
©Silberschatz, Korth and Sudarshan1

Introduction to Database Systems

 Databases

 Database Management Systems (DBMS)

 Levels of Abstraction

 Data Models

 Database Languages

 Types of Users

 DBMS Function and Structure

In other words, a somewhat random list of words and concepts that are

necessary to move on…

Read Chapter 1, including the historical notes on pages 29 - 31.

©Silberschatz, Korth and Sudarshan2

Concept #1: Databases & Database Management Systems

©Silberschatz, Korth and Sudarshan3

What is a Database?

 According to the book:
 Collection of interrelated data

 Set of programs to access the data

 A DBMS contains information about a particular enterprise

 DBMS provides an environment that is both convenient and efficient to use.

 Another definition (know these):
 A database is a collection of organized, interrelated data, typically relating to a particular enterprise

 A Database Management System (DBMS) is a set of programs for managing and accessing databases

©Silberschatz, Korth and Sudarshan4

Some Popular

Database Management Systems

 Commercial “off-the-shelf” (COTS):
 Oracle

 IBM DB2 (IBM)

 SQL Server (Microsoft)

 Sybase

 Informix (IBM)

 Access (Microsoft)

 Cache (Intersystems – nonrelational)

 Open Source:
 MySQL

 PostgreSQL

Note: This is not a course on any particular DBMS!

©Silberschatz, Korth and Sudarshan5

Some Database Applications

 Anywhere there is data, there could be a database:
 Banking - accounts, loans, customers

 Airlines - reservations, schedules

 Universities - registration, grades

 Sales - customers, products, purchases

 Manufacturing - production, inventory, orders, supply chain

 Human resources - employee records, salaries, tax deductions

 Course context is an “enterprise” that has requirements for:
 Storage and management of 100’s of gigabytes or terabytes of data

 Support for 100’s or more of concurrent users and transactions

 Traditional supporting platform, e.g, Dell PowerEdge R720xd, 68 processors, 16GB RAM each, 50TB
of disk space

©Silberschatz, Korth and Sudarshan6

Purpose of Database System

 Prior to the availability of COTS DBMSs, database applications were built
on top of file systems – coded from the ground up.

 Drawbacks of this approach:
 Difficult to reprogram sophisticated processing, i.e., concurrency control, backup and recovery, security

 Re-inventing the wheel can be expensive and error-prone.

 “We need a truck, lets design and build our own truck.”***

 According to the book, this leads to:
 Data redundancy and inconsistency

 Multiple files and formats

 A new program to carry out each new task

 Integrity constraints (e.g. account balance > 0) become embedded throughout program code, etc.

 Database systems offer proven solutions for the above problems.

©Silberschatz, Korth and Sudarshan7

Purpose of Database Systems (Cont.)

 Even to this day, engineers will occasionally propose custom-developed

file systems.

 So when should we code from scratch, and when do we buy a DBMS??
 How much data?

 How sophisticated is the processing of that data?

 How many concurrent users?

 What level of security?

 Is data integrity an issue?

 Does the data change at all?

©Silberschatz, Korth and Sudarshan8

Concept #2: Levels of Abstraction

©Silberschatz, Korth and Sudarshan9

Levels of Abstraction

 Physical level - defines low-level details about how data item is
stored on disk.

 Logical level - describes data stored in a database, and the
relationships among the data (usually conveyed as
a data model, e.g., an ER diagram).

 View level - defines how information is presented to users.
Views can also hide details of data types, and
information (e.g., salary) for security purposes.

©Silberschatz, Korth and Sudarshan10

Levels of Abstraction

 Physical data independence is the ability to modify the physical schema

without having an impact on the logical or view levels.

 Physical data independence is important in any database or DBMS.

 Similarly one could define logical data independence, but that would not

be as meaningful.

©Silberschatz, Korth and Sudarshan11

Concept #3: Instances vs. Schemas

©Silberschatz, Korth and Sudarshan12

Instances vs. Schemas

 The difference between a database schema and a database instance is

similar to the difference between a data type and a variable in a program.

 A database schema defines the structure or design of a database.

 More precisely:

 A logical schema defines a database design at the logical level; typically an entity-

relationship (ER) or UML diagram.

 A physical schema defines a database design at the physical level; typically a DDL file.

 An instance of a database is the combination of the database and its’

contents at one point in time.

©Silberschatz, Korth and Sudarshan13

Concept #4: Data Models

©Silberschatz, Korth and Sudarshan14

What is a Data Model?

 The phrase “data model” is used in a couple of different ways.

 Frequently used (use #1) to refer to an overall approach or
philosophy for database design and development.

 For those individuals, groups and corporations that subscribe to
a specific data model, that model permeates all aspects of
database design, development, implementation, etc.

©Silberschatz, Korth and Sudarshan15

What is a Data Model?

 Common data models:

 Relational model

 Object-oriented model

 Object-relational model

 Semi, and non-structured data models (XML)

 Various other NoSQL models (graph, document, key/value)

 Legacy data models:
 Network
 Hierarchical

©Silberschatz, Korth and Sudarshan16

What is a Data Model, Cont?

 During the early phases of database design and development, a “data
model” is frequently developed (use #2).

 The purpose of developing the data model is to define:
 Data

 Relationships between data items

 Semantics of data items

 Constraints on data items

In other words, a data model defines the logical schema, i.e., the logical level of design of a
database.

 A data model is typically conveyed as one or more diagrams (e.g., ER or
UML diagrams).

 This early phase in database development is referred to as data modeling.

