
©Silberschatz, Korth and Sudarshan1Database System Concepts

The Relational Model

 Structure of Relational Databases

 Relational Algebra

Reading:

=> Chapter 2

=> Chapter 6, sections 1 & 2 (3 is optional).

©Silberschatz, Korth and Sudarshan2Database System Concepts

Basic Structure

 Formally, given sets D1, D2, …. Dn a relation r is a subset of

D1 x D2 x … x Dn

 Thus, a relation is a set of tuples (a1, a2, …, an) where each ai Di

 Example:

cust-name = {Jones, Smith, Curry, Lindsay}

cust-street = {Main, North, Park}

cust-city = {Harrison, Rye, Pittsfield}

r = {(Jones, Main, Harrison),

(Smith, North, Rye),

(Curry, North, Rye),

(Lindsay, Park, Pittsfield)}

©Silberschatz, Korth and Sudarshan3Database System Concepts

Relations are Unordered

 Since a relation is a set, the order of tuples is irrelevant and may be thought of as

arbitrary.

 In a real DBMS, tuple order is typically very important and not arbitrary.

 Historically, this was/is a point of contention for the theorists.

©Silberschatz, Korth and Sudarshan4Database System Concepts

 In a DBMS, a relation is represented or stored as a table.

 The Relation:

{ (A-101,Downtown,500),
(A-102,Perryridge,400),
(A-201,Brighton,900),

:

(A-305,Round Hill,350) }

 The Table:

Table vs. Relation

©Silberschatz, Korth and Sudarshan5Database System Concepts

Attribute Types

 Each attribute of a relation has a name.

 The set of allowed values for each attribute is called the domain of the attribute.

 Attribute values are required to be atomic, that is, indivisible.

 This will differ from ER modeling, which will have:

 Multi-valued attributes

 Composite attributes

©Silberschatz, Korth and Sudarshan6Database System Concepts

The Evil Value “Null”

 The special value null is an implicit member of every domain.

 Thus, tuples can have a null value for some of their attributes.

 A null value can be interpreted in several ways:

 value is unknown

 value does not exist

 value is known and exists, but just hasn’t been entered yet

 The null value causes complications in the definition of many operations.

 We shall consider their effect later.

©Silberschatz, Korth and Sudarshan7Database System Concepts

Relation Schema

 Let A1, A2, …, An be attributes. Then R = (A1, A2, …, An) is a relation schema.

Customer-schema = (customer-name, customer-street, customer-city)

 Sometimes referred to as a relational schema or relational scheme.

©Silberschatz, Korth and Sudarshan8Database System Concepts

Database

 A database consists of multiple relations: (example)

account - account information

depositor - depositor information, i.e., who deposits into which accounts

customer - customer information

 Storing all information as a single relation is possible:

bank(account-number, balance, customer-name, ..)

 This results in:

 Repetition of information (e.g. two customers own an account)

 The need for null values (e.g. represent a customer without an account).

©Silberschatz, Korth and Sudarshan9Database System Concepts

Relational Schemes

 Banking enterprise: (keys underlined)

customer (customer-name, customer-street, customer-city)

branch (branch-name, branch-city, assets)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan10Database System Concepts

Relational Schemes

 University enterprise:

classroom (building, room-number, capacity)

department (dept-name, building, budget)

course (course-id, title, dept-name, credits)

instructor (ID, name, depart-name, salary)

section (course-id, sec-id, semester, year, building, room-number, time-slot-id)

teaches (ID, course-id, sec-id, semester, year)

student (ID, name, dept-name, tot-cred)

takes (ID, course-id, sec-id, semester, year, grade)

advisor (s-ID, i-ID)

time-slot (time-slot-id, day, start-time, end-time)

prereq (course-id, prereq-id)

©Silberschatz, Korth and Sudarshan11Database System Concepts

Relational Schemes

 Employee enterprise:

employee(person-name, street, city)

works(person-name, company-name, salary)

company(company-name, city)

manages(person-name, manager-name)

©Silberschatz, Korth and Sudarshan12Database System Concepts

Query Languages

 Language in which user requests information from the database.

