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Abstract. Most of the working solvers for numerical constraint satisfaction
problems (NCSPs) are designed to deliveringpoint-wisesolutions with an ar-
bitrary accuracy. When there is acontinuum of feasible pointsthis might lead
to prohibitively verbose representations of the output. In many practical applica-
tions, such large sets of solutions express equally relevant alternatives which need
to be identified as completely as possible. The goal of this paper is to show that
by using appropriate approximation techniques, explicit representations of the
solution sets, preserving both accuracy and completeness, can still be proposed
for NCSPs with continuum of solutions. We present a technique for constructing
conciseinner and outer approximations as unions of interval boxes. The proposed
technique combines anew splitting strategywith theextreme vertex representa-
tion of orthogonal polyhedra [1–3], as defined in computational geometry. This
allows for compacting the representation of the approximations and improves ef-
ficiency.

1 Introduction

Numerical constraints can naturally model a wide range of real-world problems. In
practice, process descriptions, cost restrictions, chemical or mechanical models are
most often expressed using this type of constraints. A numerical constraint satisfaction
problem (NCSP), (V, C, D), is stated as a set of variablesV taking their values in do-
mainsD over the reals and subject to constraintsC. The constraints can be equalities or
inequalities of arbitrary type and arity, usually expressed using arithmetic expressions.
The goal is to assign values to the variables so that all the constraints are satisfied.
Such an assignment is then called a solution. The completeness of a solving procedure
means its ability to find a solution to the NCSP if any, or else, to prove that there are
no solutions to the problem. Completeness is essential in many real-world situations
since it is the only way to guarantee that all inconsistencies are avoided, that all rele-
vant alternatives can be provided and that an eventual global optima can be identified.
When devising complete solving techniques for NCSPs, a fundamental issue is the rep-
resentation of the actual solution sets. The spectrum of possible representations ranges
from the implicit one, given by the arithmetic expressions of constraints, to the explicit
one, given by the enumeration of all individual solutions. The former representation is
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Fig. 1. (a) Numerical CSP with three point-wise solutions (grey dots); (b) Numerical CSP with a
continuum of solutions (grey regions)

traditionally used by mathematical programming solvers. It is compact but difficult to
query. As a consequence, even the state-of-the-art solving techniques cannot guarantee
completeness in the general case [4]. The second representation is usually constructed
by constraint programming solvers [5, 6]. It is complete and trivial to query but can
be exceedingly verbose, and therefore unpractical, when the NCSP has a continuum of
solutions (see Figure 1). Such a situation often occurs in real-world applications since
under-constraint problems or problems with inequalities are ubiquitous in practice. The
goal of this paper is to show that by using appropriate approximation techniques, ex-
plicit representations, preserving both accuracy and completeness, can still be proposed
for NCSPs with non-isolated solutions. We propose to use theExtreme Vertex Repre-
sentation(EVR) of orthogonal polyhedra [1–3] as defined in computational geometry,
coupled with adapted branching strategies, to compute inner and outer approximations
of the solution sets under the form ofunions of interval boxes. The resulting technique
applies to general constraint systems. The preliminary experiments show that it im-
proves efficiency as well as the compactness and quality of the explicit representation
of the solution sets.

2 Background and Motivation

We address the issue of solving non-linear NCSPs withcontinuum of solutions(Fig-
ure 1). In its most general form, a continuum of solutions expresses a spectrum of
equally relevant choices, as the possible moving areas of a mobile robot, the collision
regions between objects in mechanical assembly, or different alternatives of shapes for
the components of a kinematic chain. These alternatives need to be identified as pre-
cisely and completely as possible. Interval constraint-based solvers (e.g. Numerica [5],
ILOG Solver [6]) take as input a numerical CSP, where the domains of the variables
are intervals over the reals, and generate a set of boxes whichconservativelyenclose
each solution (no solution is lost). They have proven particularly efficient in solving
challenging instances of numerical CSPs with non-linear constraints but are commonly
designed to deliver point-wise solutions. As a consequence, when applied to our target
problems, the approximations they provide for the complete solution set are, in most
cases, prohibitively verbose. As an example, let us consider the following NCSP with
four non-linear inequality constraints and three variables:P3 = {x2 ≤ y, ln y + 1 ≥ z,
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xz ≤ 1, x3/2 + ln(1.5z + 1) ≤ y + 1, x ∈ [−15, 15], y ∈ [1, 200], z ∈ [−10, 10]}.
Using an efficient implementation of classical point-wise techniques,1 the computa-
tion had to be stopped after 1 hour and produced more than 90000 small boxes.2 A
natural alternative to the point-wise approach is to try to cover the spectrum of non-
isolated solutions using areducednumber of subsets from IRn. Usually, these sub-
sets are chosen with known and simple properties (e.g. interval boxes, polytopes, ellip-
soids) [7]. In recent years, several authors have proposed set covering algorithms with
interval boxes [7–10]. These algorithms are based on domain splitting and have one
of the following limitations: they are designed for inequality constraints only [8–10],
they only apply to polynomials [9], they uniformly enforce dichotomous splitting on
all variables [7]. Moreover, most of these techniques produce verbose approximations
of the boundaries [7–9]. As a consequence, either their applicability is restricted or the
tractability limits are rapidly reached. The alternative technique we propose is based on
the following observations. Firstly, when there are non-isolated solutions, dichotomous
splitting is not the most adapted branching strategy. It might lead to unnecessarily di-
viding entirely feasible regions. We propose an alternative scheme based on splitting
around the negation of feasible regions. Secondly, the union of boxes produced by the
complete solving of numerical CSPs with continuum of solutions can be seen as an
orthogonal polyhedron. Enhanced representations from computational geometry can be
used to reduce the verbosity of such geometrical object. We propose to use theextreme
vertex representationof orthogonal polyhedra [1–3] for this purpose.

