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Advanced SQL

 Assertions

 Triggers

 Stored Procedures

 Embedded & Dynamic SQL

 ODBC & JDBC
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Assertions

 An assertion is a predicate expressing a condition that we wish the 
database always to satisfy.

 Similar to DDL check constraints, but they can test conditions across 
multiple tables.

 When an assertion is made, the system tests it for validity, and tests it 
again on every update that may violate the assertion.
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Assertion Example

“The sum of all loan amounts for each branch must be no greater than the 

sum of all account balances at the branch.”

create assertion sum-constraint check

(not exists (select * from branch

where (select sum(amount) from loan

where loan.branch-name =  branch.branch-name)

> (select sum(balance) from account

where account.branch-name = branch.branch-name)))
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Assertion Example

“Every loan has at least one borrower who maintains an account with a 

minimum balance of $1000.00”

create assertion balance-constraint check

(not exists (

select loan-number from loan

where not exists ( 

select borrower.customer-name from borrower, depositor, account

where loan.loan-number = borrower.loan-number

and borrower.customer-name = depositor.customer-name

and depositor.account-number = account.account-number

and account.balance >= 1000)))
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Triggers

 A trigger is a statement that is executed automatically by the system as 

a side effect of a modification to the database.

 A trigger has two parts:
 conditions

 actions
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Trigger Example 

 Suppose the bank deals with overdrafts by: 
 Setting the account balance to zero

 Creating a loan in the amount of the overdraft

 Condition:
 update to the account relation that results in a negative balance.

 Actions:
 Create a loan tuple

 Create a borrower tuple

 Set the account balance to 0 
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Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account 

referencing new row as nrow

for each row

when nrow.balance < 0

begin atomic

insert into loan values

(nrow.account-number, nrow.branch-name, – nrow.balance);

insert into borrower

(select depositor.customer-name, depositor.account-number

from depositor

where nrow.account-number = depositor.account-number);

update account set balance = 0

where account.account-number = nrow.account-number

end
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Triggering Events and Actions in SQL

 Triggering event:
 insert, delete or update.

 Triggers on update can be restricted to specific attributes:
 create trigger overdraft-trigger after update of balance on account

 Values of attributes before and after an update can be referenced
 referencing old row as (deletes and updates)

 referencing new row as (inserts and updates)
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When Not To Use Triggers

 Triggers, along with all the other integrity checking mechanisms, provide 

yet another opportunity to…slow up the database…

 Triggers can be used for many things: 
 Maintaining summary or derived data (e.g. total salary of each department).

 Replicating databases. 

 DBMSs have better, more efficient ways to do many of these things:
 Materialized views - maintain summary data.

 Data warehousing - maintaining summary/derived data.

 Built-in support for replication.
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Procedural Extensions

and Stored Procedures

 SQL provides a module language that permits definition of procedures:
 Conditional (if-then-else) statements

 Loops (for and while)

 Procedure definition with parameters

 Arbitrary SQL statements

 Stored Procedures:
 Stored in the DBMS.

 Executed by calling them by name, on the command-line or from a program.

 Permit external applications to operate on the database without knowing about internal details about 

the database or even SQL.

 A standard that is not uncommon – put all queries in stored procedures; applications are then only 

allowed to call stored procedures.

 In the simplest case, a stored procedure simply contains a single query.
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Procedural Extensions

and Stored Procedures

 Example:

CREATE PROCEDURE stpgetauthors

@surname varchar(30)=null

AS

BEGIN

IF @surname = null

BEGIN

RAISERROR( 'No selection criteria provided !', 10, 1)

END

ELSE

BEGIN

SELECT * FROM authors

WHERE au_lname LIKE @surname

END

END
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Submitting Queries from Programs

 Programmatic access to a relational database:
 Embedded SQL

 Dynamic SQL

 Standards for Dynamic SQL:
 ODBC

 JDBC
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Example - ODBC

 Open DataBase Connectivity (ODBC) is a standard for programs to 
communicate with database servers.
 Independent of language, DBMS or operating system.

 ODBC defines an API providing the functionality to: 
 Open a connection to a database

 Execute queries and updates

 Get back results
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ODBC  (Cont.)

 An ODBC program first allocates an “SQL environment,” and then a 
“database connection handle.”

 An ODBC program then opens the database connection using 
SQLConnect() with the following parameters:
 connection handle

 server to connect to

 userid

 password 

 Must also specify types of arguments:
 SQL_NTS denotes previous argument is a null-terminated string.
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ODBC Code

int ODBCexample()

{

HENV    env;     /* environment */ 

HDBC    conn;  /* database connection */ 

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn,

"aura.bell-labs.com", SQL_NTS, 

"avi", SQL_NTS, "avipasswd", SQL_NTS); 

{ …. Do actual work … }

SQLDisconnect(conn); 

SQLFreeConnect(conn); 

SQLFreeEnv(env); 

}
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ODBC Code (Cont.)

 Main body of program (i.e., “Do actual work”):

char branchname[80];

float balance;

int lenOut1, lenOut2;

HSTMT stmt;

RETCODE error;   /* query return code */

SQLAllocStmt(conn, &stmt);

char* sqlquery = "select branch_name, sum (balance) 

from account

group by branch_name";

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL_SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR,   branchname , 80, &lenOut1);

SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance,         0 , &lenOut2);

while (SQLFetch(stmt) >= SQL_SUCCESS) {

printf (" %s  %g\n", branchname, balance);

}

}

SQLFreeStmt(stmt, SQL_DROP); 
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JDBC

 JDBC is a Java specific API for communicating with database systems 
supporting SQL.

 JDBC supports a variety of features for querying and updating data, and 
for retrieving query results.

 Similar to ODBC in general structure and operation:
 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and fetch results

 Exception mechanism to handle errors