 Recall there are two categories of languages

 procedural

 non-procedural

 “Pure” languages:

 Relational Algebra (procedural, according to the current version of the book)

 Tuple Relational Calculus (non-procedural)

 Domain Relational Calculus (non-procedural)

 Pure languages form underlying basis of “real” query languages.

©Silberschatz, Korth and Sudarshan13Database System Concepts

Relational Algebra

 Procedural language (according to the book), at least in terms of style.

 Six basic operators:

 select

 project

 union

 set difference

 cartesian product

 rename

©Silberschatz, Korth and Sudarshan14Database System Concepts

Relational Algebra

 Each operator takes one or more relations as input and results in a new relation.

 Each operation defines:

 Requirements or constraints on its’ parameters.

 Attributes in the resulting relation, including their types and names.

 Which tuples will be included in the result.

©Silberschatz, Korth and Sudarshan15Database System Concepts

Select Operation – Example

 Relation r
A B C D

1

5

12

23

7

7

3

10

 A=B ^ D > 5 (r)

A B C D

1

23

7

10

©Silberschatz, Korth and Sudarshan16Database System Concepts

Select Operation

 Notation:

p(r)

where p is a selection predicate and r is a relation (or more generally, a relational
algebra expression).

 Defined as:

p(r) = {t | t r and p(t)}

where p is a formula in propositional logic consisting of terms connected by:
(and), (or), (not), and where each term can involve the comparison
operators: =, , >, , <,

* Note that, in the books notation, the predicate p cannot contain a subquery.

©Silberschatz, Korth and Sudarshan17Database System Concepts

Select Operation, Cont.

 Example:

 branch-name=“Perryridge”(account)

 customer-name=“Smith” ^ customer-street = “main”(customer)

 Logically, one can think of selection as performing a table scan, but technically

this may or may not be the case, i.e., an index may be used; that’s why relational

algebra is most frequently referred to as non-procedural.

©Silberschatz, Korth and Sudarshan18Database System Concepts

Project Operation – Example

 Relation r:
A B C

10

20

30

40

1

1

1

2

A C

1

1

1

2

=

A C

1

1

2

 A,C (r)

©Silberschatz, Korth and Sudarshan19Database System Concepts

Project Operation

 Notation:

A1, A2, …, Ak (r)

where A1, A2 are attribute names and r is a relation.

 The result is defined as the relation of k columns obtained by erasing the columns

that are not listed.

 Duplicate rows are removed from result, since relations are sets.

 Example:

account-number, balance (account)

Note, however, that account is not actually modified.

©Silberschatz, Korth and Sudarshan20Database System Concepts

Project Operation

 The projection operation can also be used to reorder attributes.

branch-name, balance, account-number (account)

As before, however, note that account is not actually modified; the order of the

attributes is modified only in the result of the expression.

©Silberschatz, Korth and Sudarshan21Database System Concepts

Union Operation – Example

 Relations r, s:

r s

A B

1

2

1

A B

2

3

r

s

A B

1

2

1

3

©Silberschatz, Korth and Sudarshan22Database System Concepts

Union Operation

 Notation: r s

 Defined as:

r s = {t | t r or t s}

 Union can only be taken between compatible relations.

 r and s must have the same arity (same number of attributes)

 attribute domains of r and s must be compatible (e.g., 2nd attribute of r deals with “the same type of

values” as does the 2nd attribute of s)

 Example: find all customers with either an account or a loan

customer-name (depositor) customer-name (borrower)

©Silberschatz, Korth and Sudarshan23Database System Concepts

Set Difference Operation

 Relations r, s:

r – s

A B

1

2

1

A B

2

3

r

s

A B

1

1

©Silberschatz, Korth and Sudarshan24Database System Concepts

Set Difference Operation, Cont.

 Notation r – s

 Defined as:

r – s = {t | t r and t s}

 Set difference can only be taken between compatible relations.

 r and s must have the same arity

 attribute domains of r and s must be compatible

 Note that there is no requirement that the attribute names be the same.

 So what about attributes names in the result?

 Similarly for union.

