
©Silberschatz, Korth and Sudarshan1

Relational Database Design

■ Goals of Relational Database Design

■ Functional Dependencies

■ Loss-less Joins

■ Dependency Preservation

■ Normal Forms (1st, 2nd, 3rd, BCNF)

©Silberschatz, Korth and Sudarshan2

Goals of Relational Database Design

■ Traditional Design Goals:

 Avoid redundant data – generally considered enemy #1.

 Ensure that relationships among attributes are represented.

 Facilitate the checking of updates for violation of integrity constraints.

■ We will formalize these goals in several steps.

■ What about performance, reliability and security?

©Silberschatz, Korth and Sudarshan3

The Database Design Process

■ Database design is driven by normalization.

■ If relational scheme R is not sufficiently normalized, decompose it into a set of

relational schemes {R1, R2, ..., Rn} such that:

 Each relational scheme is sufficiently normalized.

 The decomposition has a lossless-join.

 All functional dependencies are preserved.

■ So what are normalization, lossless-join, functional dependencies, and what does

preserving them mean?

©Silberschatz, Korth and Sudarshan4

First Normal Form

■ A domain is atomic if its elements are treated as indivisible units.

 Examples of atomic domains:

• Number of pets

• Gender

 Examples of non-atomic domains:

• Person names

• List of dependent first names

• Identification numbers like CS101 that can be broken into parts

■ A relational schema R is in first normal form if all attributes of R are atomic (or

rather, are treated atomically).

©Silberschatz, Korth and Sudarshan5

The Problem with Redundancy

■ So why is redundancy considered “enemy #1?”

■ Consider the relation schema:

■ Note the redundancy in branch-name, branch-city, and assets.

 Wastes space.

 Creates insertion, deletion, and update anomalies.

©Silberschatz, Korth and Sudarshan6

Update, Insertion and Deletion Anomalies

■ Insertion Anomalies:

 Cannot store information about a branch if no loans exist without using null values; this is particularly bad

since loan-number is part of the primary key.

 Subsequent insertion of a loan for that same branch would require the first tuple to be deleted.

■ Deletion Anomalies:
 Deleting L-17 and L-14 might result in all Downtown branch information being deleted.

■ Update Anomalies:
 Modify the asset value for the branch of loan L-17.

 Add $100 to the balance of all loans at a Brooklyn branch.

©Silberschatz, Korth and Sudarshan7

Decomposition

■ Solution - decompose Lending-schema into:

Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

■ For any decomposition:

 All attributes of an original schema must appear in the decomposition:

R = R1  R2

 The decomposition must have a lossless-join, i.e., for all possible relations r on schema R:

r = R1 (r) R2 (r)

©Silberschatz, Korth and Sudarshan8

Example of Lossy-Join Decomposition

■ Decomposition of R = (A, B) into R1 = (A) and R2 = (B)

A B







1

2

1

A





B

1

2

r
A(r) B(r)

A (r) B (r)

A B









1

2

1

2

©Silberschatz, Korth and Sudarshan9

Functional Dependencies

■ Informally, a Functional Dependency (FD) is a constraint on the contents of a

relation.

■ An FD specifies that the values for one set of attributes determines the values for

another set of attributes.

■ The notion of an FD is a generalization of the notion of a key (super, candidate,

primary or unique).

 In fact, in a “good” design, most FDs are realized as keys.

©Silberschatz, Korth and Sudarshan10

Functional Dependencies – Example #1

■ Consider the following schema:

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

■ Applicable FDs:

loan-number  amount

loan-number  branch-name

■ Non-applicable FDs:

loan-number  customer-name

customer-name  amount

©Silberschatz, Korth and Sudarshan11

Functional Dependencies – Example #2

■ Consider the following schema:

Grade-schema = (student-id, name, course-id, grade)

■ Applicable FDs:

student-id  name

student-id, course-id  grade

■ Non-applicable FDs:

student-id  grade

grade  course-id

■ Exercise – list out all possible FDs for the above relational scheme, and

determine which ones hold and which ones don’t (same for the one on the

previous page).