3 Definitions and Notations

3.1 Interval Arithmetic

The finite nature of computers precludes an exact representation of the reals. The set IR,
extended with the two infinity symbols, and then denoted by IR∞ = IR∪{−∞, +∞}, is
in practice approximated by a finite subsetF∞ containing−∞, +∞ and0. In interval-
based constraint solvers,F∞ usually corresponds to the floating-point numbers used in
the implementation. Let< be the natural extension to IR∞ of the order relation< over
IR. For eachl in F∞, we denote byl+ the smallest element inF∞ greater thanl, and
by l− the greatest element inF∞ smaller thanl.

The set of intervals with bounds inF∞, denoted by II, is ordered by set inclusion. In
the rest of the paper, intervals are written uppercase, reals or floats are lowercase, vec-
tors in boldface and sets in uppercase calligraphic letters. Aninterval box(henceforth
referred tobox) B = I1× . . .×In is a Cartesian product ofn intervals in II. Acanonical
interval is a non-empty interval of the form[l..l] or of the form[l..l+]. A canonical box
is a Cartesian product of canonical intervals.

We use the following notations for set theoretic operations on boxes:A t B =
A ∪ B, A u B = cl(int(A) ∩ int(B)), ¬A = cl(∼ A), wherecl and int are the
topological closure and interior operations, and∼ is the complementary operation.

1 The implementation was based on ILOG solver 5.1 (see Section 6).
2 The alternative technique we propose could reduce the complete output to 1373 boxes and

produced the result in 5.63 seconds (see Table 1).
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3.2 Relations and Approximations

Let c(x1, . . . , xn) be a real constraint with arityn. Therelation defined byc, denoted
by ρc, is the set of tuples satisfyingc. The relation defined by the negation,¬c, of c is
given by IRn\ρc. The globalrelationdefined by the conjunction of all the constraints of
a NCSP,C is denotedρC . It can be approximated by a computer-representable superset
or subset. In the first case the approximation iscompletebut may contain points that
are not solutions. Conversely, in the second case, the approximation issoundbut may
lose certain solutions. A relationρ can be approximated conservatively by the smallest
(w.r.t set inclusion) union of boxes, or more coarsely by the smallest box, containing it.
In the rest of the paper, we will use the following definitions and notations:

Definition 1 (The Minimal Outer Box, OB). Letρ be a relation fromIRn, the minimal
outer box ofρ, denoted byOB(ρ), is defined by:

OB(ρ) ∈ IIn,OB(ρ) ⊇ ρ : ∀B ∈ IIn,B ⊇ ρ ⇒ OB(ρ) ⊆ B (1)

Definition 2 (The Best Outer Approximation, OA). Letρ be a relation fromIRn, the
best outer approximation ofρ, denoted byOA(ρ), is defined by:

OA(ρ) =
⋃
r∈ρ

OB({r}) (2)

Definition 3 (The Best Inner Approximation, IA). Let ρ be a relation fromIRn, the
best inner approximation ofρ, denoted byIA(ρ), is defined by:

IA(ρ) =
⋃

B∈IIn
,B⊆ρ

B (3)

Definition 4 (The Best Undiscernible Approximation,UA). Letρ be a relation from
IRn, the best undiscernible approximation ofρ, denoted byUA(ρ), is the difference
betweenOA(ρ) andIA(ρ): UA(ρ) = OA(ρ) \ IA(ρ).

Figure 2 illustrates Definitions 1, 2, 3 and 4 on a simple example. The relation to
approximate contains all the points lying inside the circle and on its boundary.