©Silberschatz, Korth and Sudarshan25Database System Concepts

Cartesian-Product Operation

 Relations r, s:

r x s:

A B

1

2

A B

1

1

1

1

2

2

2

2

C D

10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

C D

10

10

20

10

E

a

a

b

br

s

©Silberschatz, Korth and Sudarshan26Database System Concepts

Cartesian-Product Operation, Cont.

 Notation r x s

 Defined as:

r x s = {tq | t r and q s}

 In some cases the attributes of r and s are disjoint, i.e., that R S = .

 If the attributes of r and s are not disjoint:

 Each attributes’ name has its originating relations name as a prefix.

 If r and s are the same relation, then the rename operation can be used.

©Silberschatz, Korth and Sudarshan27Database System Concepts

Rename Operation

 The rename operator allows the results of an expression to be renamed.

 The operator appears in two forms:

x (E) - returns the expression E under the name X

x (A1, A2, …, An) (E) - returns the expression E under name X, with

attributes renamed to A1, A2,…, An

 Typically used to resolve a name class or ambiguity.

©Silberschatz, Korth and Sudarshan28Database System Concepts

 Expressions can be built using multiple operations

r x s A=C(r x s)

Composition of Operations

A B

1

1

1

1

2

2

2

2

C D

10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

A B C D E

1

2

2

10

20

20

a

a

b

©Silberschatz, Korth and Sudarshan29Database System Concepts

Formal (recursive) Definition of a

Relational Algebraic Expression

 A basic expression in relational algebra consists of one of the following:

 A relation in the database

 A constant relation

 Let E1 and E2 be relational-algebra expressions. Then the following are all also

relational-algebra expressions:

 E1 E2

 E1 - E2

 E1 x E2

 p (E1), P is a predicate on attributes in E1

 s(E1), S is a list consisting of attributes in E1

 x (E1), x is the new name for the result of E1

©Silberschatz, Korth and Sudarshan30Database System Concepts

Banking Example

 Recall the relational schemes from the banking enterprise:

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan31Database System Concepts

Example Queries

 Find all loans of over $1200 (a bit ambiguous).

 Find the loan number for each loan with an amount greater than $1200.

amount > 1200 (loan)

loan-number (amount > 1200 (loan))

©Silberschatz, Korth and Sudarshan32Database System Concepts

Example Queries

 Find the names of all customers who have a loan, an account, or both.

customer-name (borrower) customer-name (depositor)

customer-name (borrower) customer-name (depositor)

 Find the names of all customers who have a loan and an account.

©Silberschatz, Korth and Sudarshan33Database System Concepts

Example Queries

 Find the names of all customers who have a loan at the Perryridge branch.

customer-name (branch-name=“Perryridge” (borrower.loan-number = loan.loan-number(borrower x loan)))

 Notes:

 There is no “looping” construct in relational algebra, hence the Cartesian product.

 The two selections could have been combined into one.

 The selection on branch-name could have been applied to loan first, as shown next…

©Silberschatz, Korth and Sudarshan34Database System Concepts

Example Queries

 Alternative - Find the names of all customers who have a loan at the
Perryridge branch.

customer-name(loan.loan-number = borrower.loan-number(borrower x branch-name = “Perryridge”(loan)))

 Notes:

 What are the implications of doing the selection first?

 How does a non-Perryridge borrower tuple get eliminated?

 Couldn’t the amount and branch-name be eliminated from loan early on?

 What would be the implications?

©Silberschatz, Korth and Sudarshan35Database System Concepts

Example Queries

 Find the names of all customers who have a loan at the Perryridge branch

but no account at any branch of the bank.

 A general query writing strategy – start with something simpler, and then

enhance.

customer-name (branch-name = “Perryridge” (borrower.loan-number = loan.loan-number (borrower x loan)))

– customer-name(depositor)

©Silberschatz, Korth and Sudarshan36Database System Concepts

Example Queries

 Find the largest account balance:

 Requires comparing each account balance to every other account balance.

 Accomplished by performing a Cartesian product between account and itself.

 Unfortunately, this results in ambiguity of attribute names.

 Resolved by renaming one instance of the account relation as d.

balance(account) – account.balance(account.balance < d.balance (account x d (account)))

©Silberschatz, Korth and Sudarshan37Database System Concepts

Additional Operations

 The following operations do not add any “power,” or rather, capability to

relational algebra queries, but simplify common queries.