©Silberschatz, Korth and Sudarshan17

Entity-Relationship Diagrams

 Examples of entity-relationship diagrams:
 Authors current (UML-ish) notation:

 http://my.fit.edu/~pbernhar/Teaching/DatabaseSystems/Slides/University.pdf

 Older (Chen) notation:

 Widely used for database modeling.

http://my.fit.edu/~pbernhar/Teaching/DatabaseSystems/Slides/University.pdf

©Silberschatz, Korth and Sudarshan18

A Sample Relational Database

 Regardless of the model, the end result is the same – a relational
database consisting of a collection of tables:

©Silberschatz, Korth and Sudarshan19

Concept #5: Query Languages

©Silberschatz, Korth and Sudarshan20

Query Languages

 A query language is used to create, manage, access, and modify data in a
database.

 The list of query languages is quite long:

 http://en.wikipedia.org/wiki/Query_languages

 The most widely used query language is Structure Query Language (SQL).

 At a high-level, SQL consists of two parts:

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

http://en.wikipedia.org/wiki/Query_languages

©Silberschatz, Korth and Sudarshan21

Data Definition Language (DDL)

 DDL is used for defining a (physical) database schema (see the book for
a more complete example):

create table account (

account-number char(10),

branch-name varchar(16),

balance integer,

primary key (account-number))

 Given a DDL file, the DDL compiler generates a set of tables.

 The authors also define a subset of DDL called Data storage and
definition language for specifying things such as:

 Location on disk

 Physical-level formatting

 Access privledges

©Silberschatz, Korth and Sudarshan22

Data Manipulation Language (DML)

 DML is used for accessing and manipulating a database.

 Two classes of DMLs:

 Procedural – user specifies how to get the required data.

 Non-procedural – user specifies what data is required, but not how to get that data.

 SQL is usually referred to as a non-procedural query language.

©Silberschatz, Korth and Sudarshan23

SQL Examples

 Find the name of the customer with customer-id 192-83-7465:

select customer.customer-name
from customer
where customer.customer-id = ‘192-83-7465’

 Find the balances of all accounts held by the customer with customer-id
192-83-7465:

select account.balance
from depositor, account
where depositor.customer-id = ‘192-83-7465’ and

depositor.account-number = account.account-number

 Databases are typically accessed by:

 Users through a command line interface

 Users through a query or software editing tool, e.g., MySQL Workbench

 Application programs that (generally) access them through embedded SQL or an application
program interface (e.g. ODBC/JDBC)

©Silberschatz, Korth and Sudarshan24

Concept #6: Database Users

©Silberschatz, Korth and Sudarshan25

Database Users

Users are differentiated by the way they interact with the system:

 Naïve users

 Application programmers

 Specialized users

 Sophisticated users

©Silberschatz, Korth and Sudarshan26

Database Administrator (DBA)

 The DBA coordinates all the activities of the database system; has a good
understanding of the enterprise’s information resources and needs.

 DBA duties:

 Granting user authority to access the database

 Acting as liaison with users

 Installing and maintaining DBMS software

 Monitoring performance and performance tuning

 Backup and recovery

 According to the book, the DBA is also responsible for:

 Logical and Physical schema definition and modification

 Access method definition

 Specifying integrity constraints

 Responding to changes in requirements

 These latter tasks are frequently performed by a software or systems engineer
specialized in database design.

©Silberschatz, Korth and Sudarshan27

Concept #7: DBMS Structure

©Silberschatz, Korth and Sudarshan28

Overall DBMS Structure

Query Optimizer

©Silberschatz, Korth and Sudarshan29

Overall DBMS Structure

Query Processor

DDL InterpreterDML Compiler

Parser, etc. HLL Compiler

& Linker

Query Evaluation

Engine

Optimizer

Storage Manager

Buffer Manager Authorization

& Integrity

ManagerFile Manager

Transaction Manager

Backup

& Recovery

Concurrency

Control

Data Data Dictionary

Indices Statistical Data

Users, Programs

Queries

Commands

Storage

Database

Server

©Silberschatz, Korth and Sudarshan30

Overall DBMS Structure

The following components of a DBMS are of interest to us:

 transaction manager

 buffer manager

 file manager

 authorization and integrity manager

 query optimizer

©Silberschatz, Korth and Sudarshan31

Transaction Management

 A transaction is a collection of operations that performs a single logical function in

a database application

 The transaction manager performs two primary functions:

 backup and recovery

 concurrency control

 Backup and recovery ensures that the database remains in a consistent (correct)

state despite failures:

 system, power, network failures

 operating system crashes

 transaction failures.

 Concurrency-control involves managing the interactions among concurrent

transactions.

©Silberschatz, Korth and Sudarshan32

Storage Management

 The buffer manager loads data into main memory from disk as it is needed by the

DBMS, and writes it back out when necessary.

 The buffer manager is responsible for:

 loading pages of data from disk into a segment of main memory called “the buffer”; a.k.a. “the cache”

 determining which pages in the buffer get replaced

 writing pages back out to disk

 managing overall configuration of the buffer, decomposition into memory pools, page time-stamps, etc.

 Sound familiar?

©Silberschatz, Korth and Sudarshan33

Storage Management

 The file manager is responsible for managing the files that store data.

 formatting the data files

 managing free and used space in the data files

 defragmenting the data files

 inserting and deleting specific data from the files

©Silberschatz, Korth and Sudarshan34

Authorization & Integrity Management

 The authorization & integrity manager performs two primary functions:

 data security

 data integrity

 Data security:

 ensure that unauthorized users can’t access the database

 ensure that authorized users can only access appropriate data

 Data integrity:

 in general, maintains & enforces integrity constraints

 maintains data relationships in the presence of data modifications

 prevents modifications that would corrupt established data relationships

©Silberschatz, Korth and Sudarshan35

Query Optimization

 A given query can be implemented by a DBMS in many different ways.

 The query optimizer attempts to determine the most efficient strategy for

executing a given query.

 The strategy for implementing a given query is referred to as a query plan.