©Silberschatz, Korth and Sudarshan12

Functional Dependency - Formal Definition

■ Let R be a relation schema where   R and   R.

■ The functional dependency

  
is said to hold on R if and only if for any legal relations r(R), whenever any two
tuples t1 and t2 of r agree on the attributes , they also agree on the attributes
, i.e.,

t1[] = t2 []  t1[] = t2 []

■ Alternatively, if    then the relation r can never contain two tuples that
agree on  and disagree on .

©Silberschatz, Korth and Sudarshan13

Use of Functional Dependencies

■ Let R be a relational scheme and let F be an associated set of functional

dependencies.

■ F holds on R if all legal relations on R satisfy the set of functional dependencies F

 F is imposed or enforced on R.

■ If a relation r is legal for a set F of functional dependencies, we say that r satisfies F

 F is currently satisfied but may or may not be imposed or enforced on r.

■ Note that the difference between the two is important!

 If F holds on relation R, then every relation (i.e., a set of tuples) must satisfy F.

 If a relation satisfies F, it may or may not be the case that F holds on R.

©Silberschatz, Korth and Sudarshan14

Example – FD Formal Definition

 An analogy - assume for the moment that all drivers actually follow speed limits...

 Thus we say that the speed limit established for a road holds on that road.

 You will never see a car exceed whatever the speed limit happens to be.

©Silberschatz, Korth and Sudarshan15

Example – FD Formal Definition

 Suppose you are watching cars drive by on a road where you don’t know what the

speed limit is.

 A some point in time, there might be 3 cars on the road, one going 45, another going

30, and another going 42.

 These do not satisfy a speed limit of 25, 10, etc.

 We can conclude, therefore, that the speed limit is not 25.

 They do, however, satisfy a speed limit of 55, 60, 45, etc.

 We cannot conclude however, that, for example, 55 is the speed limit, just by looking at the cards.

 Speed limit could be 45, 46, 47, 90, etc.

 If a particular speed limit holds on a road, then the speed of all cars on that road

satisfy the speed limit.

 Cars are like rows in a table

 FDs that hold are like speed limits

©Silberschatz, Korth and Sudarshan16

Example – FD Formal Definition

■ Consider the following relation:

A B

■ For this set of tuples:

 A  B is NOT satisfied

 A  B therefore does NOT hold

 B  A IS currently satisfied

 but does B  A hold?

1 4

1 5

3 7

©Silberschatz, Korth and Sudarshan17

Example – FD Formal Definition

■ By simply looking at the tuples in a relation, one can determine if an FD is

currently satisfied or not.

■ Similarly, by looking at the tuples you can determine that an FD doesn’t hold,

but you can never be certain that an FD does hold (for that you need to look at

the set of FDs).

■ Similarly by simply looking at the cars on a road, one can determine if a speed

limit is currently satisfied or not.

■ Similarly, by looking at the cars you can determine that a speed limit doesn’t

hold, but you can never be certain that a speed limit does hold (for that you

need to look at the speed limit sign).

©Silberschatz, Korth and Sudarshan18

FDs – Holding vs. Satisfying

■ One more time - a specific relation may satisfy an FD even if the FD does not hold

on all legal instances of that relation.

■ Example #1: A specific instance of Loan-info-schema may satisfy:

loan-number  customer-name.

■ Example #2: A specific instance of Grade-schema may satisfy:

course-id  grade

■ Although either of the above might satisfy the specified FD, in neither case does the

FD hold.

■ Example #3: Suppose an instance of Loan-info-schema (or Grade-schema) is

empty. What FDs does it satisfy?

©Silberschatz, Korth and Sudarshan19

Defining Keys in Terms of FDs

■ The notions of a superkey and a candidate key can be defined in terms of

functional dependencies.

■ K is a superkey for relation schema R if and only if K  R

■ K is a candidate key for R if and only if

 K is a superkey for R, and

 There is no set   K such that  is a superkey.

■ Note how declaring K as the primary key of the table effectively enforces the

functional dependency K  R

©Silberschatz, Korth and Sudarshan20

Functional Dependencies (Cont.)