 Set intersection

 Natural join

 Theta join

 Outer join

 Division

 Assignment

 All of the above can be defined in terms of the six basic operators.

©Silberschatz, Korth and Sudarshan38Database System Concepts

Set-Intersection Operation

 Notation: r s

 Defined as:

r s = { t | t r and t s }

 Assume:

 r, s have the same arity

 attributes of r and s are compatible

 In terms of the 6 basic operators:

r s = r - (r - s)

©Silberschatz, Korth and Sudarshan39Database System Concepts

Set-Intersection Operation, Cont.

 Relation r, s:

 r s

A B

1

2

1

A B

2

3

r s

A B

 2

©Silberschatz, Korth and Sudarshan40Database System Concepts

Natural-Join Operation

 Notation: r s

 Let r and s be relations on schemas R and S respectively.

 r s is a relation that:

 Has all attributes in R S

 For each pair of tuples tr and ts from r and s, respectively, if tr and ts have the same value

on all attributes in R S, add a “joined” tuple t to the result.

 Joining two tuples tr and ts creates a third tuple t such that:

 t has the same value as tr on attributes in R

 t has the same value as ts on attributes in S

©Silberschatz, Korth and Sudarshan41Database System Concepts

Natural-Join Example

 Relational schemes for relations r and s, respectively:

R = (A, B, C, D)

S = (E, B, D) -- Note the common attributes, which is typical.

 Resulting schema for r s :

(A, B, C, D, E)

 In terms of the 6 basic operators r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B r.D = s.D (r x s))

 More generally, computing the natural join equates to a Cartesian

product, followed by a selection, followed by a projection.

©Silberschatz, Korth and Sudarshan42Database System Concepts

Natural Join Example

 Relations r, s:

 Contents of r s:

A B

1

2

4

1

2

C D

a

a

b

a

b

B

1

3

1

2

3

D

a

a

a

b

b

E

r

A B

1

1

1

1

2

C D

a

a

a

a

b

E

s

©Silberschatz, Korth and Sudarshan43Database System Concepts

 Find the names of all customers who have a loan at the Perryridge branch.

Original Expression:

Using the Natural Join Operator:

 Specifying the join explicitly makes it look nicer, plus it helps the query
optimizer.

customer-name(branch-name = “Perryridge”(borrower loan))

Natural Join – Another Example

customer-name (branch-name=“Perryridge” (borrower.loan-number = loan.loan-number(borrower x loan)))

©Silberschatz, Korth and Sudarshan44Database System Concepts

 Find the instructor ID’s for those who teach in the Crawford building.

 In this case the natural join is on four attributes – course_id, section_id,
semester, and year.

ID(building = “Crawford” (teaches section))

Natural Join – Another Example

©Silberschatz, Korth and Sudarshan45Database System Concepts

Theta-Join Operation

 Notation: r θ s

 Let r and s be relations on schemas R and S respectively, and let θ be a
predicate.

 Then, r θ s is a relation that:

 Has all attributes in R S including duplicate attributes.

 For each pair of tuples tr and ts from r and s, respectively, if θ evaluates to true for tr and ts, then
add a “joined” tuple t to the result.

 In terms of the 6 basic operators r θ s is defined as:

θ (r x s)

©Silberschatz, Korth and Sudarshan46Database System Concepts

Theta-Join Example #1

 Example:

R = (A, B, C, D)

S = (E, B, D)

 Resulting schema:

(r.A, r.B, r.C, r.D, s.E, s.B, s.D)

©Silberschatz, Korth and Sudarshan47Database System Concepts

Theta Join – Example #2

 Consider the following relational schemes:

Score = (ID#, Exam#, Grade)

Exam = (Exam#, Average)

 Consider the following query:

“Find the ID#s for those students who scored less than average on some exam.”

 Note the above could also be done with a natural join, followed by a selection.

