

Relational Database Design

- Goals of Relational Database Design
- Functional Dependencies
- Loss-less Joins
- Dependency Preservation
- Normal Forms (1st, 2nd, 3rd, BCNF)

Goals of Relational Database Design

- Traditional Design Goals:
 - > Avoid redundant data generally considered enemy #1.
 - Ensure that relationships among attributes are represented.
 - > Facilitate the checking of updates for violation of integrity constraints.
- We will formalize these goals in several steps.
- What about performance, reliability and security?

- Database design is driven by <u>normalization</u>.
- If relational scheme R is not sufficiently normalized, <u>decompose</u> it into a set of relational schemes {R₁, R₂, ..., R_n} such that:
 - Each relational scheme is sufficiently *normalized*.
 - The decomposition has a lossless-join.
 - > All functional dependencies are *preserved*.
- So what are normalization, lossless-join, functional dependencies, and what does preserving them mean?

- A domain is *atomic* if its elements are *treated* as indivisible units.
 - Examples of atomic domains:
 - Number of pets
 - Gender
 - Examples of non-atomic domains:
 - Person names
 - List of dependent first names
 - Identification numbers like CS101 that can be broken into parts
- A relational schema R is in <u>first normal form</u> if all attributes of R are atomic (or rather, are treated atomically).

So why is redundancy considered "enemy #1?"

• Consider the relation schema:

branch-name	branch-city	assets	customer- name	loan- number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

- Note the redundancy in *branch-name, branch-city,* and *assets*.
 - > Wastes space.
 - Creates insertion, deletion, and update anomalies.

Florida Institute Of Technology Update, Insertion and Deletion Anomalies

branch-name	branch-city	assets	customer- name	loan- number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

Insertion Anomalies:

- Cannot store information about a branch if no loans exist without using null values; this is particularly bad since loan-number is part of the primary key.
- Subsequent insertion of a loan for that same branch would require the first tuple to be deleted.

Deletion Anomalies:

> Deleting L-17 and L-14 might result in all Downtown branch information being deleted.

Update Anomalies:

- Modify the asset value for the branch of loan L-17.
- > Add \$100 to the balance of all loans at a Brooklyn branch.

Solution - decompose *Lending-schema* into:

Branch-schema = (branch-name, branch-city,assets) Loan-info-schema = (customer-name, loan-number, branch-name, amount)

• For any decomposition:

All attributes of an original schema must appear in the decomposition.

$$R = R_1 \cup R_2$$

The decomposition must have a *lossless-join*, i.e., for all possible relations *r* on schema *R*:

 $r = \prod_{R_1} (r) \prod_{R_2} (r)$

• Decomposition of R = (A, B) into $R_1 = (A)$ and $R_2 = (B)$

- Informally, a <u>Functional Dependency</u> (FD) is a constraint on the contents of a relation.
- An FD specifies that the values for one set of attributes determines the values for another set of attributes.
- The notion of an FD is a generalization of the notion of a key (super, candidate, primary or unique).
 - In fact, in a "good" design, most FDs are realized as keys.

Functional Dependencies – Example #1

• Consider the following schema:

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

Applicable FDs:

 $loan-number \rightarrow amount$ $loan-number \rightarrow branch-name$

Non-applicable FDs:

 $loan-number \rightarrow customer-name$

customer-name \rightarrow amount

Functional Dependencies – Example #2

Consider the following schema:

Grade-schema = (<u>student-id</u>, name, <u>course-id</u>, grade)

Applicable FDs:

student-id \rightarrow name student-id, course-id \rightarrow grade

Non-applicable FDs:

student-id \rightarrow grade grade \rightarrow course-id

 Exercise – list out all possible FDs for the above relational scheme, and determine which ones hold and which ones don't (same for the one on the previous page).

- Let *R* be a relation schema where $\alpha \subseteq R$ and $\beta \subseteq R$.
- The functional dependency

 $\alpha \rightarrow \beta$ is said to <u>hold on</u> R if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α , they also agree on the attributes β , i.e.,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

Alternatively, if $\alpha \rightarrow \beta$ then the relation *r* can never contain two tuples that agree on α and disagree on β .