■ A functional dependency    is said to be trivial if   

■ Examples:

customer-name, loan-number  customer-name

customer-name  customer-name

■ Trivial functional dependencies are always satisfied (by every instance of a

relation).

©Silberschatz, Korth and Sudarshan21

Armstrong’s Axioms

■ Given a set F of FDs, there are other FDs that are logically implied by F.

■ For example, if A  B and B  C, then A  C.

■ Example:

ID#  Date-of-Birth

Date-of-Birth  Zodiac-Sign

∴ ID#  Zodiac-Sign

■ But there are other rules…

©Silberschatz, Korth and Sudarshan22

Armstrong’s Axioms

■ Armstrong’s Axioms:

 if   , then    (reflexivity)

 if   , then      (augmentation)

 if   , and   , then    (transitivity)

■ Armstrong’s axioms are sound, complete and minimal:

 Sound – generate only functional dependencies that actually hold.

 Complete – generate all functional dependencies that hold.

 Minimal – no proper subset of the Axioms is complete.

©Silberschatz, Korth and Sudarshan23

Closure of a Set of FDs

■ The set of all FDs logically implied by F is called the closure of F.

■ The closure of F is denoted by F+.

■ Given a set F, we can find all FDs in F+ by applying Armstrong’s Axioms

©Silberschatz, Korth and Sudarshan24

Closure Example

 Consider the following:

R = (A, B, C, G, H, I)

F = { A  B

A  C

CG  H

CG  I

B  H }

 Some members of F+

 A  H

Transitivity from A  B and B  H

 AG  I

Augmentation of A  C with G, to get AG  CG,

then transitivity with CG  I

 CG  HI

Augmentation of CG  I to get CG  CGI,

augmentation of CG  H to get CGI  HI,

and then transitivity

©Silberschatz, Korth and Sudarshan25

Closure Example

 Note that a formal derivation (proof) can be given for each FD in F+.

 Example: Show that CG  HI is in F+:

1. CG  I Given

2. CG  CGI Augmentation of (1) with CG

3. CG  H Given

4. CGI  HI Augmentation of (3) with I

5. CG  HI Transitivity with (2) and (4)

 Exercises:

 Suppose A  B and A  C. Show A  BC.

 Suppose A  BC then A  B and A  C.

 By the way, what is the difference between CG  I, GC  I and CGC  I?

©Silberschatz, Korth and Sudarshan26

Procedure for Computing F+

 To compute the closure of a set F of FDs (modified from the book):

F+ = F;

add all trivial functional dependencies to F+;

repeat

for each functional dependency f in F+

apply augmentation rules on f

add the resulting functional dependencies to F+

for each pair of functional dependencies f1and f2 in F+

if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F+

until F+ does not change any further;

 We will see an alternative procedure for this task later.

Worst case time is exponential!

Consider F = {AB1, AB2,…,ABn}

©Silberschatz, Korth and Sudarshan27

Additional FD Rules

■ The following additional rules will occasionally be helpful:

    and    implies     (union)

     implies    and    (decomposition)

    and     implies     (pseudotransitivity)

■ Notes:

 The above rules are NOT Armstrong’s axioms.

 The above rules can be proven using Armstrong’s axioms.

©Silberschatz, Korth and Sudarshan28

Proving the Decomposition Rule

 Example - Proving the decomposition rule.

 Suppose    . Show that   and   .

1.     Given

2.    Reflexivity

3.   Transitivity with (1) and (2)

4.   Reflexivity

5.    Transitivity with (1) and (4)

 Exercise: prove the union rule and the pseudo-transitivity rule.

©Silberschatz, Korth and Sudarshan29

Closure of Attribute Sets

■ Let  be a set of attributes, and let F be a set of functional dependencies.

■ The closure of  under F (denoted by +) is the set of attributes that are functionally

determined by  under F.

■ Closure of a set of attributes + is NOT the same as the closure of a set of FDs F+.

