
©Silberschatz, Korth and Sudarshan1

Structured Query Language (SQL)

 Basic SQL Query Structure

 Set Operations

 Aggregate Functions

 Nested Subqueries

 Derived Relations

 Views

 Modification of the Database

 Specialized Join Operation

©Silberschatz, Korth and Sudarshan2

Banking Example

 SQL is a “standardized” language, but most vendors have their own version.

 Queries are typically submitted on the command-line, using a client query tool, or

through an API.

 Now is the time to start issuing queries, just to get the hang of it!

 White space will be used liberally throughout the following.

©Silberschatz, Korth and Sudarshan3

Banking Example

 Recall the banking database:

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan4

Schema Used in Examples

©Silberschatz, Korth and Sudarshan5

Basic Structure

 Typical SQL statement/query structure:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Equivalent (sort of) to:

A1, A2, ..., An(P (r1 x r2 x ... x rm))

©Silberschatz, Korth and Sudarshan6

The select Clause

 select clause - lists desired attributes (corresponds to projection).

“Find the names of those branches that have outstanding loans.”

select branch-name

from loan

branch-name(loan)

select branch-name, loan-number

from loan

branch-name,loan-number(loan)

©Silberschatz, Korth and Sudarshan7

The select Clause (Cont.)

 An asterisk denotes all attributes:

select *

from loan

 select can contain expressions (corresponds to generalized projection).

select loan-number, branch-name, amount  100

from loan

 Note that the above does not modify the table.

©Silberschatz, Korth and Sudarshan8

The select Clause (Cont.)

 The basic SQL select statement does NOT eliminate duplicates.

 Keyword distinct is used to eliminate duplicates.

“Find the names of those branches that have outstanding loans (no duplication).”

select distinct branch-name

from loan

 Keyword all can be used (redundantly) when duplicates desired.

select all branch-name

from loan

©Silberschatz, Korth and Sudarshan9

The where Clause

 where clause - specifies conditions on the result (corresponds to selection).

“Find the loan numbers for all loans over $1200 made at the Perryridge

branch.”

select loan-number

from loan

where branch-name = ‘Perryridge’ and amount > 1200

 Logical connectives and, or, and not can be used.

 Comparisons can be applied to results of arithmetic expressions.

©Silberschatz, Korth and Sudarshan10

The from Clause

 from clause - lists required relations (corresponds to Cartesian product).

“Find the Cartesian product borrower x loan.”

select  from borrower, loan

“Find the name, loan number and loan amount for all customers having a loan at
the Perryridge branch.”

select borrower.customer-name, borrower.loan-number, loan.amount
from borrower, loan
where borrower.loan-number = loan.loan-number and

loan.branch-name = ‘Perryridge’

 Note the use of expanded name notation in the above.

©Silberschatz, Korth and Sudarshan11

The from Clause

 Sometimes mixed-use notation is used:

select customer-name, borrower.loan-number, amount
from borrower, loan
where borrower.loan-number = loan.loan-number and

branch-name = ‘Perryridge’

©Silberschatz, Korth and Sudarshan12

The Rename Operation

 Attribute renaming (as):

 In the select clause (for column renaming):

“Find the name, loan number and loan amount of all customers; rename the loan-

number column loan-id.”

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan

where borrower.loan-number = loan.loan-number

©Silberschatz, Korth and Sudarshan13

Tuple Variables

 In the from clause (for abbreviating):

“Find the customer names, their loan numbers and loan amounts for all customers
having a loan at the Perryridge branch.”

select T.customer-name, T.loan-number, S.amount
from borrower as T, loan as S
where T.loan-number = S.loan-number
and S.branch-name = ‘Perryridge’

©Silberschatz, Korth and Sudarshan14

Tuple Variables

 It can also be used to resolve ambiguous relation names:

“Find the names of all branches that have greater assets than some branch located
in Brooklyn.”

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and S.branch-city = ‘Brooklyn’

©Silberschatz, Korth and Sudarshan15

String Operations

 So how about strings?

 SQL supports a variety of string processing functions…surprise!!!

 Example:

“Find the names of all customers whose street includes the substring ‘Main’.”

select customer-name

from customer

where customer-street like ‘%Main%’

©Silberschatz, Korth and Sudarshan16

String Operations

 Other SQL string operations:

 concatenation (using “||”)

 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

 Most COTS DBMS query processors augment SQL string processing with even

more operations; the list is typically very long.

