
©Silberschatz, Korth and Sudarshan1

Introduction to Database Systems

 Databases

 Database Management Systems (DBMS)

 Levels of Abstraction

 Data Models

 Database Languages

 Types of Users

 DBMS Function and Structure

In other words, a somewhat random list of words and concepts that are

necessary to move on…

Read Chapter 1, including the historical notes on pages 29 - 31.

©Silberschatz, Korth and Sudarshan2

Concept #1: Databases & Database Management Systems

©Silberschatz, Korth and Sudarshan3

What is a Database?

 According to the book:
 Collection of interrelated data

 Set of programs to access the data

 A DBMS contains information about a particular enterprise

 DBMS provides an environment that is both convenient and efficient to use.

 Another definition (know these):
 A database is a collection of organized, interrelated data, typically relating to a particular enterprise

 A Database Management System (DBMS) is a set of programs for managing and accessing databases

©Silberschatz, Korth and Sudarshan4

Some Popular

Database Management Systems

 Commercial “off-the-shelf” (COTS):
 Oracle

 IBM DB2 (IBM)

 SQL Server (Microsoft)

 Sybase

 Informix (IBM)

 Access (Microsoft)

 Cache (Intersystems – nonrelational)

 Open Source:
 MySQL

 PostgreSQL

Note: This is not a course on any particular DBMS!

©Silberschatz, Korth and Sudarshan5

Some Database Applications

 Anywhere there is data, there could be a database:
 Banking - accounts, loans, customers

 Airlines - reservations, schedules

 Universities - registration, grades

 Sales - customers, products, purchases

 Manufacturing - production, inventory, orders, supply chain

 Human resources - employee records, salaries, tax deductions

 Course context is an “enterprise” that has requirements for:
 Storage and management of 100’s of gigabytes or terabytes of data

 Support for 100’s or more of concurrent users and transactions

 Traditional supporting platform, e.g, Dell PowerEdge R720xd, 68 processors, 16GB RAM each, 50TB
of disk space

©Silberschatz, Korth and Sudarshan6

Purpose of Database System

 Prior to the availability of COTS DBMSs, database applications were built
on top of file systems – coded from the ground up.

 Drawbacks of this approach:
 Difficult to reprogram sophisticated processing, i.e., concurrency control, backup and recovery, security

 Re-inventing the wheel can be expensive and error-prone.

 “We need a truck, lets design and build our own truck.”***

 According to the book, this leads to:
 Data redundancy and inconsistency

 Multiple files and formats

 A new program to carry out each new task

 Integrity constraints (e.g. account balance > 0) become embedded throughout program code, etc.

 Database systems offer proven solutions for the above problems.

©Silberschatz, Korth and Sudarshan7

Purpose of Database Systems (Cont.)

 Even to this day, engineers will occasionally propose custom-developed

file systems.

 So when should we code from scratch, and when do we buy a DBMS??
 How much data?

 How sophisticated is the processing of that data?

 How many concurrent users?

 What level of security?

 Is data integrity an issue?

 Does the data change at all?

©Silberschatz, Korth and Sudarshan8

Concept #2: Levels of Abstraction

©Silberschatz, Korth and Sudarshan9

Levels of Abstraction

 Physical level - defines low-level details about how data item is
stored on disk.

 Logical level - describes data stored in a database, and the
relationships among the data (usually conveyed as
a data model, e.g., an ER diagram).

 View level - defines how information is presented to users.
Views can also hide details of data types, and
information (e.g., salary) for security purposes.

©Silberschatz, Korth and Sudarshan10

Levels of Abstraction

 Physical data independence is the ability to modify the physical schema

without having an impact on the logical or view levels.

 Physical data independence is important in any database or DBMS.

 Similarly one could define logical data independence, but that would not

be as meaningful.

©Silberschatz, Korth and Sudarshan11

Concept #3: Instances vs. Schemas

©Silberschatz, Korth and Sudarshan12

Instances vs. Schemas

 The difference between a database schema and a database instance is

similar to the difference between a data type and a variable in a program.

 A database schema defines the structure or design of a database.

 More precisely:

 A logical schema defines a database design at the logical level; typically an entity-

relationship (ER) or UML diagram.

 A physical schema defines a database design at the physical level; typically a DDL file.

 An instance of a database is the combination of the database and its’

contents at one point in time.

©Silberschatz, Korth and Sudarshan13

Concept #4: Data Models

©Silberschatz, Korth and Sudarshan14

What is a Data Model?

 The phrase “data model” is used in a couple of different ways.

 Frequently used (use #1) to refer to an overall approach or
philosophy for database design and development.

 For those individuals, groups and corporations that subscribe to
a specific data model, that model permeates all aspects of
database design, development, implementation, etc.

©Silberschatz, Korth and Sudarshan15

What is a Data Model?

 Common data models:

 Relational model

 Object-oriented model

 Object-relational model

 Semi, and non-structured data models (XML)

 Various other NoSQL models (graph, document, key/value)

 Legacy data models:
 Network
 Hierarchical

©Silberschatz, Korth and Sudarshan16

What is a Data Model, Cont?

 During the early phases of database design and development, a “data
model” is frequently developed (use #2).

 The purpose of developing the data model is to define:
 Data

 Relationships between data items

 Semantics of data items

 Constraints on data items

In other words, a data model defines the logical schema, i.e., the logical level of design of a
database.

 A data model is typically conveyed as one or more diagrams (e.g., ER or
UML diagrams).

 This early phase in database development is referred to as data modeling.