©Silberschatz, Korth and Sudarshan30

Example of Attribute Set Closure

 Consider the following:

R = (A, B, C, G, H, I)

F = {A  B, CG  H, A  C, CG  I, B  H}

 Compute {AG}+

AG

ABG A  B

ABCG A  C

ABCGH CG  H

ABCGHI CG  I

©Silberschatz, Korth and Sudarshan31

Closure of Attribute Sets

■ Algorithm to compute +

result := α;
while (changes to result) do

for each    in F do

begin

if   result then result := result  ;

end;

©Silberschatz, Korth and Sudarshan32

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

 Testing if a functional dependency    holds, i.e., is it in F+ :

 Check if   +

 Is AG  I in F+ for the previous example?

 Testing if a set of attributes  is a superkey:

 Check if + = R

 Testing if a set of attributes  is a candidate key:

 Check if + is a superkey (using the above)

 Check if has a subset ’   that is a superkey (using the above)

©Silberschatz, Korth and Sudarshan33

Uses of Attribute Closure

 Computing closure of a set F of functional dependencies:

 for each   R, we find the closure +, and then

 for each S  +, we output a functional dependency   S

 How helpful is that?

©Silberschatz, Korth and Sudarshan34

Example of Attribute Set Closure

■ Is AG a candidate key for the preceding relational scheme?

1. Is AG a super key?

• Does AG  R, i.e., is R ⊆ {AG}+

2. Is any subset of AG a super key?

• Does A  R, i.e., is R ⊆ {A}+

• Does G  R, i.e., is R ⊆ {G}+

■ IS CG a candidate key?

©Silberschatz, Korth and Sudarshan35

Equivalent Sets of FDs

■ Let F1 and F2 be two sets of functional dependencies.

■ F1 and F2 are said to be equal (or identical), denoted F1 = F2, if:

 F1 ⊆ F2 and

 F2 ⊆ F1

■ The above definition is not particularly helpful; it merely states the obvious…

©Silberschatz, Korth and Sudarshan36

Equivalent Sets of FDs

■ F2 is said to imply F1 if F1 ⊆ F2
+

■ F1 and F2 are said to be equivalent , denoted F1 ≈ F2, if F1 implies F2 and F2 implies

F1, i.e.,

 F2 ⊆ F1
+

 F1 ⊆ F2
+

■ What does the above definition suggest?

©Silberschatz, Korth and Sudarshan37

Equivalent Sets of FDs

 Consider the following sets of FDs:

F1 = {A  B, B  C, AB  C}

F2 = {A  B, B  C, A  C}

 Clearly, F1 and F2 are not equal.

 However, F1 is implied by F2 since F1 ⊆ F2
+

 And F2 is implied by F1 since F2 ⊆ F1
+

 Hence, F1 and F2 are equivalent, i.e., F1 ≈ F2.

©Silberschatz, Korth and Sudarshan38

Equivalent Sets of FDs

■ Consider the following sets of FDs:

F1 = {A  B, CG  I, B  H, A  H }

F2 = {A  B, CG  H, A  C, CG  I, B  H}

■ Clearly, F1 and F2 are not equal.

■ However, F1 is implied by F2 since F1 ⊆ F2
+

■ But, F2 is not implied by F1 since F2 ⊈ F1
+

■ Hence, F1 and F2 are not equivalent.

©Silberschatz, Korth and Sudarshan39

Canonical Cover

■ A set of FDs may contain redundancies.

■ Sometimes an entire FD is redundant:

A  C is redundant in {A  B, B  C, A  C}

■ How can we test if an FD is redundant?

©Silberschatz, Korth and Sudarshan40

Canonical Cover

 Other times, an attribute in an FD may be redundant:

{A  B, B  C, A  CD} can be simplified to

{A  B, B  C, A  D}

{A  B, B  C, AC  D} can be simplified to

{A  B, B  C, A  D}

■ How can we test if an attribute in an FD is redundant?

©Silberschatz, Korth and Sudarshan41

Extraneous Attributes

■ Let F be a set of FDs and suppose that    is in F.