©Silberschatz, Korth and Sudarshan17

Ordering the Display of Tuples

 Sorting:

“List in alphabetic order the names of all customers having a loan at the
Perryridge branch.”

select distinct customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number and

branch-name = ‘Perryridge’
order by customer-name

 desc or asc (the default) can be specified:

 order by customer-name desc

©Silberschatz, Korth and Sudarshan18

Ordering the Display of Tuples

 Sorting on multiple attributes (with both asc and desc):

 Example: add loan amount to the previous query:

select distinct customer-name, amount
from borrower, loan
where borrower.loan-number = loan.loan-number and

branch-name = ‘Perryridge’
order by customer-name asc, amount desc

©Silberschatz, Korth and Sudarshan19

Set Operations

 union, intersect, and except (, respectively):

 r union s

 r intersect s

 r except s

where r and s are either relations or sub-queries.

 The above operations all automatically eliminate duplicates.

©Silberschatz, Korth and Sudarshan20

Set Operations

“Find all customers who have a loan, an account, or both.”

(select customer-name from depositor)
union
(select customer-name from borrower)

“Find all customers who have both a loan and an account.”

(select customer-name from depositor)
intersect
(select customer-name from borrower)

“Find all customers who have an account but no loan.”

(select customer-name from depositor)
except
(select customer-name from borrower)

©Silberschatz, Korth and Sudarshan21

Set Operations

 union all, intersect all and except all retain duplicates:

If a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan22

Aggregate Functions

 Grouping and aggregate functions.

 Basic aggregate functions:

avg - average value

min - minimum value

max - maximum value

sum - sum of values

count - number of values

 Aggregate functions operate on groups.

©Silberschatz, Korth and Sudarshan23

Aggregate Functions, Cont.

“Find the average account balance.”

select avg (balance)
from account

“Find the average account balance at the Perryridge branch.”

select avg (balance)
from account
where branch-name = ‘Perryridge’

©Silberschatz, Korth and Sudarshan24

Aggregate Functions, Cont.

“Find the number of tuples in the depositor relation.”

select count (*)
from depositor

Or any single or combination of columns:

select count (customer-name)
from depositor

select count (account-number)
from depositor

select count (customer-name, account-number)
from depositor

©Silberschatz, Korth and Sudarshan25

Aggregate Functions, Cont.

“Find the number of depositors in the bank.”

select count (distinct customer-name)
from depositor

©Silberschatz, Korth and Sudarshan26

Aggregate Functions – Group By

 Aggregate functions applied to groups:

“Find the number of accounts for each branch.”

select branch-name, count (account-number)

from account

group by branch-name

“Find the number of depositors for each branch.”

select branch-name, count (distinct customer-name)

from depositor, account

where depositor.account-number = account.account-number

group by branch-name

 Why does the second have distinct but not the first?

©Silberschatz, Korth and Sudarshan27

Aggregate Functions – Group By

 Grouping can be on multiple attributes:

“For each depositor, determine how many accounts that depositor has at each

branch.”

select customer-name, branch-name, count (depositor.account-number)

from depositor, account

where depositor.account-number = account.account-number

group by customer-name, branch-name

 Notes:

 Should distinct have been included?

 Attributes in the select clause outside of the aggregate functions must appear in group by list (e.g.,

delete branch-name from the group-by clause).

 Group-by might require a sort.

©Silberschatz, Korth and Sudarshan28

Aggregate Functions – Group By

 Grouping on multiple attributes, and multiple aggregate functions.

“For each depositor, determine how many accounts that depositor has at each

branch, plus the average, min and max balance for any account at that branch.”

select customer-name,

branch-name,

count (depositor.account-number)

avg (account.balance)

min (account.balance)

max (account.balance)

from depositor, account

where depositor.account-number = account.account-number

group by customer-name, branch-name

©Silberschatz, Korth and Sudarshan29

Aggregate Functions – Having Clause

 Groups can be selected or eliminated using the having clause.

“Find those branches in Orlando with an average balance over 1200.”

select branch-name

from account, branch

where account.branch-name = branch.branch-name

and branch-city = ‘Orlando’

group by branch-name

having avg (balance) > 1200

 Predicates in the having clause are applied after the formation of groups, but those

in the where clause are applied before forming groups.

©Silberschatz, Korth and Sudarshan30

Null Values

 It is possible for tuples to have a null value for some attributes.

 null signifies an unknown value or that a value does not exist.

 The rules for null values are consistent with relational algebra (repeated

on the following pages), except for the following addition…

 The predicate is null can be used to check for null values.

