignment to propose. When a nogood message
is scheduled to be sent, agents also have choices of how
to express them. Before each ok? or nogood message,
the agents check which available action leads to the highest
expected utility. If the highest expected utility is lower than the



current one, the agent announces failure. The result is used to
decide between proposing assignments, a nogood, or declaring
failure.

We called these modified algorithms SyncBTU and ABTU,
respectively. Algorithms SyncBTU and ABTU are obtained by
the same modifications of the pseudocodes of SyncBT [10],
[1], [11] and of ABT [10], [1], [11].

SyncBTU is obtained by restricting the set of communica-
tion actions to the standard communication acts of SyncBT,
namely ok? and nogood messages. The procedures of a
solver like SyncBT define a policy, since they uniquely iden-
tify a set of actions (inferences and communications) to be
performed in each state. A state of an agent in SyncBT is
defined by an agent-view and a current assignment of the
local variable. The local inferences in SyncBTU are obtained
from the ones of SyncBT by a simple extension exploiting
the utility information available. The criteria in this research
was not to guarantee an optimal policy but to use utility with
a minimal change to the original behavior of SyncBT when
reinterpreted as a policy. In SyncBTU, the state is extended to
also contain a history of revelations of one’s values defining
an accumulated privacy loss, and a probability to reach an
agreement with each action. Similar modifications are done
to ABT to obtain ABTU: the restricted set of communication
of ABTU is composed of ok?, addlink and nogood. The
state and local inferences of ABTU are the same as SyncBTU,
while also containing the set of nogoods.

For ABTU, there are three procedures of ABT that have
to be modified: checkagentview, when nogood, and
backtrack. The new procedure checkagentview is
shown in Algorithm 1 and is obtained by inserting Lines 8
to 10. They test the privacy loss and only continue as usual if
the expected loss is smaller than the expected reward.

For lack of space, we do not include here the modified
versions of the other two procedures of ABTU, since they
are obtained in the same way from the procedures of ABT
in [1], procedure when nogood, 7th line, and procedure
backtrack, 7th line. For SyncBTU, its procedures are
obtained from the procedures of SyncBT in an identical way as
for ABTU and ABT. Since [10] does not provide pseudocode
for SyncBT, we refer the modifications to the pseudocode
presented in [11], function assignCPA, before Line 7, and
function backtrack, before Line 6.

To calculate the estimated utility of pursuing an agreement
(revealing an alternative assignment), the agent considers all
different possible scenarios of the subsets of values that might
have to be revealed in the future based on possible rejections
received, together with their probability (see Algorithm 2). The
algorithm assumes as parameters:
• agreementProb calculated in Equation 1,
• Set of possible values D, and
• Probability of having to select a value from D.

The algorithm then recursively computes the utility of the next
possible states, and whether the revelation of the current value
v leads to the termination of the algorithm, values stored in
variables costRound and costNonTerminal. The algorithm

Algorithm 1: checkAgentView in ABTU
Input: D, agentV iew, agreementProb, reward
Output: ∅

1 when agentV iew and currentV alue inconsistent do
2 if no value in D is consistent with agentV iew then
3 backtrack;
4 else
5 select d ∈ D where agentV iew and d are

consistent;
6 currentV alue = d ;
7 if calculateCost
8 (agreementProb, D, 1) > reward then
9 interruptSolving();

10 else
11 send(ok?,(xi,d)) to outgoing links

Algorithm 2: calculateCost
Input: agreementProb, D, probD
Output: estimatedCost

1 if only one value is left in the domain then
2 return marginalCost(value) × probD;

else
3 v = first(D);
4 costRound= calculateCost

(agreementProb, {v}, probD);
5 costNonTerminal= calculateCost

(1− agreementProb, D \ {v},
(1− agreementProb) × probD);

6 estimatedCost = costRound+ costNonTerminal;
7 return estimatedCost;

returns the estimated cost of privacy loss for the future possible
states currently, called estimatedCost.

Example 3. Continuing with Example 1, at the beginning of
the computation agent A1 has to decide for a first action
to perform. We suppose the agreementProb learned from
previous solvings is 0,5. To decide whether it should propose
an available value or not, it calculates the corresponding
estimatedCost by calling Algorithm 2 with parameters: the
learned agreementProb = 0,5, the set of possible messages
(D = {1, 2, 3}) and probD = 1.