Score.ID# (Score Score.Exam# = Exam.Exam# Score.Grade < Exam.Average Exam)

©Silberschatz, Korth and Sudarshan48Database System Concepts

Theta Join – Example #3

 Consider the following relational schemes: (Orlando temperatures)

Temp-Avgs = (Year, Avg-Temp)

Daily-Temps-2010 = (Date, High-Temp)

 Consider the following query:

“Find the days during 2010 where the high temperature for the day was

higher than the average for some prior year.”

 Looks ugly, perhaps, but phrasing the query this way does have benefits

for query optimization.

Date (Daily-Temps-2010 Daily-Temps-2010.High-Temp > Temp-Avgs.Avg-Temp Temp-Avgs.Year < 2010 Temp-Avgs)

©Silberschatz, Korth and Sudarshan49Database System Concepts

Outer Join

 An extension of the join operation that avoids loss of information.

 Computes the join and then adds tuples from one relation that do not match

tuples in the other relation.

 Typically introduces null values.

©Silberschatz, Korth and Sudarshan50Database System Concepts

Outer Join – Example

 Relation loan:

 Relation borrower:

customer-name loan-number

Jones

Smith

Hayes

L-170

L-230

L-155

3000

4000

1700

loan-number amount

L-170

L-230

L-260

branch-name

Downtown

Redwood

Perryridge

©Silberschatz, Korth and Sudarshan51Database System Concepts

Outer Join – Example

 Inner Join

loan Borrower

loan-number amount

L-170

L-230

3000

4000

customer-name

Jones

Smith

branch-name

Downtown

Redwood

 Left Outer Join

loan Borrower

Jones

Smith

null

loan-number amount

L-170

L-230

L-260

3000

4000

1700

customer-namebranch-name

Downtown

Redwood

Perryridge

©Silberschatz, Korth and Sudarshan52Database System Concepts

Outer Join – Example

 Right Outer Join

loan borrower

loan borrower

 Full Outer Join

loan-number amount

L-170

L-230

L-155

3000

4000

null

customer-name

Jones

Smith

Hayes

branch-name

Downtown

Redwood

null

loan-number amount

L-170

L-230

L-260

L-155

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

branch-name

Downtown

Redwood

Perryridge

null

©Silberschatz, Korth and Sudarshan53Database System Concepts

Example Left-Outer Join

 Consider the following relational schemes:

Student = (SS#, Address, Date-of-Birth)

Grade-Point-Average = (SS#, GPA)

 Consider the following query:

“Create a list of all student SS#’s and their GPAs. Be sure to include all

students, including first semester freshman, who do not have a GPA.”

 Solution:

SS#,GPA (Student Grade-Point-Average)

©Silberschatz, Korth and Sudarshan54Database System Concepts

Outer Join

 In terms of the 6 basic operators (plus natural join), let r(R) and

s(S) be relations:

r s = (r – R (r s)) x {(null, null,…,null)} (r s)

where {(null, null,…,null)} is on the schema S – R

©Silberschatz, Korth and Sudarshan55Database System Concepts

Division Operation

 Notation:

 Suited to queries that require “universal quantification,” e.g., include the phrase “for all.”

r s

©Silberschatz, Korth and Sudarshan56Database System Concepts

Division Operation

 Let r and s be relations on schemas R and S respectively where S R.

Assume without loss of generality that the attributes of R and S are:

R = (A1, …, Am, B1, …, Bn)

S = (B1, …, Bn)

The Ai attributes will be referred to as prefix attributes, and the Bi attributes will be referred to as
suffix attributes.

The result of r s is a relation on schema

R – S = (A1, …, Am)

where:

r s = { t | t R-S(r) u s (tu r) }

©Silberschatz, Korth and Sudarshan57Database System Concepts

Division – Example #1

Relations r, s: r s:

AB

1

2

A B

1

2

3

1

1

1

3

4

6

1

2

r

s

©Silberschatz, Korth and Sudarshan58Database System Concepts

Division – Example #2

A B

a

a

a

a

a

a

a

a

C D

a

a

b

a

b

a

b

b

E

1

1

1

1

3

1

1

1

Relations r, s: r s:

D

a

b

E

1

1

a

a

r

s

A B C

©Silberschatz, Korth and Sudarshan59Database System Concepts

Division – Example #3

A B

a

a

a

a

a

a

a

a

C D

a

a

b

a

b

a

b

b

E

1

1

1

1

3

1

1

1

Relations r, s: r s:

B

a

a

D

a

b

A C

E

1

1

r

s

©Silberschatz, Korth and Sudarshan60Database System Concepts

Division Operation (Cont.)