“Find all loan numbers in the loan relation with null values for amount.”

select loan-number

from loan

where amount is null

©Silberschatz, Korth and Sudarshan31

Null Values

and Three Valued Logic

 Rule #1 - Any comparison with null (initiallly) returns unknown:

 5 < null or null <> null or null = null

select loan-number
from loan
where amount > 50

select borrower-name, branch-name
from borrower, loan
where borrower.loan-number = loan.loan-number

 Rule #2 - The result of any arithmetic expression involving null is null

 5 + null evaluates to null

select loan-number
from loan
where amount*100 > 50000

©Silberschatz, Korth and Sudarshan32

Null Values

and Three Valued Logic

 Rule #3 - A “three-valued logic” is applied to complex expressions:
 OR: (unknown or true) = true, (unknown or false) = unknown (unknown or unknown) = unknown

 AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to unknown

select loan-number
from loan
where amount*100 > 5000 and branch-name = “Perryridge”

 Rule #4 - Final result of a where clause predicate is treated as false if it
evaluates to unknown.

select loan-number
from loan
where amount*100 > 5000 and branch-name = “Perryridge”

©Silberschatz, Korth and Sudarshan33

Null Values, Cont.

 Rule #5 - Aggregate functions, except count, simply ignore nulls.

 Total all loan amounts:

select sum (amount)

from loan

 Above statement ignores null amounts

 Result is null if there is no non-null amount

©Silberschatz, Korth and Sudarshan34

Null Values

and Expression Evaluation, Cont.

 This all seems like a pain…couldn’t it be simplified?

 Why doesn’t a comparison with null simply result in false?

If false was used instead of unknown, then:

not (A < 5)

would not be equivalent to:

A >= 5

Why would this be a problem?

©Silberschatz, Korth and Sudarshan35

Nested Subqueries

 SQL provides a mechanism for nesting queries.

 A sub-query is a select statement that is nested in another SQL query.

 Nesting is usually in a where clause, but may be in a from clause.

©Silberschatz, Korth and Sudarshan36

Nested Subqueries

 Sub-query in a where clause typically performs a set test.

in <comp> some exists unique

not in <comp> all not exists not unique

where <comp> can be 

©Silberschatz, Korth and Sudarshan37

Example Query

“Find all customers who have both an account and a loan.”

select distinct customer-name

from borrower

where customer-name in (select customer-name

from depositor)

©Silberschatz, Korth and Sudarshan38

Example Query

“Find all customers who have a loan but do not have an account.”

select distinct customer-name

from borrower

where customer-name not in (select customer-name

from depositor)

©Silberschatz, Korth and Sudarshan39

Example Query

“Find the names of all customers who have both an account and a loan at

the Perryridge branch.”

=> Note that the above query can be “simplified.”

select distinct customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number and

branch-name = “Perryridge” and

(branch-name, customer-name) in

(select branch-name, customer-name

from depositor, account

where depositor.account-number =

account.account-number)

©Silberschatz, Korth and Sudarshan40

Example Query

“Find the names of all customers who have both an account and a loan at

the Perryridge branch.”

select distinct customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number and

branch-name = “Perryridge” and

customer-name in

(select customer-name

from depositor, account

where depositor.account-number =

account.account-number and

branch-name = “Perryridge”)

©Silberschatz, Korth and Sudarshan41

Set Comparison – the “Some” Clause

“Find all branches that have greater assets than some branch located in

Brooklyn.”

Same query using > some clause:

select branch-name

from branch

where assets > some

(select assets

from branch

where branch-city = ‘Brooklyn’)

select distinct T.branch-name

from branch as T, branch as S

where T.assets > S.assets and

S.branch-city = ‘Brooklyn’

©Silberschatz, Korth and Sudarshan42

Set Comparison – the “All” Clause

“Find the names of all branches that have greater assets than all branches

located in Brooklyn.”

Note that the some and all clauses correspond to existential and universal

quantification, respectively.

select branch-name

from branch

where assets > all

(select assets

from branch

where branch-city = ‘Brooklyn’)

©Silberschatz, Korth and Sudarshan43

Definition of the “Some” Clause

 F <comp> some r t  r s.t. (F <comp> t)

0
5

6

(5< some) = true

0
5

0

) = false

5

0
5(5  some) = true (since 0  5)

(5< some

) = true(5 = some

(= some)  in

However, ( some)  not in

©Silberschatz, Korth and Sudarshan44

Definition of the “All” Clause

 F <comp> all r t  r (F <comp> t)

0
5

6

(5< all) = false

6
10

4

) = true

5

4
6(5  all) = true (since 5  4 and 5  6)

(5< all

) = false(5 = all

( all)  not in

However, (= all)  in

©Silberschatz, Korth and Sudarshan45

Test for Empty Relations

 The exists operator can be used to test if a relation is empty.