 Attribute A is extraneous in  if A  

and F logically implies (F – {  })  {( – A)  }.

 Attribute A is extraneous in  if A  

and the set of functional dependencies

(F – {  })  {  ( – A)} logically implies F.

■ Note that implication in the opposite direction is trivial in each of the above

cases.

©Silberschatz, Korth and Sudarshan42

Examples of Extraneous Attributes

 Example #1:

F = {A  C, AB  C }

Is B is extraneous in AB  C?

Is A is extraneous in AB  C?

 Example #2:

F = {A  C, AB  CD}

Is C is extraneous in AB  CD?

How about A, B or D?

©Silberschatz, Korth and Sudarshan43

Canonical Cover – Formal Definition

■ Intuitively, a canonical cover for F is a “minimal” set that is equivalent to F, i.e., having

no redundant FDs, or FDs with redundant attributes.

■ More formally, a canonical cover for F is a set of dependencies Fc such that:

 F ≈ Fc

 No functional dependency in Fc contains an extraneous attribute.

 Each left side of a functional dependency in Fc is unique.

©Silberschatz, Korth and Sudarshan44

Computing a Canonical Cover

 Given a set F of FDs, a canonical cover for F can be computed as follows:

repeat

Replace any dependencies of the form 1  1 and 1  2 with 1  1 2; // union rule

Find a functional dependency    with an extraneous attribute either in  or in ;

If an extraneous attribute is found, delete it from   ;

until F does not change;

 Note that the union rule may become applicable after some extraneous attributes

have been deleted, so it has to be re-applied.

©Silberschatz, Korth and Sudarshan45

Example of Computing a Canonical Cover

R = (A, B, C)

F = {A  BC

B  C

A  B

AB  C}

 Combining A  BC and A  B gives {A  BC, B  C, AB  C}

 A is extraneous in AB  C gives {A  BC, B  C}

 C is extraneous in A  BC gives {A  B, B  C}

©Silberschatz, Korth and Sudarshan46

Review – The Goals of Normalization

Recall:

■ Given a relational scheme R and an associated set F of FDs, first determine
whether or not R is sufficiently normalized.

■ If R is not sufficiently normalized, decompose it into a set of relations {R1, R2, ...,
Rn} such that

 Each relation is sufficiently normalized

 The decomposition is a lossless-join decomposition

 All dependencies are preserved

■ All of the above requirements will be based on functional dependencies.

©Silberschatz, Korth and Sudarshan47

Decomposition

 Previously, we decomposed the Lending-schema into:

Branch-schema = (branch-name, branch-city, assets)

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

 The decomposition must have a lossless-join, i.e., for all possible relations r on R:

r = R1 (r) R2 (r)

 Having defined FDs, we can now define the conditions under which a

decomposition has a loss-less join…

©Silberschatz, Korth and Sudarshan48

Decomposition

■ Theorem: A decomposition of R into R1 and R2 has a lossless join if and only if

at least one of the following dependencies is in F+:

 R1  R2  R1

 R1  R2  R2

■ In other words:

 R1 and R2 must have at least one attribute in common, and

 The common attributes must be a super-key for either R1 or R2.

©Silberschatz, Korth and Sudarshan49

Example

■ R = (A, B, C)

F = {A  B, B  C)

 Can be decomposed in three different ways (with a common attribute).

■ R1 = (A, B), R2 = (B, C)

 Has a lossless-join:

R1  R2 = {B} and B  BC

■ R1 = (A, B), R2 = (A, C)

 Has a lossless-join:

R1  R2 = {A} and A  AB

■ R1 = (A, C), R2 = (B, C)

 Does not have a lossless-join.

©Silberschatz, Korth and Sudarshan50

Preservation of

Functional Dependencies

■ Suppose that:

 R is a relational scheme

 F is an associated set of functional dependencies

 {R1, R2, ..., Rn} is a decomposition of R

 Let Fi be the set of dependencies F+ that include only attributes in Ri.

■ The decomposition {R1, R2, ..., Rn} is said to be dependency preserving if

(F1  F2  …  Fn)
+ = F+

■ Why is it important for a decomposition to preserve dependencies?