- Let R be a relational scheme and let F be an associated set of functional dependencies.
- *F* holds on *R* if all legal relations on *R* satisfy the set of functional dependencies *F F* is *imposed* or *enforced* on *R*.
- If a relation *r* is legal for a set *F* of functional dependencies, we say that *r* satisfies *F F* is currently satisfied but may or may not be *imposed* or *enforced* on *r*.
- Note that the difference between the two is important!
 - > If F holds on relation R, then every relation (i.e., a set of tuples) must satisfy F.
 - > If a relation satisfies F, it may or may not be the case that F holds on R.

- An analogy assume for the moment that all drivers actually follow speed limits...
- Thus we say that the speed limit established for a road <u>holds</u> on that road.
- You will never see a car exceed whatever the speed limit happens to be.

- Suppose you are watching cars drive by on a road where you don't know what the speed limit is.
- A some point in time, there might be 3 cars on the road, one going 45, another going 30, and another going 42.
 - > These do not *satisfy* a speed limit of 25, 10, etc.
 - We can conclude, therefore, that the speed limit is not 25.
 - They do, however, satisfy a speed limit of 55, 60, 45, etc.
 - We cannot conclude however, that, for example, 55 is the speed limit, just by looking at the cards.
 - Speed limit could be 45, 46, 47, 90, etc.
- If a particular speed limit <u>holds</u> on a road, then the speed of all cars on that road <u>satisfy</u> the speed limit.
 - Cars are like rows in a table
 - FDs that hold are like speed limits

• Consider the following relation:

- For this set of tuples:
 - \blacktriangleright $A \rightarrow B$ is **NOT** satisfied
 - \blacktriangleright A \rightarrow B therefore does **NOT** hold
 - \blacktriangleright $B \rightarrow A$ **IS** currently satisfied
 - but does $B \rightarrow A$ hold?

- By simply looking at the tuples in a relation, one can determine if an FD is currently <u>satisfied</u> or not.
- Similarly, by looking at the tuples you can determine that an FD <u>doesn't</u> hold, but you can never be certain that an FD <u>does</u> hold (for that you need to look at the set of FDs).
- Similarly by simply looking at the cars on a road, one can determine if a speed limit is currently <u>satisfied</u> or not.
- Similarly, by looking at the cars you can determine that a speed limit <u>doesn't</u> hold, but you can never be certain that a speed limit <u>does</u> hold (for that you need to look at the speed limit sign).

- One more time a specific relation may satisfy an FD even if the FD does not hold on all legal instances of that relation.
- Example #1: A specific instance of *Loan-info-schema* may satisfy:

loan-number \rightarrow *customer-name*.

Example #2: A specific instance of *Grade-schema* may satisfy:

course-id \rightarrow grade

- Although either of the above might <u>satisfy</u> the specified FD, in neither case does the FD <u>hold</u>.
- Example #3: Suppose an instance of Loan-info-schema (or Grade-schema) is empty. What FDs does it satisfy?

- The notions of a superkey and a candidate key can be defined in terms of functional dependencies.
- K is a superkey for relation schema R if and only if $K \rightarrow R$
- *K* is a candidate key for *R* if and only if
 - \succ K is a superkey for R, and
 - There is no set $\alpha \subset K$ such that α is a superkey.
- Note how declaring K as the primary key of the table effectively enforces the functional dependency $K \rightarrow R$

- A functional dependency $\alpha \rightarrow \beta$ is said to be *trivial* if $\beta \subseteq \alpha$
- Examples:

customer-name, loan-number \rightarrow customer-name customer-name \rightarrow customer-name

Trivial functional dependencies are always satisfied (by every instance of a relation).

Armstrong's Axioms

Given a set *F* of FDs, there are other FDs that are logically implied by *F*.

- For example, if $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$.
- Example:

 $ID\# \rightarrow Date-of-Birth$ Date-of-Birth $\rightarrow Zodiac-Sign$ $\therefore ID\# \rightarrow Zodiac-Sign$

But there are other rules...