Proposition 1. Given a relation,ρ ⊆ IRn, these properties hold: (1)OB(ρ) exists
uniquely; (2)IA(ρ) ⊆ ρ ⊆ OA(ρ); (3) OA(ρ), UA(ρ) are minimal andIA(ρ) is
maximal, i.e.∀Si,So ∈ P(IIn), Ui =

⋃
B∈Si

B, Uo =
⋃

B∈So
B:

Ui ⊆ ρ ⊆ Uo ⇒ Ui ⊆ IA(ρ) ⊆ OA(ρ) ⊆ Uo,UA(ρ) ⊆ Uo \ Ui (4)

The computation of these approximations relies on the notion ofcontracting opera-
tors. Basically, a contracting operator narrows down the variable domains by discarding
values that are locally inconsistent. In this paper we use the notion of outer-bound con-
tracting operator, defined as follows:

Definition 5 (Outer-bound Contracting Operator, OC). An outer-bound contract-
ing operator is a functionOC : IIn × P(IRn) → IIn such that∀B ∈ IIn, ρ ∈ P(IRn)
these properties hold:3

3 P(S) denotes the power-set ofS, i.e., the set{A|A ⊆ S}.
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Fig. 2. The Best Approximations: (a)OB; (b) IA (white),UA (gray) andOA (white & gray).
The relation to approximate contains all the points lying inside the circle and on its boundary

(1) OC(B, ρ) ⊆ B (Contractiveness)
(2) OC(B, ρ) ⊇ B ∩ ρ (Completeness)

Often, a monotonicity condition is also required to guarantee confluence. We do
not consider this restriction for the moment. In numerical domains, the outer-bound
contracting operators usually enforce eitherBox, Hull, kBor Boundconsistency [11, 5],
generally referred to as bound-consistency in the rest of the paper.

3.3 Union Approximations

In this paper we consider the problem of computingIA(ρ) andOA(ρ) approximations
of a relationρ ⊆ IRn under the form ofunions of disjoint boxes4.

Definition 6 (Outer Union Approximation, UnionO(ρ)).UnionO(ρ) is a set of dis-
joint boxesU ∈ P(IIn) such that:

⋃

B∈U
B ⊇ OA(ρ) (5)

Definition 7 (Inner Union Approximation, UnionI(ρ)). UnionI(ρ) is a set of dis-
joint boxesU ∈ P(IIn) such that:

⋃

B∈U
B ⊆ IA(ρ) (6)

Definition 8 (Undiscernible Union Approximation, UnionU (ρ)). UnionU (ρ) is a
set of disjoint boxesU ∈ P(IIn) such that:5

⋃

B∈U
B = cl(

⋃

B∈UnionO(ρ)

B \
⋃

B∈UnionI(ρ)

B) (7)

4 Two boxes,B1 andB2, are said disjoint ifB1 6= B2 ⇒ B1 uB2 = ∅.
5 Informally,UnionU (ρ) is a set of undiscernible boxes enclosing the boundary ofρ.
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Inner
 Undiscernible
Outer


Fig. 3. The Union Approximations:UnionO(ρ) (white & gray), UnionI(ρ) (white) and
UnionU (ρ) (gray)

Figure 3 illustrates these definitions on the example of Figure 2.
Several authors have recently addressed the issue of computingUnionO approx-

imations. In [7], a recursive dichotomous split is performed on the variable domains.
Each box obtained by splitting is tested for inclusion using interval arithmetic tools. The
boxes obtained are hierarchically structured as2k-trees. The authors have demonstrated
the practical usefulness of such techniques in robotics, etc. In [8], a similar algorithm
is presented. However, only binary or ternary subsets of variables are considered when
performing the splits. The approach is restricted to classes of problems with convexity
properties. The technique proposed in [9] constructs the union algebraically using Bern-
stein polynomials, which makes it possible to use guaranteed inclusion tests for boxes.
The approach is restricted to polynomial constraints. A technique to extend consistent
domains of particular class of constraints has also been proposed in [12]. Finally, [10]
has addressed the issue of computingUnionI approximations for universally quanti-
fied constraints.

4 Back-Boxing and EVR

Interval-based search techniques for NCSPs are essentially dichotomous. Variables are
instantiated using intervals. When the search reaches an interval that contains no solu-
tions it backtracks, otherwise the interval is recursively split into two halves up to an
established resolution. The most successful techniques enhance this process by apply-
ing an outer-bound contracting operator to the overall constraint system, after each split.
In all the known algorithms, the general policy is to perform splitting until canonical
intervals are reached and as long as the error inherent to the outer-bound contracting
operator is smaller than the interval to split. This policy, referred to asDMBC(dichoto-
mous maintaining bound-consistency) in the rest of the paper, works generally well for
systems with isolated solutions but leaves room for improvement when there is a con-



Approximation Techniques for Non-linear Problems - SARA’2002 7

tinuum of feasible points. The improvements we propose are presented in the two next
subsections.

4.1 Better Splitting Decisions Using Back-Boxing

In order to reduce as much as possible the number of disjoint boxes required for cov-
ering the solution space, we first try to avoid the split of completely feasible boxes. To
achieve this goal, we use a feasibility (soundness) test for boxes [10],6 which allows
better splitting decisions. Given a relation,ρ, and a box,B, the feasibility test checks
whether the whole box is contained inρ or not. It is based on the following obvious
property:B∩¬ρ = ∅ ⇔ B ⊆ ρ. We use this property to implement a contracting oper-
ator, calledback-boxing contractingoperator and a splitting operator, calledback-box
splittingoperator.