 The goal is to replace R by R1, R2, ..., Rn

 Enforcing F1, F2, … , Fn on R1, R2, ..., Rn must be equivalent to enforcing F on R.

©Silberschatz, Korth and Sudarshan51

Preservation of

Functional Dependencies

■ Food for thought - what is the difference between each of the following?

(F1  F2  …  Fn)
+ = F+

F ⊆ (F1  F2  …  Fn)
+ technically, this is all we need!

F1  F2  …  Fn = F very strict definition of preservation

(F1  F2  …  Fn)
+ = F gets the job done, but unrealistic

F1  F2  …  Fn = F+ gets the job done, but also unrealistic

■ Any of the above would work, but the first is the most flexible and realistic.

■ All of the last three imply the first.

■ Technically, we will subscribed to the first (but informally, we will use the second).

©Silberschatz, Korth and Sudarshan52

Example

■ R = (A, B, C)
F = {A  B, B  C)

 Can be decomposed in three different ways.

■ R1 = (A, B), R2 = (B, C)

 Lossless-join decomposition (as noted previously)

 Dependency preserving

■ R1 = (A, B), R2 = (A, C)

 Lossless-join decomposition (as noted previously)

 Not dependency preserving; B  C is not preserved

■ R1 = (A, C), R2 = (B, C)

 Does not have a lossless-join (as noted previously)

 Not dependency preserving; A  B is not preserved

©Silberschatz, Korth and Sudarshan53

Boyce-Codd Normal Form

A relational scheme R is in BCNF with respect to a set F of functional dependencies

if for all functional dependencies in F+ of the form   , where   R and   R, at

least one of the following holds:

■    is trivial (i.e.,   )

■  is a superkey for R

©Silberschatz, Korth and Sudarshan54

Testing for BCNF

■ To determine if a relational scheme is in BCNF:

Calculate F+

For each non-trivial functional dependency  in F+

1. compute + (the attribute closure of )

2. verify that + includes all attributes of R, i.e., that it is a superkey for R

=> If a functional dependency  in F+ is identified that (1) is non-trivial and (2)

where  is not a superkey, then R is not in BCNF.

©Silberschatz, Korth and Sudarshan55

Example

■ R = (A, B, C)

F = {A  B, B  C}

Candidate Key = {A}

■ R is not in BCNF (why not?)

■ Decompose R into R1 = (A, B) and R2 = (B, C)

 R1 is in BCNF

 R2 is in BCNF

 The decomposition has a lossless-join (noted previously)

 The decomposition preserves dependencies (noted previously)

©Silberschatz, Korth and Sudarshan56

Testing for BCNF

■ It turns out to be only necessary to check the dependencies in F (and not F+).

■ This leads to the following simpler definition for BCNF.

Let R be a relational scheme and let F be a set of functional dependences. Then R

is said to be in BCNF with respect to F if, for each    in F, either    is trivial

or  is a superkey for R.

Why the authors don’t define it this way is…anybodies’ guess…

©Silberschatz, Korth and Sudarshan57

Testing for BCNF

■ Note that when testing a relation Ri in a decomposition for BCNF, however, make

sure you consider ALL dependencies in Fi.

■ For example, consider R = (A, B, C, D), with F = {A B, B C}

 Decompose R into R1(A,B) and R2(A,C,D)

 One might think F2 is empty, and hence R2 satisfies BCNF.

 In fact, A  C is in F+, and hence in F2, which shows R2 is not in BCNF.

©Silberschatz, Korth and Sudarshan58

BCNF Decomposition Algorithm

■ Let R be a relational scheme, let F be an associated set of functional
dependencies, and suppose that R is not in BCNF.