Armstrong's Axioms

Armstrong's Axioms:

	if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$	(reflexivity)
≻	if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$	(augmentation)
≻	if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$	(transitivity)

Armstrong's axioms are *sound*, *complete* and *minimal*:

- Sound generate only functional dependencies that actually hold.
- Complete generate all functional dependencies that hold.
- Minimal no proper subset of the Axioms is complete.

- The set of all FDs logically implied by *F* is called the <u>closure</u> of *F*.
- The closure of *F* is denoted by *F*⁺.
- Given a set *F*, we can find all FDs in *F*⁺ by applying Armstrong's Axioms

Closure Example

$$R = (A, B, C, G, H, I)$$

$$F = \{ A \rightarrow B$$

$$A \rightarrow C$$

$$CG \rightarrow H$$

$$CG \rightarrow I$$

$$B \rightarrow H \}$$

- Some members of F⁺
 - \succ $A \rightarrow H$

Transitivity from $A \rightarrow B$ and $B \rightarrow H$

 \blacktriangleright AG \rightarrow I

Augmentation of $A \rightarrow C$ with G, to get $AG \rightarrow CG$, then transitivity with $CG \rightarrow I$

 \succ CG \rightarrow HI

Augmentation of $CG \rightarrow I$ to get $CG \rightarrow CGI$, augmentation of $CG \rightarrow H$ to get $CGI \rightarrow HI$, and then transitivity

- Note that a formal derivation (proof) can be given for each FD in *F*⁺.
- Example: Show that $CG \rightarrow HI$ is in $F^{+:}$

1.	$CG \rightarrow I$	Given
2.	$CG \rightarrow CG/$	Augmentation of (1) with CG
З.	$CG \rightarrow H$	Given
4.	$CGI \rightarrow HI$	Augmentation of (3) with I
5.	$CG \rightarrow HI$	Transitivity with (2) and (4)

- Exercises:
 - Suppose $A \rightarrow B$ and $A \rightarrow C$. Show $A \rightarrow BC$.
 - Suppose $A \rightarrow BC$ then $A \rightarrow B$ and $A \rightarrow C$.

By the way, what is the difference between $CG \rightarrow I$, $GC \rightarrow I$ and $CGC \rightarrow I$?

■ To compute the closure of a set *F* of FDs (modified from the book):

```
F^{+} = F;
add all trivial functional dependencies to F^{+};
repeat
for each functional dependency f in F^{+}
apply augmentation rules on f
add the resulting functional dependencies to F^{+}
for each pair of functional dependencies f_{1} and f_{2} in F^{+}
if f_{1} and f_{2} can be combined using transitivity
then add the resulting functional dependency to F^{+}
until F^{+} does not change any further;
```

Worst case time is exponential! Consider F = { $A \rightarrow B1, A \rightarrow B2, ..., A \rightarrow Bn$ }

We will see an alternative procedure for this task later.

Additional FD Rules

- The following additional rules will occasionally be helpful:
 - $\succ \quad \alpha \to \beta \text{ and } \alpha \to \gamma \text{ implies } \alpha \to \beta \gamma$
 - $\blacktriangleright \quad \alpha \to \beta \gamma \text{ implies } \alpha \to \beta \text{ and } \alpha \to \gamma$

(union) (decomposition)

> $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$ implies $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)

Notes:

- > The above rules are **NOT** Armstrong's axioms.
- The above rules can be proven using Armstrong's axioms.

- Example Proving the decomposition rule.
- Suppose $\alpha \to \beta \gamma$. Show that $\alpha \to \beta$ and $\alpha \to \gamma$.

1.	$\alpha \rightarrow \beta \gamma$	Given
2.	$\beta\gamma ightarroweta$	Reflexivity
3.	$\alpha \rightarrow \beta$	Transitivity with (1) and (2)
4.	$\beta \gamma \rightarrow \gamma$	Reflexivity
5.	$\alpha \rightarrow \gamma$	Transitivity with (1) and (4)

Exercise: prove the union rule and the pseudo-transitivity rule.