Definition 9 (Back-Boxing Contracting Operator, BBC). A back-boxing contract-
ing operator w.r.t. anOC operator is a functionBBC : IIn × P(IRn) → IIn such
that

∀B ∈ IIn, ρ ∈ P(IRn) : BBC(B, ρ) = OC(B,¬ρ)

Constraint

boundary


(a)


Back-box

Bounding box


(b)


Feasible
 Infeasible


Back-box


Fig. 4. Two examples of back-boxing contractions

For simplicity, given a finite set of constraintsC = {c1, ..., cn}, we denote
BBC(B, ρC) by BBC(B, c1, ..., cn) or BBC(B, C).

The following properties characterize back-box contracting operators.

Proposition 2. Given a relation,ρ, and a box,B, if there is someBBC operator that
contracts(B, ρ) to an empty set, thenB is completely contained inρ, i.e.

∃BBC : BBC(B, ρ) = ∅ ⇒ B ⊆ ρ

6 In [10] such a feasibility test is used for individual constraints. We use it for conjunction of
constraints.
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Proof. We haveBBC(B, ρ) = ∅, BBC(B, ρ) = OC(B,¬ρ), andOC(B,¬ρ) ⊇
B ∩ ¬ρ, thenB ∩ ¬ρ = ∅ , this implies thatB ⊆ ρ.

Corollary 1. Given a finite set of constraints,C = {c1, ..., cn}, and a bounding box,B.
The boxB is completely feasible (w.r.tC) if there is someBBC operator that contracts
(B, C) to an empty set, i.e.

∃BBC : BBC(B, C) = ∅ ⇒ B is feasible (w.r.tC)

This corollary implies that back-boxing makes it possible to isolate completely fea-
sible boxes with respect to some constraints. Figure 4 illustrates the behavior of a back-
boxing contracting operator. A back-box results from the application of aBBC oper-
ator to a boxB and a relationρc identified by a constraintc. When applying a back-
boxing contracting operator to a box with respect to a constraint results in a empty set,
it can be deduced that the box completely satisfies that constraint. Similarly, when ap-
plying a back-boxing contracting operator to a box with respect to the whole constraint
set results in a empty set, the box can be stated as completely feasible. We then define a
splitting operator based on back-boxing, which consists of splitting around back-boxes:

Definition 10 (Back-Box Splitting Operator: BBS). A back-box splitting operator
is a functionBBS : IIn × IIn → P(IIn) splitting a bounding box,B, along the faces of
a back-box,BB.

(a)


Bounding box


Splitting plane of DS


(b)


Splitting planes of BBS


Back-box

Feasible boxes


w.r.t. 
c


c
 c


Feasible
 Infeasible


Fig. 5. (a) Back-Box Splitting: splitting around back-boxes; (b) Dichotomous Splitting: splitting
the original domain of a variable into two halves

In the algorithms we propose, back-box splitting is applied in combination with di-
chotomous splitting. The latter is used either when back-boxing produces no reduction
or when back-box splitting results in too small boxes (i.e. it is performed close to the
boundaries). Figure 5 illustrates the notion of back-box splitting.
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4.2 Concise Representations of The Boundaries Using EVR

Back-boxing is mainly intended to reduce the number of boxes ofinner union approx-
imations. We now address the issue of producing more compactundiscernibleunion
approximations. Box-covering, as usually implemented, often produces a significant
number of nearly aligned boxes along the boundary of the constraints. These boxes in-
troduce artificial convexity deficiencies which are only due to the orthogonal splitting
policy.

Better Alignment of Boxes. We observe that a better alignment can be obtained by
closely controlling the application of the contracting operators during search. More
precisely, whenever some dimension,i, of a box,B, reaches precisionεi, one can pre-
vent the contracting operator to contractB over this dimension in order to obtain better
alignments and performances.

Definition 11 (Active/Inactive Dimension).Given a box,B, a set of constraints,C,
and a precision vector,ε. A dimension,i, of B is calledactive dimensionif the size
of B in dimensioni exceedsεi and if the corresponding variable,vi, occurs in some
constraint ofC. Otherwise, it is said to be aninactive dimension.

A contracting operator working on the active dimensions of a box only will be
called arestricted-dimensional contracting operator. Hereafter, we denote asOCrd

(respectively,BBCrd) the restricted-dimensional contracting operators corresponding
to OC (respectively,BBC) operators. There are several ways of implementingOCrd

andBBCrd depending on whichOC operator is used. The first way, consists of using
some classicalOC operators working in full-dimension. After a boxB has been con-
tracted over all dimensions, the inactive dimensions are simply restored to their original
sizes. The gain is then only a better alignment of boxes. The second way consists of
using anOC operators which directly allows a restricted-dimensional contracting.7 A
box B will then only be contracted over the active dimensions. Such anOC operator
does not require the returned box to be bound-consistent in the inactive dimensions. The
returned box will therefore be usually larger than the one returned by anOC operator
working in full dimension. However, not only better alignments can be obtained but
also better performances. The third possible way consists of applying theOC operator
to theprojectionof the relation (or constraints) over the active dimensions only. The
result is composed back to the full-dimensional box by adding the inactive dimensions
with the data of the original box. This alternative can only be used for the constraints
that can be easily projected symbolically.

