
©Silberschatz, Korth and Sudarshan1

Advanced SQL

 Assertions

 Triggers

 Stored Procedures

 Embedded & Dynamic SQL

 ODBC & JDBC

©Silberschatz, Korth and Sudarshan2

Assertions

 An assertion is a predicate expressing a condition that we wish the
database always to satisfy.

 Similar to DDL check constraints, but they can test conditions across
multiple tables.

 When an assertion is made, the system tests it for validity, and tests it
again on every update that may violate the assertion.

©Silberschatz, Korth and Sudarshan3

Assertion Example

“The sum of all loan amounts for each branch must be no greater than the

sum of all account balances at the branch.”

create assertion sum-constraint check

(not exists (select * from branch

where (select sum(amount) from loan

where loan.branch-name = branch.branch-name)

> (select sum(balance) from account

where account.branch-name = branch.branch-name)))

©Silberschatz, Korth and Sudarshan4

Assertion Example

“Every loan has at least one borrower who maintains an account with a

minimum balance of $1000.00”

create assertion balance-constraint check

(not exists (

select loan-number from loan

where not exists (

select borrower.customer-name from borrower, depositor, account

where loan.loan-number = borrower.loan-number

and borrower.customer-name = depositor.customer-name

and depositor.account-number = account.account-number

and account.balance >= 1000)))

©Silberschatz, Korth and Sudarshan5

Triggers

 A trigger is a statement that is executed automatically by the system as

a side effect of a modification to the database.

 A trigger has two parts:
 conditions

 actions

©Silberschatz, Korth and Sudarshan6

Trigger Example

 Suppose the bank deals with overdrafts by:
 Setting the account balance to zero

 Creating a loan in the amount of the overdraft

 Condition:
 update to the account relation that results in a negative balance.

 Actions:
 Create a loan tuple

 Create a borrower tuple

 Set the account balance to 0

©Silberschatz, Korth and Sudarshan7

Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account

referencing new row as nrow

for each row

when nrow.balance < 0

begin atomic

insert into loan values

(nrow.account-number, nrow.branch-name, – nrow.balance);

insert into borrower

(select depositor.customer-name, depositor.account-number

from depositor

where nrow.account-number = depositor.account-number);

update account set balance = 0

where account.account-number = nrow.account-number

end

©Silberschatz, Korth and Sudarshan8

Triggering Events and Actions in SQL

 Triggering event:
 insert, delete or update.

 Triggers on update can be restricted to specific attributes:
 create trigger overdraft-trigger after update of balance on account

 Values of attributes before and after an update can be referenced
 referencing old row as (deletes and updates)

 referencing new row as (inserts and updates)

©Silberschatz, Korth and Sudarshan9

When Not To Use Triggers

 Triggers, along with all the other integrity checking mechanisms, provide

yet another opportunity to…slow up the database…

 Triggers can be used for many things:
 Maintaining summary or derived data (e.g. total salary of each department).

 Replicating databases.

 DBMSs have better, more efficient ways to do many of these things:
 Materialized views - maintain summary data.

 Data warehousing - maintaining summary/derived data.

 Built-in support for replication.

©Silberschatz, Korth and Sudarshan10

Procedural Extensions

and Stored Procedures

 SQL provides a module language that permits definition of procedures:
 Conditional (if-then-else) statements

 Loops (for and while)

 Procedure definition with parameters

 Arbitrary SQL statements

 Stored Procedures:
 Stored in the DBMS.

 Executed by calling them by name, on the command-line or from a program.

 Permit external applications to operate on the database without knowing about internal details about

the database or even SQL.

 A standard that is not uncommon – put all queries in stored procedures; applications are then only

allowed to call stored procedures.

 In the simplest case, a stored procedure simply contains a single query.

©Silberschatz, Korth and Sudarshan11

Procedural Extensions

and Stored Procedures

 Example:

CREATE PROCEDURE stpgetauthors

@surname varchar(30)=null

AS

BEGIN

IF @surname = null

BEGIN

RAISERROR('No selection criteria provided !', 10, 1)

END

ELSE

BEGIN

SELECT * FROM authors

WHERE au_lname LIKE @surname

END

END

©Silberschatz, Korth and Sudarshan12

Submitting Queries from Programs

 Programmatic access to a relational database:
 Embedded SQL

 Dynamic SQL

 Standards for Dynamic SQL:
 ODBC

 JDBC

©Silberschatz, Korth and Sudarshan13

Example - ODBC

 Open DataBase Connectivity (ODBC) is a standard for programs to
communicate with database servers.
 Independent of language, DBMS or operating system.

 ODBC defines an API providing the functionality to:
 Open a connection to a database

 Execute queries and updates

 Get back results

©Silberschatz, Korth and Sudarshan14

ODBC (Cont.)

 An ODBC program first allocates an “SQL environment,” and then a
“database connection handle.”

 An ODBC program then opens the database connection using
SQLConnect() with the following parameters:
 connection handle

 server to connect to

 userid

 password

 Must also specify types of arguments:
 SQL_NTS denotes previous argument is a null-terminated string.

©Silberschatz, Korth and Sudarshan15

ODBC Code

int ODBCexample()

{

HENV env; /* environment */

HDBC conn; /* database connection */

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn,

"aura.bell-labs.com", SQL_NTS,

"avi", SQL_NTS, "avipasswd", SQL_NTS);

{ …. Do actual work … }

SQLDisconnect(conn);

SQLFreeConnect(conn);

SQLFreeEnv(env);

}

©Silberschatz, Korth and Sudarshan16

ODBC Code (Cont.)

 Main body of program (i.e., “Do actual work”):

char branchname[80];

float balance;

int lenOut1, lenOut2;

HSTMT stmt;

RETCODE error; /* query return code */

SQLAllocStmt(conn, &stmt);

char* sqlquery = "select branch_name, sum (balance)

from account

group by branch_name";

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL_SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, branchname , 80, &lenOut1);

SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0 , &lenOut2);

while (SQLFetch(stmt) >= SQL_SUCCESS) {

printf (" %s %g\n", branchname, balance);

}

}

SQLFreeStmt(stmt, SQL_DROP);

©Silberschatz, Korth and Sudarshan17

JDBC

 JDBC is a Java specific API for communicating with database systems
supporting SQL.

 JDBC supports a variety of features for querying and updating data, and
for retrieving query results.

 Similar to ODBC in general structure and operation:
 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and fetch results

 Exception mechanism to handle errors