- Let α be a set of attributes, and let *F* be a set of functional dependencies.
- The <u>closure</u> of α <u>under</u> *F* (denoted by α^+) is the set of attributes that are functionally determined by α under *F*.
- Closure of a set of attributes α^+ is NOT the same as the closure of a set of FDs F^+ .

Example of Attribute Set Closure

Consider the following:

R = (A, B, C, G, H, I) $F = \{A \rightarrow B, CG \rightarrow H, A \rightarrow C, CG \rightarrow I, B \rightarrow H\}$

Compute {AG}+

AG	
ABG	$A \rightarrow B$
ABCG	$A \rightarrow C$
ABCGH	CG ightarrow H
ABCGHI	$CG \rightarrow I$

Closure of Attribute Sets

• Algorithm to compute α^+

There are several uses of the attribute closure algorithm:

- **Testing if a functional dependency** $\alpha \rightarrow \beta$ holds, i.e., is it in F^+ :
 - $\blacktriangleright \quad \text{Check if } \beta \subseteq \alpha^+$
 - > Is AG \rightarrow I in F⁺ for the previous example?
- Testing if a set of attributes α is a <u>superkey</u>:
 - Check if $\alpha^+ = R$
- Testing if a set of attributes α is a <u>candidate key</u>:
 - > Check if α^+ is a superkey (using the above)
 - Check if has a subset $\alpha' \subset \alpha$ that is a superkey (using the above)

Uses of Attribute Closure

- Computing closure of a set F of functional dependencies:
 - → for each $\gamma \subseteq R$, we find the closure γ^+ , and then
 - For each S ⊆ γ⁺, we output a functional dependency γ → S
- How helpful is that?

- Is AG a candidate key for the preceding relational scheme?
 - 1. Is AG a super key?
 - Does $AG \rightarrow R$, i.e., is $R \subseteq \{AG\}^+$
 - 2. Is any subset of AG a super key?
 - Does $A \rightarrow R$, i.e., is $R \subseteq \{A\}^+$
 - Does $G \to R$, i.e., is $R \subseteq \{G\}^+$
- IS CG a candidate key?

- Let F_1 and F_2 be two sets of functional dependencies.
- *F*₁ and *F*₂ are said to be <u>equal</u> (or identical), denoted *F*₁ = *F*₂, if:
 *F*₁ ⊆ *F*₂ and
 *F*₂ ⊆ *F*₁
- The above definition is not particularly helpful; it merely states the obvious...

- F_2 is said to <u>imply</u> F_1 if $F_1 \subseteq F_2^+$
- F_1 and F_2 are said to be <u>equivalent</u>, denoted $F_1 \approx F_2$, if F_1 implies F_2 and F_2 implies F_1 , i.e.,
 - $\succ F_2 \subseteq F_1^+$
 - \succ $F_1 \subseteq F_2^+$
- What does the above definition suggest?

Equivalent Sets of FDs

Consider the following sets of FDs:

 $F_1 = \{A \to B, B \to C, AB \to C\}$ $F_2 = \{A \to B, B \to C, A \to C\}$

- Clearly, F_1 and F_2 are not equal.
- However, F_1 is implied by F_2 since $F_1 \subseteq F_2^+$
- And F_2 is implied by F_1 since $F_2 \subseteq F_1^+$
- Hence, F_1 and F_2 are <u>equivalent</u>, i.e., $F_1 \approx F_2$.

Equivalent Sets of FDs

Consider the following sets of FDs:

$$\begin{split} F_1 = \{A \rightarrow B, \ CG \rightarrow I, \ B \rightarrow H, \ A \rightarrow H \} \\ F_2 = \{A \rightarrow B, \ CG \rightarrow H, \ A \rightarrow C, \ CG \rightarrow I, \ B \rightarrow H \} \end{split}$$

- Clearly, F_1 and F_2 are not equal.
- However, F_1 is implied by F_2 since $F_1 \subseteq F_2^+$
- But, F_2 is not implied by F_1 since $F_2 \not\subseteq F_1^+$
- Hence, F_1 and F_2 are <u>not</u> equivalent.

Canonical Cover

- A set of FDs may contain redundancies.
- Sometimes an entire FD is redundant:

 $A \rightarrow C$ is redundant in $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

How can we test if an FD is redundant?