Compacting Aligned Boxes.Once a better alignment is obtained, the question is how
such a set of aligned boxes can be compacted into a smaller set of boxes. We propose to
use the Extreme Vertex Representation of orthogonal polyhedra for that purpose. The
basic idea is that the finite unions of boxes delivered by box-covering solver define
orthogonal polyhedrafor which improved representations can be used. Informally,or-
thogonal polyhedraare the ones whose facets are axis-parallel hyper-rectangles. They

7 ILOG Solver 5.1 provides suchOCrd operators. We use them in our implementation.
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 Extreme vertex


Fig. 6. (a) DBR of union approximations; (b) EVR ofUnionO

can be naturally represented as a finite union of disjoint boxes. Such a representation
is called theDisjoint Box Representation(DBR) in computational geometry. TheEx-
treme Vertex Representation(EVR) is a way of compacting a DBR representation. It
was first proposed in [1] for 3-dimensional orthogonal polyhedra and generalized to n-
dimensional orthogonal polyhedra in [2, 3]. We now recall some basic concepts related
to EVR. We refer the reader to [2, 3] for further details. The concepts we present re-
late to a particular type of orthogonal polyhedra, calledgriddy polyhedra. Informally, a
griddy polyhedron [3] is generated from unit hyper-cubes with integer-valued vertices.
Since arbitrary orthogonal polyhedra can be obtained from griddy ones by appropriate
stretching and translation, the results on EVR are not affected by this simplification. In
fact they even do not depend on an orthogonal basis. For simplicity, we assume that
the polyhedra live inside a bounded subsetX = [0,m]d ⊆ IRd (in fact, the results will
hold also forX = IRd

+). Let x = (x1, ..., xd) be a grid point of the elementary grid

G = {0, 1, ..., m− 1}d ⊆ Nd. For every pointx ∈ X, bxc is the grid point correspond-
ing to the integer part of the components ofx. The elementary box associated withx is
the closed subset ofX of the formB(x) = [x1, x1 + 1]× ...× [xd, xd + 1]. The set of
all boxes is denoted byB. A griddy polyhedronP is a union of elementary boxes, i.e.
an elementary of 2B.

Definition 12 (Color Function). Let P be a griddy polyhedron. The color functionc:
X → {0, 1} is defined as follows: ifx is a grid point thenc(x) = 1 iff B(x)⊆ P ;
otherwise,c(x) = c(bxc).

We say that a grid pointx is black (respectively, white) and thatB(x) is full (re-
spectively, empty) whenc(x) = 1 (respectively 0). Acanonical representation scheme
for 2B (or 2G) is a setE of syntactic objects such that there is some bijective function
Ψ : E → 2B.
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Fig. 7. Constraint boundary in a bounding box: (a) unaligned boxes produced by standard cover-
ing; (b) enlarged and aligned boxes using EVR

Definition 13 (Extreme Vertex).A grid pointx is said to be extreme ifτ (x) = 1, where
τ (x) denotes the parity of the number of black grid points inN (x) = {x1 − 1, x1} ×
...× {xd − 1, xd} (the neighborhood ofx).

Figure 6 illustrates the notion of EVR on a simple example. The fundamental theo-
rem presented in [2, 3] shows that any griddy polyhedron can be canonically represented
by the set of its extreme vertices and their colors. Theextreme vertex representation
improves the space required for storing orthogonal polyhedra by an order of magni-
tude [3]. It also enables the design of efficient algorithms for fundamental operations on
orthogonal polyhedra (e.g. membership, set-theoretic operations). In particular, effec-
tive transformation between DBR and EVR can be proposed for low dimension and/or
small size (i.e.m is small) polyhedron [1]. For example, in three dimensions, the av-
erage experimental (time) complexity of converting an EVR to a DBR is far less than
quadratic but slightly greater than linear in the number of extreme vertices [1]. Results
in [3] also imply that, for a fixed dimension, the time complexity of converting a DBR
to an EVR using XOR operations is linear in the number of boxes in DBR. We propose
to exploit these effective transformation schemes to produce a compact representation
of aligned contiguous boxes using the following procedure:

1. Produce a better alignment of the boxes along the boundary of the constraints. This
is done by preventing the unnecessary application of contracting operators over
the inactive dimensions. Figure 7 shows the better alignment produced for a set of
nearly aligned boxes of an undiscernible approximation. The original set of 8 small
boxes (Figure 7(a)) reduces to two groups of 4 aligned boxes (Figure 7(b)) without
altering the predefined precision.