For each possible value, this algorithm recursively sums
the cost for the two scenarios corresponding to whether the
action leads immediately to termination, or not. Given privacy
costs, the availability of three possible subsets of D may
be revealed in this problem: {1}, {1, 2}, and {1, 2, 3}. The
estimatedCost returned is the sum of the costs for all possi-
ble sets, weighted by the probability of their feasibility being
revealed if an agreement is pursued. At the call, costRound =
u1,1 × 0,5. In the next recursion for costNonTerminal,
we get costRound = (u1,1 + u1,2) × 0,25. In the last



recursion, the algorithm returns (u1,1 + u1,2 + u1,3) × 0,25.
The estimatedCost obtained is u1,1 × 0,5 + (u1,1 + u1,2)×
0,25 + (u1,1 + u1,2 + u1,3) × 0,25. The expected utility
(reward+estimatedCost = 4− 3 = 1) of pursuing a solution
being positive, the first value is proposed.

ProfessorA1 StudentA2 StudentA3

M1(OK?(x1 = 1))

M2(OK?(x2 = 1))

M3(OK?(x1 = 1))

M4(BT (x2 = 1))

M5(BT (x1 = 1))

M6(OK?(x2 = 3))

M7(OK?(x1 = 2))

M8(OK?(x1 = 2))

M9(BT (x1 = 2))

Fig. 1. Interactions between agents during ABT

Next is an illustrative example of other ABTU operations.

Example 4. With the original ABT, possible obtained traces
is depicted in Figure 1, respectively. In Figure 1, we see that
Student A2 proposes x2 = 1 in Message M2 and x2 = 3 in
Message M6. In this case, the privacy loss for Student A2 is
u2,1 + u2,3 = 1 + 4 = 5.

However, with ABTU, we do not only use the actual utility
of the next assignment to be revealed, but estimate privacy loss
using Algorithm 2. After Student A2 has already sent x2 = 1
with M2, it considers sending x2 = 3 with M6. This decision
making process is depicted in Figure 2. If the next value, 2pm,
is accepted, Student A2 will reach the final state while having
revealed x2 = 1 and x2 = 3, for a total privacy cost of
u2,1+u2,3 = 1+4 = 5. If it is not, the unavailability of the last
value x2 = 2 will have to be revealed to continue the search
process, leading to the revelation of all its assignments for a
total cost of 7. Since both these scenarios have a probability of
50% to occur, the estimatedCost equals ((5+7)/2) = 6. The
utility (reward−estimatedCost) being equal to 5 − 6 = −1,
Student A2 has no interest in revealing x2 = 3 and interrupts
the solving. Its final privacy loss is only u2,1 = 2. The utility
of the final state reached by Student A2 being 2 with ABTU,
and 4 with ABT, ABTU preserves more privacy than ABT in
this problem.

IV. THEORETICAL DISCUSSION

The assumption that each agent owns a single variable
is also not restrictive. Multiple variables in an agent can
be aggregated into a single variable by Cartesian product.
Nevertheless some algorithms can exploit these underlying
structures for efficiency, and this has been the subject of
extensive research [30], [31], [32].

8am

2pm

10am
∑

i∈{1,2,3}
u2,i = 7

1

1
2

∑
i∈{1,3}

u2,i = 5

1
2

1
2

∑
i∈{1}

u2,i = 1

1
2

Fig. 2. Calculation of cost from Student A2 for all scenarios during ABTU

We now discuss how UDisCSP can be interpreted as a
planning problem.

a) Comparison with POMDPs: The problem that each
agent in UDisCSPs has to solve in UDisCSPs has similarities
to a Partially Observable Markov Decision Problem (POMDP).
Given ways to approximate observation and transition con-
ditional probabilities, these problems could be reduced to
POMDPs. We remind that a POMDP is defined as the tuple
〈S,A, T ,R,Ω, O, γ〉, where S is the set of possible states of
the agent, A is the set of possible actions, T is the conditional
transition probabilities between states, R is a reward function
given states and actions, Ω is the set of possible observations
and O is a set of conditional observation probabilities based on
states, while γ is a discount factor. A POMDP agent regularly
reasons in terms of belief (probability distribution over the
states), and tries to build a policy, namely a recommendation
of each action to be executed as function of current belief.

For UDisCSPs, the set S of states of the agent is defined
by the possible contents of its agent view, of the nogoods
stored by the agent, and of the knowledge the agent gathers
about the secret elements of the UDisCSP unknown to it.

SetA of actions available to an agent consist in local reason-
ing actions as well as communication actions that are a func-
tion of the selected protocols (i.e., communication language
and ontology). For example, in ABT these communications
actions can have as payloads assignment announcements (in
ok? messages) and nogoods in (nogood messages). It is
commonly assumed that the set of communication actions are
determined by the agents before the actual start of the planning
and execution.

Set T of transition probabilities between states given actions
can be trained for UDisCSPs in the same way in which we
have trained the agreementProb.

Set R of rewards of the POMDP is the same as R for
the corresponding UDisCSP. Set Ω of possible observations is
given by the possible payloads of the communication actions
available. The set of conditional observation probabilities can
be trained or assumed. In reported experiments, it is assumed
that the message payloads truthfully reveal the corresponding
elements of the states of the other agents, while the probability
of the remaining elements have to be inferred by the agent.