 In terms of the 6 basic operators, let r(R) and s(S) be relations, and

let S R :

r s = R-S (r) – R-S ((R-S (r) x s) – R-S,S(r))

To see why:

 R-S,S(r) simply reorders attributes of r

 R-S(R-S (r) x s) – R-S,S(r)) gives those tuples t in R-S (r) such that for

some tuple u s, tu r.

 Property:

 Let q = r s

 Then q is the largest relation satisfying q x s r

©Silberschatz, Korth and Sudarshan61Database System Concepts

customer-name, branch-name (depositor account) temp(branch-name) ({(“Downtown”), (“Uptown”)})

Example Queries

 Consider the following query:

“Find the names of all customers who have an account at both the ‘Downtown’ and the ‘Uptown’ branches.”

 Query 1:

 Query 2:

CN(BN=“Downtown”(depositor account)) CN(BN=“Uptown”(depositor account))

©Silberschatz, Korth and Sudarshan62Database System Concepts

 Consider the following (more general) query:

“Find all customers who have an account at all branches located in the city of Brooklyn.”

 How could Query 1 be modified for this scenario?

 How about Query 2?

 By the way, what would (should) be the result of the query if there are no

Brooklyn branches?

customer-name, branch-name (depositor account) branch-name (branch-city = “Brooklyn” (branch))

Example Queries

©Silberschatz, Korth and Sudarshan63Database System Concepts

Assignment Operation

 The assignment operator () provides an easy way to express complex queries.

 Example (for r s):

temp1 R-S (r)

temp2 R-S ((temp1 x s) – R-S,S (r))

result temp1 – temp2

*Do the exercises on the employee/works/company/manages DB!

*And also the exercises on the university DB!

©Silberschatz, Korth and Sudarshan64Database System Concepts

Extended Relational

Algebra Operations

 Generalized Projection

 Aggregate Operator

©Silberschatz, Korth and Sudarshan65Database System Concepts

Generalized Projection

 Extends projection by allowing arithmetic functions in the projection list.

 F1, F2, …, Fn(E)

 E is any relational-algebra expression

 Each of F1, F2, …, Fn are arithmetic expressions involving constants and

attributes in the schema of E.

©Silberschatz, Korth and Sudarshan66Database System Concepts

Generalized Projection

 Consider the following relational scheme:

credit-info=(customer-name, limit, credit-balance)

 Give a relational algebraic expression for the following query:

“Determine how much credit is left on each persons’ line of credit; Also determine the percentage of

their credit line that they have already used.”

customer-name, limit – credit-balance, (credit-balance/limit)*100 (credit-info)

©Silberschatz, Korth and Sudarshan67Database System Concepts

Aggregate Functions

 An aggregation function takes a collection of values and returns a single value:

avg - average value

min - minimum value

max - maximum value

sum - sum of values

count - number of values

 Other aggregate functions are provided by most DBMS vendors.

 Not all aggregate operators are numeric, e.g., some apply to strings.

©Silberschatz, Korth and Sudarshan68Database System Concepts

The Aggregate Operator

 Aggregation functions are used in the aggregate operator:

G1, G2, …, Gn g F1(A1), F2(A2),…, Fn(An) (E)

 E is any relational-algebra expression.

 G1, G2 …, Gn is a list of attributes on which to group (can be empty).

 Each Fi is an aggregate function.

 Each Ai is an attribute name.

©Silberschatz, Korth and Sudarshan69Database System Concepts

Aggregate Function – Example

 Relation r: g sum(c) (r)

 Could also add min, max, and other aggregates to the above expression.

g sum(c), min(c), max(c) (r)

A B

C

7

7

3

10

min-C

3

sum-C

27

sum-C

27

max-C

10

©Silberschatz, Korth and Sudarshan70Database System Concepts

Grouping – Example

 Grouping is somewhat like sorting, although not identical.