2. The set of aligned boxes in each group,S1, is converted to EVR and then back to
DBR to get a set of combined boxes,S2 (containing only one box in this case). Due
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to the properties of EVR, this procedure guarantees thatS2 has a more concise size
thanS1. Figure 7(b) shows how this conversion procedure reduces the two groups
of 4 boxes to two (gray) boxes.

Such a procedure can theoretically be applied in any dimensions. Due to the effi-
ciency of EVR in low dimensions, we however restrict its application to low dimen-
sional or small size sub-regions of the search space in our implementation (see Sec-
tion 5.2).

5 Algorithms

We now present two algorithms that compute outer and inner union approximations
for non-linear NCSPs, These algorithms, calledUCA6andUCA6-Plus are referred
to asUCA6* when they have the same properties/operations. A preliminary version
of UCA6was presented in [13] we will therefore mainly focus on theUCA6-Plus
algorithm. Given a NCSPP = (V, C,D), B will denote the bounding box of the re-
lation defined byP . Originally, this bounding box is set toD. For convenience, we
denoteUnionX (B ∩ ρC) asUnionX (B, C), whereX ∈ {O, I,U}. UCA6* con-
structs the approximationsUnionI(B, C) andUnionU (B, C), henceUnionO(B, C)
can be computed as the union of these two approximations.UCA6* proceeds by re-
peating three main operations:(i) using outer-bound contracting operators to contract
the current bounding box to a tighter bounding box;8 (ii) using back-boxing contracting
operators to get a list of back-boxes w.r.t. each active constraint and w.r.t the contracted
box in (i), the constraints that makes the corresponding back-box empty are removed;
finally, (iii) combining dichotomous splitting with back-box splitting. When the chosen
strategy, at a given moment, is back-box splitting, theBBS operator is used to split
around the best back-box (details are given later). The constraint corresponding to the
chosen back-box is then removed from all the surrounding boxes resulting from the
BBS.9 In Figure 8 and 9,Sinn andSund, which are global variables, denote the sets of
boxes ofUnionI(B0, C0) andUnionU (B0, C0), respectively. We use a list,WList ,
to store the sub-problems waiting to be processed.WList can be handled as a queue
or a stack. This allows for breadth-first search in the former case and to depth-first
search in the latter.chooseTheBest(B, {BBc|c ∈ C}) is a function choosing the best
back-box and the respective constraint based on some criteria to maximize the space
surrounding the back-box.enlarge(B, BBc, ZeroP lus) is a function extendingBBc

to BB by ZeroP lus (considered as a sufficiently small positive number) such that the
result is still inB. This will guarantee that no point satisfying¬c is on the boundary
of BB except the points on the boundary ofB. Figures 8 and 9 give the algorithm
UCA6-plus .

5.1 Splitting Strategies

getSplit() is a function which returns the splitting mode to be used for splitting the
current box.UCA6* uses a combination of theBBS andDS operators. The current

8 Standard operator forUCA6and restricted-dimensional one forUCA6-Plus .
9 These boxes are known to be feasible due to the properties of back-boxing.
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function UCA6Plus( B0, C0, ε, OCrd, BBCrd, OC, BBC, Dstop)
Sinn := ∅; Sund := ∅; WList := ∅;
if solveQuickly(B0, C0, ε, OCrd, BBCrd, OC, BBC, WList, Dstop) then return ;
while WList 6= ∅ do

< B, C > := get(WList);
foreach c ∈ C do

BBc := BBCrd(B, c);
if BBc = ∅ then

C := C \ {c};
end

end
if C = ∅ then

store(Sinn, B);
continue; /* while loop */

end
Split = getSplit();
if Split = ’BBS’ then

BBc := chooseTheBest(B, {BBc|c ∈ C});
BB := enlarge(B, BBc, ZeroP lus);
< B1,. . . ,Bk > := BBS(B, BB);

else
< B1,. . . ,Bk > := DS(B);

end
for i = 1 to k do

if Split = ’BBS’ and Bi ∩BBc = ∅ then
if C = {c} then

store(Sinn, Bi);
continue; /* for loop */

else
C := C \ {c};

end
end
solveQuickly(Bi, C, ε, OCrd, BBCrd, OC, BBC, WList, Dstop);

end
end

end /* UCA6Plus */

Fig. 8. TheUCA6-plus algorithm

splitting mode returned bygetSplit() is inferred from information on the history of the
current box. The simplest implementation uses the information concerning the splitting
mode of the parent box, for example whether or not the current box is a back-box
obtained from splitting the parent box.

In contrast toDMBC, theDS operator used forUCA6* only tries to dichotomize over
the active dimensions. This avoids splitting boxes into a huge number of tiny boxes.
Moreover, inUCA6* constraints are removed gradually whenever an empty back-box
is computed w.r.t. those constraints. The dimension with the greatest size is preferred
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for DS split. For the pruning to be efficient,BBS splits along some face of a back-
box only if the splitting plane produces sufficiently large boxes, the back-box itself
excepted. This estimation is done using a pre-determinedfragmentation ratio.