Canonical Cover

Other times, an <u>attribute</u> in an FD may be redundant:

{A \rightarrow B, B \rightarrow C, A \rightarrow CD} can be simplified to {A \rightarrow B, B \rightarrow C, A \rightarrow D} {A \rightarrow B, B \rightarrow C, AC \rightarrow D} can be simplified to {A \rightarrow B, B \rightarrow C, A \rightarrow D}

• How can we test if an attribute in an FD is redundant?

Extraneous Attributes

- Let *F* be a set of FDs and suppose that $\alpha \rightarrow \beta$ is in *F*.
 - Attribute A is <u>extraneous</u> in α if A ∈ α and F logically implies (F - {α → β}) ∪ {(α - A) → β}.
 - Attribute A is <u>extraneous</u> in β if A ∈ β and the set of functional dependencies
 (F - {α → β}) ∪ {α → (β - A)} logically implies F.
- Note that implication in the opposite direction is trivial in each of the above cases.

Examples of Extraneous Attributes

Example #1:

 $F = \{A \rightarrow C, AB \rightarrow C\}$ Is *B* is extraneous in $AB \rightarrow C$? Is *A* is extraneous in $AB \rightarrow C$?

Example #2:

 $F = \{A \rightarrow C, AB \rightarrow CD\}$ Is C is extraneous in $AB \rightarrow CD$? How about A, B or D?

- Intuitively, a canonical cover for F is a "minimal" set that is equivalent to F, i.e., having no redundant FDs, or FDs with redundant attributes.
- More formally, a *canonical cover* for *F* is a set of dependencies *F_c* such that:
 - > $F \approx F_c$
 - > No functional dependency in F_c contains an extraneous attribute.
 - > Each left side of a functional dependency in F_c is unique.

Given a set *F* of FDs, a canonical cover for *F* can be computed as follows:

repeat

Replace any dependencies of the form $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$; // union rule Find a functional dependency $\alpha \rightarrow \beta$ with an extraneous attribute either in α or in β ; If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$; **until** F does not change;

Note that the union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied.

$$R = (A, B, C)$$
$$F = \{A \rightarrow BC$$
$$B \rightarrow C$$
$$A \rightarrow B$$
$$AB \rightarrow C\}$$

- ➤ Combining $A \rightarrow BC$ and $A \rightarrow B$ gives $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- → A is extraneous in $AB \rightarrow C$ gives $\{A \rightarrow BC, B \rightarrow C\}$
- > C is extraneous in $A \rightarrow BC$ gives $\{A \rightarrow B, B \rightarrow C\}$

Recall:

- Given a relational scheme R and an associated set F of FDs, first determine whether or not R is sufficiently normalized.
- If *R* is not sufficiently normalized, decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$ such that
 - > Each relation is sufficiently normalized
 - > The decomposition is a lossless-join decomposition
 - > All dependencies are preserved
- All of the above requirements will be based on functional dependencies.

Previously, we decomposed the Lending-schema into:
 Branch-schema = (branch-name, branch-city, assets)
 Loan-info-schema = (customer-name, loan-number, branch-name, amount)

The decomposition must have a lossless-join, i.e., for all possible relations *r* on *R*:

 $r = \prod_{\mathsf{R1}} (r) \bowtie \prod_{\mathsf{R2}} (r)$

Having defined FDs, we can now define the conditions under which a decomposition has a loss-less join...

- **Theorem:** A decomposition of R into R_1 and R_2 has a lossless join if and only if at least one of the following dependencies is in F^+ :
 - $\triangleright \quad R_1 \cap R_2 \to R_1$
 - $\triangleright \quad R_1 \cap R_2 \to R_2$
- In other words:
 - > R_1 and R_2 must have at least one attribute in common, and
 - > The common attributes must be a super-key for either R_1 or R_2 .

Example

R = (A, B, C) $F = \{A \rightarrow B, B \rightarrow C\}$

> Can be decomposed in three different ways (with a common attribute).