■ The following will give a decomposition of R into R1, R2, ..., Rn such that
each Ri is in BCNF, and such that the decomposition has a lossless-join.

result := {R};

compute F+;

while (there is a schema Ri in result that is not in BCNF) do

let    be a nontrivial functional dependency that

holds on Ri such that   Ri is not in F+, and    = ;
result := (result – Ri)  (Ri – )  (, );

end;

©Silberschatz, Korth and Sudarshan59

■ Consider the following Relational Scheme, which is not in BCNF (why?):

R = (branch-name, branch-city, assets, customer-name, loan-number, amount)

F = {branch-name  assets, branch-city

loan-number  amount, branch-name}

Candidate Key = {loan-number, customer-name}

■ Decomposition:

R = (branch-name, branch-city, assets, customer-name, loan-number, amount)

R1 = (branch-name, branch-city, assets)

R2 = (branch-name, customer-name, loan-number, amount)

R3 = (branch-name, loan-number, amount)

R4 = (customer-name, loan-number)

Example of BCNF Decomposition

©Silberschatz, Korth and Sudarshan60

Keys Created by the BCNF Algorithm

■ What are the primary keys for the resulting relations?

■ Ideally, each Ri represents one functional dependency, where the LHS will be

the primary key, i.e.,  ; thus the primary key constraint enforces the FD.

■ Although this enforces the majority of FDs, it does not enforce all FDs, in

general.

■ In such cases the other FDs can frequently be enforced by a secondary key; in

the worst case, code must be written to repeatedly check for FD violations.

©Silberschatz, Korth and Sudarshan61

Keys Created by the BCNF Algorithm

■ Example:

R = (A,B,C)

F = { A  C,

B  C,

A  B,

B  A}

Two Candidate Keys = {A} {B}

Primary Key - A

Secondary (unique) Key - B

©Silberschatz, Korth and Sudarshan62

BCNF and Dependency Preservation

■ As noted, the algorithm produces a set of BCNF relational schemes that

have a lossless join, but what about preserving dependencies?

■ It is not always possible to get a BCNF decomposition that is dependency
preserving:

R = (J, K, L)
F = {JK  L, L  K}

Two candidate keys = JK and JL

■ In terms of the banking enterprise:
Banker-schema = (branch-name, customer-name, banker-name)

banker-name  branch name

customer-name, branch name  banker-name

■ R is not in BCNF (why?)

©Silberschatz, Korth and Sudarshan63

BCNF and Dependency Preservation

 However, any decomposition of R will fail to preserve JK  L.

R = (J, K, L)

F = {JK  L, L  K}

Two candidate keys = JK and JL

■ Decompositions:

JK KL J KL

JK JL K JL

JL KL L JK

■ In every case JK  L is lost.

©Silberschatz, Korth and Sudarshan64

Third Normal Form Motivation

■ It follows that there is no algorithm for decomposing a relational scheme that

guarantees both, i.e., BCNF and preservation of dependencies.

■ Solution - Define a weaker normal form, called Third Normal Form.

 Allows some redundancy (with resultant problems; as we shall see)

■ Given any relational scheme, there is always a lossless-join, dependency-

preserving decomposition into 3NF relational schemes.

■ This is why 3NF is industry standard.

©Silberschatz, Korth and Sudarshan65

Third Normal Form

■ A relation schema R is in third normal form (3NF) with respect to a set F of

functional dependencies if, for all functional dependencies in F+ of the form

  , where   R and   R, at least one of the following holds:

    is trivial (i.e.,   )

  is a superkey for R

 Each attribute A in  –  is contained in a candidate key for R.

■ For the last condition, each attribute may be in a different candidate key.

■ The third condition is a minimal relaxation of BCNF that will ensure dependency

preservation.

■ If a relation is in BCNF it is in 3NF (why?)

©Silberschatz, Korth and Sudarshan66

Testing for 3NF

■ As with BCNF, the definition can be simplified to only consider FD’s in F.

■ The 3NF test is a slight modification of the BCNF test.

■ If    is not trivial, and if  is not a superkey, we have to verify if each attribute

in  is contained in a candidate key of R.

 Expensive - requires finding all candidate keys.

 Testing for 3NF has been shown to be NP-hard, i.e., likely requires exponential time.

 Ironically, decomposition into third normal form (described shortly) can be done in polynomial time.