5.2 Applying EVR

function solveQuickly(B, C, ε, OCrd, BBCrd, OC, BBC, WList, Dstop)
if B has no active dimensionthen

B′ := OC(B, C);
if B′ = ∅ then return True;
if BBC(B, C) = ∅ then

store(Sinn, B);
return True;

end
store(Sund, B);
return True;

end
B′ := OCrd(B, C);
if B′ = ∅ then return True;
if B′ has no active dimensionthen

if BBC(B′, C) = ∅ then
store(Sinn, B′);
return True;

end
store(Sund, B′);
return True;

end
if B′ has at mostDstop active dimensionsthen

< S ′inn, S ′und > := DimStopSolver(B′, C, ε, OCrd, BBCrd, OC, BBC);
store(Sinn, combine(S ′inn));
store(Sund, combine(S ′und));
return True;

end
put(WList,< B′, C >);
return False;

end /* solveQuickly */

Fig. 9. The functionSolveQuickly

The functionsolveQuickly (Figure 9) is of the main novelties inUCA6-Plus
w.r.t. UCA6. This function constructsUnionI andUnionU approximations for low-
dimensional sub-problems with at mostDstop active dimensions. The output is com-
pacted using EVR. The second novelty lies in the fact thatUCA6-Plus usesOCrd

andBBCrd instead ofOC andBBC for the purpose of narrowing.10 By doing so

10 OC andBBC are still used for checking the feasibility ofε-bounded boxes.
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UCA6-Plus gains in performance and produces a better alignment of boxes along
the boundaries. This allows for using EVR to combine the aligned contiguous boxes.
solveQuickly (Figure 9) proceeds by using the following tests:(i) check if the bound-
ing box is infeasible;(ii) check if the contracted box has no active dimension, then check
if it is feasible or undiscernible w.r.t.C; (iii) check if the contracted box has at most
Dstop active dimensions, if so, use an appropriate technique to solve the sub-problem
in that box using restricted-dimensional contracting operators,(iv) Otherwise, the con-
tracted box is put into the waiting list to be further processed. For efficiency purposes,
solveQuickly allows resorting to a secondary search technique,DimStopSolver, to
solve the low-dimensional sub-problems whose bounding box has at mostDstop active
dimensions. Good candidates for smallDstop can be either the 2k-tree based solver
presented in [8] or a simple grid-based solver11. Variants ofDMBCor UCA6using the
restricted-dimensional contracting operators can alternatively be used. For a given sub-
problem,DimStopSolver constructs the setsS ′inn andS ′und which are theUnionI

andUnionU of the sub-problem, respectively. These two sets are represented in DBR.
They are converted to EVR and then back to DBR to combine each group of aligned
contiguous boxes into a bigger equivalent box. This operation is represented by the
function combine in Figure 9. The results after combination are stored in the set of
boxes ofUnionI(B0, C0) andUnionU (B0, C0).

Proposition 3. Let P = (V, C,D) be a numeric CSP, theUCA6and UCA6-Plus
algorithms compute an inner union approximation (UnionI) and outer union approx-
imation (UnionO) for ρC w.r.t. the predefined precision.

Sketch of proof: The rigorous proof of this proposition is out of scope of the paper.
However, we can see informally that given the properties of the contracting operators
used for these algorithm:(i) the outer-bound contracting operator always produces a
box which contains the active relation, and(ii) the back-boxing contracting operator
always produces a back-box which contains the negation of the active relation, then it
is safe to remove the active relation (defined by one or many constraints) from all the
regions surrounding the back-box and contained in the bounding box.

6 Preliminary Experiments

Only a small amount of work exists on computing inner and outer union approxima-
tions for numerical CSPs with non-linear constraints. Often these problems are recast
as optimization problems, with artificial optimization criteria, to fit the solvers. Hence,
no significant set of benchmarks is presently available in this area. In this section we
present a preliminary evaluation on the following small set of typical problems (with
different types of solution space).

CD (column design) andFD (fatigue design) are two engineering design examples.
Their complete descriptions are available athttp://imacsg4.epfl.ch:8080/PGSL/. In Ta-
ble 1, the considered instance ofCD is the one that finds(a, b, e) ∈ [0.01, 2]×[0.01, 1]×
11 A simple grid-based solver splits the variable domains into a grid and then solves the problem

in each grid element.
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[0.05, 0.1] given the eccentric loadP = 400kN , the height of columnH = 6m and
the eccentricity loadL = 1m, wherea andb denote the width and depth of the column
cross section (in meter) respectively,e the thickness (in decimeter). TheFD instance
considered is the one that finds(L, qf, Z) ∈ [10, 30] × [70, 90] × [0.1, 10] for a given
number of years to fatigue failureyears = 100, whereqf is the permissible load and
Z is the section modulus (scaled up 100 times in unit).