•
$$R_1 = (A, B), R_2 = (B, C)$$

Has a lossless-join:

$$R_1 \cap R_2 = \{B\} \text{ and } B \to BC$$

•
$$R_1 = (A, B), R_2 = (A, C)$$

Has a lossless-join:

$$R_1 \cap R_2 = \{A\} \text{ and } A \to AB$$

•
$$R_1 = (A, C), R_2 = (B, C)$$

Does not have a lossless-join.

Preservation of Functional Dependencies

Suppose that:

- R is a relational scheme
- \succ F is an associated set of functional dependencies
- $\succ \{R_1, R_2, ..., R_n\}$ is a decomposition of R
- > Let F_i be the set of dependencies F^+ that include only attributes in R_i .
- The decomposition $\{R_1, R_2, ..., R_n\}$ is said to be <u>dependency preserving</u> if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
- Why is it important for a decomposition to preserve dependencies?
 - > The goal is to replace R by $R_1, R_2, ..., R_n$
 - Enforcing F_1, F_2, \dots, F_n on R_1, R_2, \dots, R_n must be equivalent to enforcing F on R.

Food for thought - what is the difference between each of the following?

$(F_1 \cup F_2 \cup \dots \cup F_n)^+ = F^+$	
$F \subseteq (F_1 \cup F_2 \cup \dots \cup F_n)^+$	technically, this is all we need!
$F_1 \cup F_2 \cup \ldots \cup F_n = F$	very strict definition of preservation
$(F_1 \cup F_2 \cup \dots \cup F_n)^+ = F$	gets the job done, but unrealistic
$F_1 \cup F_2 \cup \ldots \cup F_n = F^+$	gets the job done, but also unrealistic

- Any of the above would work, but the first is the most flexible and realistic.
- All of the last three imply the first.
- Technically, we will subscribed to the first (but <u>informally</u>, we will use the second).

Example

- R = (A, B, C) $F = \{A \rightarrow B, B \rightarrow C\}$
 - > Can be decomposed in three different ways.
- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition (as noted previously)
 - Dependency preserving
- $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition (as noted previously)
 - > Not dependency preserving; $B \rightarrow C$ is not preserved
- $R_1 = (A, C), R_2 = (B, C)$
 - Does not have a lossless-join (as noted previously)
 - > Not dependency preserving; $A \rightarrow B$ is not preserved

A relational scheme *R* is in BCNF with respect to a set *F* of functional dependencies if for all functional dependencies in *F*⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for *R*

Testing for BCNF

To determine if a relational scheme is in BCNF:

Calculate F⁺

For each <u>non-trivial</u> functional dependency $\alpha \rightarrow \beta$ in F^+

- 1. compute α^+ (the attribute closure of α)
- 2. verify that α^+ includes all attributes of *R*, i.e., that it is a superkey for *R*
- => If a functional dependency $\alpha \rightarrow \beta$ in F⁺ is identified that (1) is non-trivial and (2) where α is *not* a superkey, then R is not in BCNF.

Example

- R = (A, B, C) $F = \{A \rightarrow B, B \rightarrow C\}$ Candidate Key = $\{A\}$
- *R* is not in BCNF (why not?)
- Decompose R into $R_1 = (A, B)$ and $R_2 = (B, C)$
 - \succ R_1 is in BCNF
 - \succ R_2 is in BCNF
 - > The decomposition has a lossless-join (noted previously)
 - > The decomposition preserves dependencies (noted previously)

- It turns out to be only necessary to check the dependencies in *F* (and not *F*⁺).
- This leads to the following simpler definition for BCNF.

Let *R* be a relational scheme and let *F* be a set of functional dependences. Then *R* is said to be in BCNF with respect to *F* if, for each $\alpha \rightarrow \beta$ in *F*, either $\alpha \rightarrow \beta$ is trivial or α is a superkey for *R*.

Why the authors don't define it this way is...anybodies' guess...

- Note that when testing a relation R_i in a decomposition for BCNF, however, make sure you consider ALL dependencies in F_i.
- For example, consider R = (A, B, C, D), with $F = \{A \rightarrow B, B \rightarrow C\}$
 - > Decompose R into $R_1(A,B)$ and $R_2(A,C,D)$
 - > One might think F_2 is empty, and hence R_2 satisfies BCNF.
 - > In fact, $A \rightarrow C$ is in F^+ , and hence in F_2 , which shows R_2 is not in BCNF.