 Operator exists returns true if its argument is nonempty.

 exists r  r  Ø

 not exists r  r = Ø

 On a personal note, why not call it empty?

©Silberschatz, Korth and Sudarshan46

Example Query

“Find all customers who have an account at all branches located in Brooklyn.”

select distinct S.customer-name

from customer as S

where not exists (

(select branch-name

from branch

where branch-city = ‘Brooklyn’)

except

(select R.branch-name

from depositor as T, account as R

where T.account-number = R.account-number and

S.customer-name = T.customer-name))

 Because of the use of the tuple variable S in the nested query, the above is sometimes referred to as

a correlated query.

 The above demonstrates that nesting can be almost arbitrarily composed and deep.

 According to the book, the above cannot be written using = all or its variants…hmmm…

©Silberschatz, Korth and Sudarshan47

Test for Absence of Duplicate Tuples

 The unique operator tests whether a sub-query contains duplicate tuples.

“Find all customers who have at most one account at the Perryridge branch.”

 What if the inner query selected the account number?

 count(…) <= 1

select T.customer-name
from customer as T
where unique (

select D.customer-name
from account as A, depositor as D
where T.customer-name = D.customer-name and

A.account-number = D.account-number and
A.branch-name = ‘Perryridge’)

©Silberschatz, Korth and Sudarshan48

Example Query

“Find all customers who have at least two accounts at the Perryridge branch.”

select distinct T.customer-name

from customer T

where not unique (

select R.customer-name

from account, depositor as R

where T.customer-name = R.customer-name and

R.account-number = account.account-number and

account.branch-name = ‘Perryridge’)

©Silberschatz, Korth and Sudarshan49

Nesting in the From-Clause

“Find the average account balance of those branches where the

average account balance is greater than $1200.”

select branch-name, avg-balance

from (select branch-name, avg (balance)

from account

group by branch-name)

as result (branch-name, avg-balance)

where avg-balance > 1200

Note that previously we saw an equivalent query that used a having

clause.

©Silberschatz, Korth and Sudarshan50

Views

 Purpose of a view:

 Hide certain data from the view of certain users

 Provide pre-canned, named queries

 Simplify complex queries

 Syntax of a view:

create view v as <query expression>

where:

 v - view name

 <query expression> - view definition (SQL)

©Silberschatz, Korth and Sudarshan51

Example Views

 A view consisting of branches and their customers:

create view all-customer as

(select branch-name, customer-name

from depositor as D, account as A

where D.account-number = A.account-number)

union

(select branch-name, customer-name

from borrower as B, loan as L

where B.loan-number = L.loan-number)

“Find all customers of the Perryridge branch.”

select customer-name

from all-customer

where branch-name = ‘Perryridge’

©Silberschatz, Korth and Sudarshan52

Modification of the Database – Insertion

 Basic insert:

insert into account values (‘A-9732’, ‘Perryridge’,1200)

 Ordering values:

insert into account (branch-name, balance, account-number)

values (‘Perryridge’, 1200, ‘A-9732’)

 Inserting a null value:

insert into account values (‘A-777’,‘Perryridge’, null)

©Silberschatz, Korth and Sudarshan53

Modification of the Database – Insertion

“Provide as a gift for all loan customers of the Perryridge branch, a $200 savings

account. Let the loan number serve as the account number for the new account.”

insert into account

select loan-number, branch-name, 200

from loan

where branch-name = ‘Perryridge’

insert into depositor

select customer-name, loan-number

from loan, borrower

where branch-name = ‘Perryridge’

and loan.account-number = borrower.account-number

 The above would typically be a transaction.

©Silberschatz, Korth and Sudarshan54

Modification of the Database – Insertion

 Most DBMSs provide a command-line, bulk-load command:

LOAD DATA LOCAL INFILE '<file-path>' INTO TABLE part

FIELDS TERMINATED BY ‘<file-separator>' LINES TERMINATED BY ‘<line-separator>';

 Example:

LOAD DATA LOCAL INFILE‘C:\\Users\\pbernhar\\department.csv’ INTO TABLE department

FIELDS TERMINATED BY ‘,’ ;

©Silberschatz, Korth and Sudarshan55

Modification of the Database – Deletion

“Delete all tuples in the depositor table.”

delete from depositor

“Delete all depostor records for Smith.”

delete from depositor
where customer-name = ‘Smith’

©Silberschatz, Korth and Sudarshan56

Modification of the Database – Deletion

“Delete all accounts at every branch located in Needham city.”