 Relation account grouped by branch-name:

account-number branch-name balance

A-102

A-374

A-224

A-161

A-435

A-201

A-217

A-215

A-222

Perryridge

Perryridge

Brighton

Brighton

Brighton

Brighton

Redwood

Redwood

Redwood

400

900

175

850

400

625

750

750

700

©Silberschatz, Korth and Sudarshan71Database System Concepts

Aggregate Operation – Example

 Grouping and aggregate functions frequently occur together.

 A list of branch names and the sum of all their account balances:

branch-name g sum(balance) (account)

branch-name balance

Perryridge

Brighton

Redwood

1300

2050

2200

©Silberschatz, Korth and Sudarshan72Database System Concepts

Aggregate Operation

Grouping on Multiple Attributes

 Consider the following relational scheme:

History = (Student-Name, Department, Course-Number, Grade)

 Sample data:

Student-Name Department Course-Number Grade

Smith CSE 1001 90

Jones MTH 2030 82

Smith MTH 1002 73

Brown PSY 4210 86

Jones CSE 2010 65

:

©Silberschatz, Korth and Sudarshan73Database System Concepts

Aggregate Operation

Grouping on Multiple Attributes

 Consider the following query:

“Construct a list of student names and, for each name, list the average course grade for each department in

which the student has taken classes.”

Smith CSE 87

Smith MTH 93

Jones CHM 88

Jones CSE 75

Brown PSY 97

:

 Recalling the schema:

History = (Student-Name, Department, Course-Number, Grade)

 Answer:

student-name, department g avg(grade) (History)

©Silberschatz, Korth and Sudarshan74Database System Concepts

Aggregate Operation

Grouping on Multiple Attributes

 Adding count(Course-Number) would tell how many courses the student had in each department.

Similarly min and max could be added.

student-name, department g avg(grade), count(Course-Number), min(Grade), max(Grade)(History)

©Silberschatz, Korth and Sudarshan75Database System Concepts

Aggregate Operation

Grouping on Multiple Attributes

 Would the following two expressions give the same result?

student-name, department g avg(grade), count(Course-Number), min(Grade), max(Grade)(History)

department, student-name g avg(grade), count(Course-Number), min(Grade), max(Grade)(History)

©Silberschatz, Korth and Sudarshan76Database System Concepts

Aggregate Operation

Naming Attributes

 Note that the aggregated attributes do not have names?

g sum(c), min(c), max(c) (r)

min-C

3

sum-C

27

max-C

10

©Silberschatz, Korth and Sudarshan77Database System Concepts

Aggregate Operation

Naming Attributes

 Note that the aggregated attributes do not have names?

g sum(c), min(c), max(c) (r)

 Aggregated attributes can be renamed in the aggregate operator:

branch-name g sum(balance) as sum-balance (account)

?

3

?

27

?

10

©Silberschatz, Korth and Sudarshan78Database System Concepts

Aggregate Functions

and Null Values

 Null values are controversial.

 Various proposals exist in the research literature on whether null values should

be allowed and, if so, how they should affect operations.

 Null values can frequently be eliminated through normalization and

decomposition.

©Silberschatz, Korth and Sudarshan79Database System Concepts

Aggregate Functions

and Null Values

 How nulls are treated by relational operators:

 For duplicate elimination and grouping, null is treated like any other value, i.e., two nulls are assumed

to be the same.

 Aggregate functions (except for count) simply ignore null values.

 The above rules are consistent with SQL.

 Note how the second rule can be misleading:

 Is avg(grade) actually a class average?

©Silberschatz, Korth and Sudarshan80Database System Concepts

Null Values and

Expression Evaluation

 Null values also affect how selection predicates are evaluated:

 The result of any arithmetic expression involving null is null.

 Comparisons with null returns the special truth value unknown.

 Value of a predicate is treated as false if it evaluates to unknown.

balance*100 > 500 (account)

 For more complex predicates, the following three-valued logic is used:

 OR: (unknown or true) = true

(unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown

(false and unknown) = false

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

(balance*100 > 500) and (branch-name = “Perryridge”)(account)

©Silberschatz, Korth and Sudarshan81Database System Concepts

Null Values

and Expression Evaluation, Cont.