WP is a 2D simplification of the design model for a kinematic pair consisting of a
wheel and a pawl. The constraints determine the regions where the pawl can touch the
wheel without blocking its motion.
WP = {20 <

√
x2 + y2 < 50, 12y/

√
(x− 12)2 + y2 < 10, x ∈ [−50, 50], y ∈

[0, 50]}.
SB describes structural and safety restrictions for the components of a floor con-

sisting of a concrete slab on steel beams.
SB = {u+ c1w

1.5161−p = 0, u− (c6hs + c7)s ≤ 0, c2− c3s+ c4s
2− c5s

3−hs ≤ 0,
c8(pw2)0.3976 − hb ≤ 0, c9(pw3)0.2839 − hb, w ∈ [5800, 13500], p ∈ [15, 50],
hb ∈ [150, 223], s ∈ [1900, 2200], u ∈ [10, 60], hs ∈ [75, 200]}.

P1 = {x0 = x1 + 1, x2 + 1 = x0 + x1, x2 ≥ x0 + 2, x1 + 2x3 ≥ x4, x2− x3 ≤ 3,
xi ∈ [−10, 10] }.

P2 = {x2 ≤ y, ln y +1 ≥ z, xz ≤ 1, x ∈ [−15, 15], y ∈ [1, 200], z ∈ [−10, 10]}.
P3 = {x2 ≤ y, ln y + 1 ≥ z, xz ≤ 1, x3/2 + ln(1.5z + 1) ≤ y + 1, x ∈ [−15, 15],

y ∈ [1, 200], z ∈ [−10, 10]}.

For comparison and evaluation purposes, we have implemented the algorithms
DMBC, UCA6, UCA6-Plus using the same data structure and the same standard con-
tracting operators. We have also implemented a version ofDMBCincluding the feasi-
bility test. This enhanced version, calledDMBC+, can therefore check whether a box is
completely feasible or not. Our experiments discardDMBCas a reasonable candidate
for this kind of problems. It always produces a huge number of boxes, each of which is
ε-bounded. The tests shown in Table 1 were run with a fragmentation ratio of 0.25 and
Dstop = 1. The standardOC operator was implemented with ILOG Solver 5.1 [6]. Each
cell in the table has two rows. The first shows time and the second the number of boxes
in theUnionI andUnionU respectively.Bprec is the precision for the contracting
operators,prec is the precision of the algorithms. The secondary search technique used
for UCA6-Plus in Table 1 is the simple grid-based one.

Other tests were carried out on tens of similar problems. They showed that the
best gains, in running time and number of boxes, ofUCA6* overDMBC+are obtained
for problems with low-arity constraints.UCA6* remains better thanDMBC+in running
time in the other cases. The experiments also showed thatUCA6-Plus is always better
thanUCA6in running time and number of boxes. The best gains are obtained when the
non-linear constraints contain some nearly axis-parallel sub-regions.

The preliminary experiments are therefore encouraging enough to warrant further
investigations and in-depth evaluations.
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Table 1.Test results

Problemprec Bprec DMBC+ UCA6 UCA6-Plus

P1 0.01 0.1
> 1h
> 0/90000

94.89s
0/11465

66.17s
0/6415

P2 0.1 0.2
> 1h
> 30000/80000

267.38s
18721/55062

21.49s
1813/3224

P3 0.1 1
> 1h
> 20000/70000

142.14s
12113/38808

5.63s
403/970

WP 0.1 1
33.48s
1683/3692

12.27s
1521/2859

9.95s
949/1699

SB 0.01 1
> 1h
> 0/100000

15.35s
0/4932

11.93s
0/2743

CD 0.01 1
2497.32s
2871/28665

959.93s
9301/26568

705.30s
1086/13414

FD 0.1 1
2638.82s
16437/92681

440.21s
26330/70218

273.77s
10324/35134

7 Conclusion

Interval-constraint based solvers are usually designed to deliver point-wise solutions.
Their techniques are complete and work efficiently for problems with isolated solutions,
but might alter both efficiency and compactness of the output representation for many
problems with continuum of feasible points. In this paper, we propose a technique for
computing inner and outer approximations of numerical CSPs that remedies this state
of affairs. The approach works for general non-linear CSPs with equality and inequality
constraints. It combines an enhanced splitting policy with the extreme vertex represen-
tation of orthogonal polyhedra, as defined in computational geometry. This allows for
gains in performance and space requirements. The quality of the output is also enhanced
since the inner approximations provideguaranteed feasible boxes. In practice, NCSPs
with continuum of solutions often occur as sub-problems of higher dimensional NC-
SPs. In future work, we therefore plan to investigate collaboration strategies between
our approximation techniques and standard point-wise interval-based solvers. We will
also study alternative implementation schemes purely based on the extreme vertex rep-
resentation of orthogonal polyhedra (i.e. those do not require intermediate conversion
steps to the disjoint box representation).
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