- Let R be a relational scheme, let F be an associated set of functional dependencies, and suppose that R is not in BCNF.
- The following will give a decomposition of R into $R_1, R_2, ..., R_n$ such that each R_i is in BCNF, and such that the decomposition has a lossless-join.

```
result := {R};
compute F<sup>+</sup>;
while (there is a schema R<sub>i</sub> in result that is not in BCNF) do
let \alpha \rightarrow \beta be a nontrivial functional dependency that
holds on R<sub>i</sub> such that \alpha \rightarrow R_i is not in F<sup>+</sup>, and \alpha \cap \beta = \emptyset;
result := (result - R<sub>i</sub>) \cup (R<sub>i</sub> - \beta) \cup (\alpha, \beta);
end;
```


- Consider the following Relational Scheme, which is not in BCNF (why?):
 - R = (branch-name, branch-city, assets, <u>customer-name</u>, <u>loan-number</u>, amount)

 $F = \{branch-name \rightarrow assets, branch-city$

Candidate Key = {loan-number, customer-name}

Decomposition:

- -R (branch name, branch eity, assets, eustomer name, loan number, amount)
- R1 = (<u>branch-name</u>, branch-city, assets)
- -R2 = (branch-name, customer-name, loan-number, amount)
- R3 = (branch-name, <u>loan-number</u>, amount)
- R4 = (customer-name, loan-number)

- What are the primary keys for the resulting relations?
- Ideally, each R_i represents one functional dependency, where the LHS will be the primary key, i.e., α ; thus the primary key constraint enforces the FD.
- Although this enforces the majority of FDs, it does not enforce all FDs, in general.
- In such cases the other FDs can frequently be enforced by a secondary key; in the worst case, code must be written to repeatedly check for FD violations.

Keys Created by the BCNF Algorithm

Example:

R = (A, B, C) $F = \{ A \rightarrow C, \\ B \rightarrow C, \\ A \rightarrow B, \\ B \rightarrow A \}$

Two Candidate Keys = {*A*} {*B*}

Primary Key - A Secondary (unique) Key - B

- As noted, the algorithm produces a set of BCNF relational schemes that have a lossless join, but what about preserving dependencies?
- It is not always possible to get a BCNF decomposition that is dependency preserving:

 $\begin{array}{l} R = (J, K, L) \\ F = \{JK \rightarrow L, L \rightarrow K\} \\ Two \text{ candidate keys} = JK \text{ and } JL \end{array}$

- In terms of the banking enterprise: Banker-schema = (<u>branch-name</u>, <u>customer-name</u>, banker-name) banker-name → branch name customer-name, branch name → banker-name
- R is not in BCNF (why?)

• However, <u>any</u> decomposition of *R* will fail to preserve $JK \rightarrow L$.

R = (J, K, L) $F = \{JK \rightarrow L, L \rightarrow K\}$ Two candidate keys = JK and JL

Decompositions:

JK	KL	J	KL
JK	JL	K	JL
JL	KL	L	JK

• In every case $JK \rightarrow L$ is lost.

- It follows that there is <u>no</u> algorithm for decomposing a relational scheme that guarantees both, i.e., BCNF and preservation of dependencies.
- Solution Define a weaker normal form, called *Third Normal Form*.
 - > Allows some redundancy (with resultant problems; as we shall see)
- Given any relational scheme, there is always a lossless-join, dependencypreserving decomposition into 3NF relational schemes.
- This is why 3NF is industry standard.

- A relation schema *R* is in third normal form (3NF) with respect to a set *F* of functional dependencies if, for all functional dependencies in *F*⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - > $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
 - > α is a superkey for *R*
 - Each attribute A in $\beta \alpha$ is contained in a candidate key for R.
- For the last condition, each attribute may be in a different candidate key.
- The third condition is a minimal relaxation of BCNF that will ensure dependency preservation.
- If a relation is in BCNF it is in 3NF (why?)