©Silberschatz, Korth and Sudarshan17

Entity-Relationship Diagrams

 Examples of entity-relationship diagrams:
 Authors current (UML-ish) notation:

 http://my.fit.edu/~pbernhar/Teaching/DatabaseSystems/Slides/University.pdf

 Older (Chen) notation:

 Widely used for database modeling.

http://my.fit.edu/~pbernhar/Teaching/DatabaseSystems/Slides/University.pdf

©Silberschatz, Korth and Sudarshan18

A Sample Relational Database

 Regardless of the model, the end result is the same – a relational
database consisting of a collection of tables:

©Silberschatz, Korth and Sudarshan19

Concept #5: Query Languages

©Silberschatz, Korth and Sudarshan20

Query Languages

 A query language is used to create, manage, access, and modify data in a
database.

 The list of query languages is quite long:

 http://en.wikipedia.org/wiki/Query_languages

 The most widely used query language is Structure Query Language (SQL).

 At a high-level, SQL consists of two parts:

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

http://en.wikipedia.org/wiki/Query_languages

©Silberschatz, Korth and Sudarshan21

Data Definition Language (DDL)

 DDL is used for defining a (physical) database schema (see the book for
a more complete example):

create table account (

account-number char(10),

branch-name varchar(16),

balance integer,

primary key (account-number))

 Given a DDL file, the DDL compiler generates a set of tables.

 The authors also define a subset of DDL called Data storage and
definition language for specifying things such as:

 Location on disk

 Physical-level formatting

 Access privledges

©Silberschatz, Korth and Sudarshan22

Data Manipulation Language (DML)

 DML is used for accessing and manipulating a database.

 Two classes of DMLs:

 Procedural – user specifies how to get the required data.

 Non-procedural – user specifies what data is required, but not how to get that data.

 SQL is usually referred to as a non-procedural query language.

©Silberschatz, Korth and Sudarshan23

SQL Examples

 Find the name of the customer with customer-id 192-83-7465:

select customer.customer-name
from customer
where customer.customer-id = ‘192-83-7465’

 Find the balances of all accounts held by the customer with customer-id
192-83-7465:

select account.balance
from depositor, account
where depositor.customer-id = ‘192-83-7465’ and

depositor.account-number = account.account-number

 Databases are typically accessed by:

 Users through a command line interface

 Users through a query or software editing tool, e.g., MySQL Workbench

 Application programs that (generally) access them through embedded SQL or an application
program interface (e.g. ODBC/JDBC)

©Silberschatz, Korth and Sudarshan24

Concept #6: Database Users

©Silberschatz, Korth and Sudarshan25

Database Users

Users are differentiated by the way they interact with the system:

 Naïve users

 Application programmers

 Specialized users

 Sophisticated users

©Silberschatz, Korth and Sudarshan26

Database Administrator (DBA)

 The DBA coordinates all the activities of the database system; has a good
understanding of the enterprise’s information resources and needs.

 DBA duties:

 Granting user authority to access the database

 Acting as liaison with users

 Installing and maintaining DBMS software

 Monitoring performance and performance tuning

 Backup and recovery

 According to the book, the DBA is also responsible for:

 Logical and Physical schema definition and modification

 Access method definition

 Specifying integrity constraints

 Responding to changes in requirements

 These latter tasks are frequently performed by a software or systems engineer
specialized in database design.

©Silberschatz, Korth and Sudarshan27

Concept #7: DBMS Structure

©Silberschatz, Korth and Sudarshan28

Overall DBMS Structure

Query Optimizer

©Silberschatz, Korth and Sudarshan29

Overall DBMS Structure

Query Processor

DDL InterpreterDML Compiler

Parser, etc. HLL Compiler

& Linker

Query Evaluation

Engine

Optimizer

Storage Manager

Buffer Manager Authorization

& Integrity

ManagerFile Manager

Transaction Manager

Backup

& Recovery

Concurrency

Control

Data Data Dictionary

Indices Statistical Data

Users, Programs

Queries

Commands

Storage

Database

Server

©Silberschatz, Korth and Sudarshan30

Overall DBMS Structure

The following components of a DBMS are of interest to us:

 transaction manager

 buffer manager

 file manager

 authorization and integrity manager

 query optimizer

©Silberschatz, Korth and Sudarshan31

Transaction Management

 A transaction is a collection of operations that performs a single logical function in

a database application

 The transaction manager performs two primary functions:

 backup and recovery

 concurrency control

 Backup and recovery ensures that the database remains in a consistent (correct)

state despite failures:

 system, power, network failures

 operating system crashes

 transaction failures.

 Concurrency-control involves managing the interactions among concurrent

transactions.

©Silberschatz, Korth and Sudarshan32

Storage Management

 The buffer manager loads data into main memory from disk as it is needed by the

DBMS, and writes it back out when necessary.

 The buffer manager is responsible for:

 loading pages of data from disk into a segment of main memory called “the buffer”; a.k.a. “the cache”

 determining which pages in the buffer get replaced

 writing pages back out to disk

 managing overall configuration of the buffer, decomposition into memory pools, page time-stamps, etc.

 Sound familiar?

©Silberschatz, Korth and Sudarshan33

Storage Management

 The file manager is responsible for managing the files that store data.

 formatting the data files

 managing free and used space in the data files

 defragmenting the data files

 inserting and deleting specific data from the files

©Silberschatz, Korth and Sudarshan34

Authorization & Integrity Management

 The authorization & integrity manager performs two primary functions:

 data security

 data integrity

 Data security:

 ensure that unauthorized users can’t access the database

 ensure that authorized users can only access appropriate data

 Data integrity:

 in general, maintains & enforces integrity constraints

 maintains data relationships in the presence of data modifications

 prevents modifications that would corrupt established data relationships

©Silberschatz, Korth and Sudarshan35

Query Optimization

 A given query can be implemented by a DBMS in many different ways.

 The query optimizer attempts to determine the most efficient strategy for

executing a given query.

 The strategy for implementing a given query is referred to as a query plan.