In this work, we have not taken into consideration the time
and therefore we had γ set to 1.



b) Comparison with DisCSPs: The introduced UDisCSP
framework can assume without significant loss of generality
that interagent constraints are public. This is due to the
fact that any problem with private interagent constraints, is
equivalent with its dual representation where each constraint
becomes a variable [28]. However, note that the privacy of
domains mentioned in [33] is not modeled by privacy of
constraints.

UDisCSP mainly differs from DisCSP from the perspective
of how solution is defined. It does not define solution as an
agreement on a set of assignments but as a policy that could
eventually reach such an agreement. As such, their comparison
is not trivial, as one compares different aspects.

Theorem 1. UDisCSPs planning and execution is at least as
general as DisCSPs solving.

Proof. A DisCSP can be modeled as a UDisCSPs with all
privacy costs equal 0. The obtained UDisCSPs would always
reach an agreement, if possible. Therefore the goal of a
UDisCSP would also match with the goal of the modeled
DisCSP. This implies a tougher class of complexity.

The space complexity required by ABTU and SyncBTU in
each agent is identical with the one of ABT and SyncBT, since
the only additional structures are:

• the privacy costs associated with its values, constituting
a constant factor increases for domain storage.

• the variables agreementProb, agreement, count and
ri that require a constant space.

V. EXPERIMENTAL RESULTS

We evaluate our framework and algorithms on randomly
generated instances of distributed meeting scheduling (DMS)
problems. Previous work [34] in distributed constraint satisfac-
tion problems has already addressed the question of privacy in
distributed meeting scheduling by considering the information
on whether an agent can attend a meeting to be private. They
evaluate the privacy loss brought by an action as the difference
between the cardinalities of the final set and of the initial set
of possible availabilities for a participant.

DMS are generated as follow:

1) creation for the variables and their domains
2) creation of the global and unary constraints
3) generation of the privacy costs

The experiments are carried out on a computer under
Windows 7, using a 1 core 2.16 GiHz CPU and 4 GiB of
RAM. Figure 3 shows the total amount of privacy lost by all
agents, averaged over 50 problems, function of the density of
unary constraints. The problems are parametrized as follows:
10 agents, 10 possible values, the utility of a revelation is a
random number between 0 and 9, the reward for finding a
solution to the problem is 20. Each set of experiments is an
average estimation of 50 instances for the different algorithms
(i.e., SyncBT, ABT, SyncBTU, ABTU).

TABLE I
GENERAL COMPARISON FOR ALGORITHMS ALONG MULTIPLE METRICS

Measure SyncBT ABT SyncBTU ABTU

Privacy Loss 2,5 9,0 1,8 5,3
Messages 2,8 531,3 2,3 150,6
Solving(%) 30 20 30 20
Interruption(%) — — 30 70
CPU Time(ms) 258 1329 255 910

a) Discussion on Experiments: For each algorithm, we
have measured in Table I the privacy loss, the number of ex-
changed messages, the number of problems solved, the number
of solvings interrupted to preserve privacy and CPU time.
Figure 3 shows that synchronous algorithms are better than
asynchronous ones at preserving privacy. Moreover, SyncBTU
and ABTU are better than SyncBT and ABT at preserving
privacy, respectively.
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Fig. 3. Evaluation of privacy loss on different random problems

We notice in Table I that interrupting the solvings to
preserve privacy lets agents not only reduce privacy loss by
39 % but also reduces the calculation times by 27 %. It reduces
the number of messages exchanged by 71 % while still solving
98 % of the problems solved by standard algorithms, since
the interruptions happen mostly when the problems have no
solution.

VI. CONCLUSIONS

While many frameworks have been developed recently for
coping with privacy in distributed problem solving, none of
them is widely used, likely due to the difficulty in modeling
common problems. In this article we propose a framework
called Utilitarian Distributed Constraint Satisfaction Problem
(UDisCSP). It models the privacy loss for the revelation of
an agent’s constraints as a utility function. We then use this
utilitarian framework to cast the DisCSP into a planning



problem for utility-based agents. The individual problem of
each agent can be seen as having similarities to a Partially
Observable Markov Decision Process (POMDP), where the
objective is now to decide for the best action to perform
at each state of the problem, the available actions being
the communications available in the chosen DisCSP solver,
and inferences based on the probabilities being learned from
previous solvings. We then show how adapted synchronous
and asynchronous protocols (SyncBTU and ABTU) behave
and compare them on different distributed meeting scheduling
problems. The comparison shows that SyncBTU can maintain
more privacy on random problems, as compared to both ABTU
and original SyncBT and ABT.
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