©Silberschatz, Korth and Sudarshan67

BCNF vs. 3NF

■ Note that our previous “problematic” scheme is in 3NF but not BCNF:

R = (J, K, L)

F = {JK  L, L  K}

Two candidate keys = JK and JL

©Silberschatz, Korth and Sudarshan68

3NF Decomposition Algorithm

■ 3NF Decomposition Algorithm:

Let Fc be a canonical cover for F;

i := 0;

for (each functional dependency    in Fc) loop

if (none of the schemas Rj, 1  j  i contains  and ) then
i := i + 1;

Ri := (,);
end if;

end loop;

if (none of the schemas Rj, 1ji contains a candidate key for R) then
i := i + 1;

Ri := any candidate key for R;

end if;

return (R1, R2, ..., Ri);

■ Each resulting Ri is in 3NF, the decomposition has a lossless-join, and all
dependencies are preserved.

■ Each resulting Ri represents one or more functional dependencies, one of which
will be enforced by a primary key.

©Silberschatz, Korth and Sudarshan69

Example

■ Relation schema R:

Banker-schema = (branch-name, customer-name,banker-name, office-number)

■ Functional dependencies F:
banker-name  branch-name, office-number

customer-name, branch-name  banker-name

■ Candidate keys:

{customer-name, branch-name}

{customer-name, banker-name}

■ R is not in 3NF (why?)

■ The algorithm creates the following schemas (F is already a canonical cover):

Banker-office-schema = (banker-name, branch-name, office-number)

Banker-schema = (customer-name, branch-name, banker-name)

©Silberschatz, Korth and Sudarshan70

Summary:

Comparison of BCNF and 3NF

■ In summary…

■ It is always possible to decompose a relational scheme into a set of relational

schemes such that:

 All resulting relational schemes are in 3NF

 The decomposition has a lossless join

 All dependencies are preserved

■ It is always possible to decompose a relational scheme into a set of relational

schemes such that:

 All resulting relational schemes are in BCNF

 The decomposition has a lossless join

=> The decomposition, however, is not guaranteed to preserve dependencies.

©Silberschatz, Korth and Sudarshan71

Summary:

Comparison of BCNF and 3NF

■ Now for some final notes…

©Silberschatz, Korth and Sudarshan72

3NF (Cont.)

Note #1:

■ So how does 3NF help us with our “problem” schema?

R = (J, K, L)

F = {JK  L, L  K}

Two candidate keys: JK and JL

■ Although R is not in BCNF, it is in 3NF:

JK  L JK is a superkey

L  K K is contained in a candidate key

■ In other words, if 3NF is our desired level of normalization, then the new algorithm

leaves it as is.

©Silberschatz, Korth and Sudarshan73

Summary:

Comparison of BCNF and 3NF, Cont.

J

j1

j2

j3

null

L

l1

l1

l1

l2

K

k1

k1

k1

k2

■ But there is a “cost” to accepting this schema as is…

■ Redundancy in 3NF:

R = (J, K, L)

F = {JK  L, L  K}

©Silberschatz, Korth and Sudarshan74

Design Goals

Note #2:

■ It is relatively easy to prove that if a relational scheme is in 3NF but not in BCNF;

such a relational scheme must have multiple distinct overlapping candidate keys

(left as an exercise).

R = (J, K, L)

F = {JK  L, L  K}

Two candidate keys = JK and JL

■ Thus, if a relational scheme does not have multiple distinct overlapping candidate

keys, and if it is in 3NF, then it is also in BCNF.

■ Another reason why 3NF is industry standard.

©Silberschatz, Korth and Sudarshan75

Design Goals

Note #3:

■ SQL does not provide a direct way of specifying functional dependencies other than

as primary or secondary keys.

■ So how are the FD’s in the following enforced (in particular, the second)?

R = (J, K, L)
F = {JK  L, L  K}

■ FDs can be specified using assertions but they are expensive to test.

■ FDs can also be checked in program code, but that has drawbacks.

■ In general, using SQL there is no efficient way to test a functional dependency
whose left hand side is not a key.

End of Chapter