 Why doesn’t a comparison with null simply result in false?

 If false was used instead of unknown, then:

not (A < 5)

would not be equivalent to:

A >= 5

Why would this be a problem?

 How does a comparison with null resulting in unknown help?

©Silberschatz, Korth and Sudarshan82Database System Concepts

Modification of the Database

 The database contents can be modified with operations:

 Deletion

 Insertion

 Updating

 These operations can all be expressed using the assignment operator.

 Some can be expressed other ways too.

©Silberschatz, Korth and Sudarshan83Database System Concepts

Deletion

 A deletion is expressed in relational algebra by:

r r – E

where r is a relation and E is a relational algebra query.

 The deletion of a single tuple is expressed by letting E be a constant

relation containing one tuple.

 Only whole tuples can be deleted, not specific attribute values.

©Silberschatz, Korth and Sudarshan84Database System Concepts

Deletion Examples

 Forget referential integrity for the moment…

“Delete all account records with a branch name equal to Perryridge.”

“Delete all loan records with amount in the range of 0 to 50.”

loan loan – amount 0 and amount 50 (loan)

account account – branch-name = “Perryridge” (account)

©Silberschatz, Korth and Sudarshan85Database System Concepts

r1 branch-city = “Needham” (account branch)

r2 account-number, branch-name, balance (r1)

r3 customer-name, account-number (depositor r2)

account account – r2

depositor depositor – r3

Deletion Examples

 Now suppose we want to maintain proper referential integrity…

“Delete all accounts at branches located in Needham” (Version #1):

©Silberschatz, Korth and Sudarshan86Database System Concepts

 Version #2:

 Version #3:

r1 branch-name (branch-city = “Needham” (branch))

r2 account-number (account-number, branch-name(account) r1)

account account – (account r2)

depositor depositor – (depositor r2)

Alternative Versions

r1 (branch-city <> “Needham” (depositor account branch))

account account-number, branch-name, balance(r1)

depositor customer-name, account-number(r1)

©Silberschatz, Korth and Sudarshan87Database System Concepts

 Version #4:

 Which version is preferable?

 Note that the last two do not fit the authors pattern for deletion, i.e., as a

set-difference.

Alternative Versions

r1 account branch-city <> “Needham” (branch)

account account-number, branch-name, balance(r1)

depositor customer-name, account-number(depositor r1)

©Silberschatz, Korth and Sudarshan88Database System Concepts

Insertion

 In relational algebra, an insertion is expressed by:

r r E

where r is a relation and E is a relational algebra expression.

 The insertion of a single tuple is expressed by letting E be a constant

relation containing one tuple.

©Silberschatz, Korth and Sudarshan89Database System Concepts

 Insert information in the database specifying that Smith has $1200 in account A-

973 at the Perryridge branch.

 Provide, as a gift, a $200 savings account for all loan customers at the Perryridge

branch. Let the loan number serve as the account number for the new savings

account.

r1 (branch-name = “Perryridge” (borrower loan))

account account loan-number, branch-name,200 (r1)

depositor depositor customer-name, loan-number(r1)

Insertion Examples

account account {(A-973, “Perryridge”, 1200)}

depositor depositor {(“Smith”, A-973)}

©Silberschatz, Korth and Sudarshan90Database System Concepts

Updating

 Generalized projection is used to change one or more values in a tuple.

r F1, F2, …, FI, (r)

 Each Fi is either:

 The ith attribute of r, if the ith attribute is not updated, or,

 An expression, involving only constants and attributes of r, which gives a new value for an attribute,

when that attribute is to be updated.

©Silberschatz, Korth and Sudarshan91Database System Concepts

Update Examples

 Make interest payments by increasing all balances by 5 percent.

 Pay 6 percent interest to all accounts with balances over $10,000 and

pay 5 percent interest to all others.

account AN, BN, BAL * 1.06 (BAL 10000 (account))

 AN, BN, BAL * 1.05 (BAL 10000 (account))

account AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name and

balance, respectively.

©Silberschatz, Korth and Sudarshan92Database System Concepts

Views

 Views are very important, but we will not consider them until chapter 3.