delete from depositor

where account-number in

(select account-number

from branch as B, account

where branch-city = ‘Needham’ and B.branch-name = A.branch-name)

delete from account

where branch-name in (select branch-name

from branch

where branch-city = ‘Needham’)

©Silberschatz, Korth and Sudarshan57

Example Query

“Delete the record of all accounts with balances below the average at the bank.”

delete from account

where balance < (select avg (balance)

from account)

©Silberschatz, Korth and Sudarshan58

Modification of the Database – Updates

“Set the balance of all accounts at the Perryridge branch to 0.”

update account

set balance = 0

where branch-name = “Perryridge”

“Set the balance of account A-325 to 0, and also change the branch name

to “Mianus.”

update account

set balance = 0, branch-name = “Mianus”

where account-number = “A-325”

©Silberschatz, Korth and Sudarshan59

Modification of the Database – Updates

“Increase all accounts with balances over $10,000 by 6%, all other accounts
by 5%.”

Option #1:

update account
set balance = balance  1.06
where balance > 10000

update account
set balance = balance  1.05
where balance <= 10000

©Silberschatz, Korth and Sudarshan60

Modification of the Database – Updates

“Increase all accounts with balances over $10,000 by 6%, all other accounts
by 5%.”

Option #2:

update account
set balance = case

when balance <= 10000 then balance *1.05
else balance * 1.06

end

©Silberschatz, Korth and Sudarshan61

Transactions

 Some of the previous multi-query operations should be made transactions.

 A transaction is a sequence of SQL statements executed as a single unit.

 Example - Transferring money from one account to another:

 deducting the money from one account

 crediting the money to another account

 If one step succeeds and the other fails, the database is left in an

inconsistent state.

 Therefore, either both steps should succeed, or both should fail (note: failing

is better than corrupting).

©Silberschatz, Korth and Sudarshan62

Transaction - Syntax

 Transactions are started either implicitly or explicitly.

 Transactions are terminated by:
 commit - makes all updates of the transaction permanent

 rollback - undoes all updates performed by the transaction

 Commits and rollbacks can also be either implicit or explicit.

 Implicit transactions with implicit commits (no special syntax):
 DDL statements

 Individual SQL statements that execute successfully

 Implicit rollbacks:
 System failure

©Silberschatz, Korth and Sudarshan63

Transactions, Cont.

 Automatic commit can be turned off, allowing multi-statement transactions.

 Transactions are identified by some variant of:

begin transaction // shuts off auto-commit
…

end transaction // commits the transaction

 Within the transaction, partial work can be:

 made permanent by using the commit work statement.

 undone by using the rollback work statement.

 Transactions are, or rather, should be the rule for programmers, rather
than the exception.

©Silberschatz, Korth and Sudarshan64

Joined Relations

 Join operations take two relations and return another as a result.

 Specialized join operations are typically used as subquery expressions.

 Join condition – defines which tuples in the two relations match, and
what attributes are present in the result of the join.

 natural

 using (A1, A2, ..., An) // equi-join

 on <predicate> // theta-join

 Join type – defines how non-matching tuples (based on the join
condition) in each relation are treated.

 inner join

 left outer join

 right outer join

 full outer join

©Silberschatz, Korth and Sudarshan65

Joined Relations – Datasets for Examples

 Relation loan

 Relation borrower

customer-name loan-number

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

branch-name

Downtown

Redwood

Perryridge

loan-number

L-170

L-230

L-260

 Note that borrower information is missing for L-260 and

loan information missing for L-155.

©Silberschatz, Korth and Sudarshan66

Joined Relations – Examples

loan inner join borrower

on loan.loan-number = borrower.loan-number

loan left outer join borrower

on loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number

Jones

Smith

L-170

L-230

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number

Jones

Smith

null

L-170

L-230

null

loan-number

L-170

L-230

L-260

©Silberschatz, Korth and Sudarshan67

Joined Relations – Examples

loan natural inner join borrower

loan natural right outer join borrower

branch-name amount

Downtown

Redwood

3000

4000

customer-name

Jones

Smith

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

null

3000

4000

null

customer-name

Jones

Smith

Hayes

loan-number

L-170

L-230

L-155

©Silberschatz, Korth and Sudarshan68

Joined Relations – Examples

loan full outer join borrower using (loan-number)

“Find all customers who have either an account or a loan (but not

both) at the bank.”

branch-name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

loan-number

L-170

L-230

L-260

L-155

select customer-name

from (depositor natural full outer join borrower)

where account-number is null or loan-number is null

End of Chapter