- As with BCNF, the definition can be simplified to only consider FD's in F.
- The 3NF test is a slight modification of the BCNF test.
- If $\alpha \rightarrow \beta$ is not trivial, and if α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of *R*.
 - > Expensive requires finding all candidate keys.
 - > Testing for 3NF has been shown to be NP-hard, i.e., likely requires exponential time.
 - > Ironically, decomposition into third normal form (described shortly) can be done in polynomial time.

Note that our previous "problematic" scheme is in 3NF but not BCNF:

R = (J, K, L) $F = \{JK \rightarrow L, L \rightarrow K\}$ Two candidate keys = JK and JL

3NF Decomposition Algorithm

3NF Decomposition Algorithm:

```
Let F_c be a canonical cover for F;

i := 0;

for (each functional dependency \alpha \rightarrow \beta in F_c) loop

if (none of the schemas R_j, 1 \le j \le i contains \alpha and \beta) then

i := i + 1;

R_i := (\alpha, \beta);

end if;

end loop;

if (none of the schemas R_j, 1 \le j \le i contains a candidate key for R) then

i := i + 1;

R_i := any candidate key for R;

end if;

return (R_1, R_2, ..., R_i);
```

- Each resulting R_i is in 3NF, the decomposition has a lossless-join, and all dependencies are preserved.
- Each resulting R_i represents one or more functional dependencies, one of which will be enforced by a primary key.

Example

Relation schema *R*:

Banker-schema = (branch-name, customer-name, banker-name, office-number)

Functional dependencies F:

 $banker-name \rightarrow branch-name, office-number$ $customer-name, branch-name \rightarrow banker-name$

Candidate keys:

{customer-name, branch-name} {customer-name, banker-name}

- *R* is not in 3NF (why?)
- The algorithm creates the following schemas (*F* is already a canonical cover):

Banker-office-schema = (<u>banker-name</u>, branch-name, office-number) Banker-schema = (<u>customer-name</u>, <u>branch-name</u>, banker-name)

Summary: Comparison of BCNF and 3NF

- In summary...
- It is always possible to decompose a relational scheme into a set of relational schemes such that:
 - > All resulting relational schemes are in 3NF
 - > The decomposition has a lossless join
 - All dependencies are preserved
- It is always possible to decompose a relational scheme into a set of relational schemes such that:
 - > All resulting relational schemes are in BCNF
 - > The decomposition has a lossless join
 - => The decomposition, however, is not guaranteed to preserve dependencies.

Summary: Comparison of BCNF and 3NF

Now for some final notes...

3NF (Cont.)

Note #1:

So how does 3NF help us with our "problem" schema?

R = (J, K, L) $F = \{JK \to L, L \to K\}$

Two candidate keys: JK and JL

- Although R is not in BCNF, it is in 3NF:
 - $JK \rightarrow L$ JK is a superkey $L \rightarrow K$ K is contained in a candidate key
- In other words, if 3NF is our desired level of normalization, then the new algorithm leaves it as is.

Summary: Comparison of BCNF and 3NF, Cont.

- But there is a "cost" to accepting this schema as is...
- Redundancy in 3NF:

Note #2:

 It is relatively easy to prove that if a relational scheme is in 3NF but not in BCNF; such a relational scheme must have multiple distinct overlapping candidate keys (left as an exercise).

R = (J, K, L) $F = \{JK \rightarrow L, L \rightarrow K\}$ Two candidate keys = JK and JL

- Thus, if a relational scheme does not have multiple distinct overlapping candidate keys, and if it is in 3NF, then it is also in BCNF.
- Another reason why 3NF is industry standard.

Note #3:

- SQL does not provide a direct way of specifying functional dependencies other than as primary or secondary keys.
- So how are the FD's in the following enforced (in particular, the second)? R = (J, K, L) $F = \{JK \rightarrow L, L \rightarrow K\}$
- FDs can be specified using assertions but they are expensive to test.
- FDs can also be checked in program code, but that has drawbacks.
- In general, using SQL there is no efficient way to test a functional dependency whose left hand side is not a key.

End of Chapter