
©Silberschatz, Korth and Sudarshan1Database System Concepts

Tuple and Domain Calculus

 Tuple Relational Calculus

 Domain Relational Calculus

©Silberschatz, Korth and Sudarshan2Database System Concepts

Banking Example

 Recall the banking database:

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan3Database System Concepts

Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form:

{ t | P(t) }

 Read as “the set of all tuples t such that predicate P is true for t”

 P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan4Database System Concepts

Predicate Calculus Formula

 The predicate P(t) will contain several types of syntactic elements:

 Tuple and relation variables:

t  customer -- t has all of the attributes of customer

u  depositor -- u has all the attributes of depositor

v  loan -- v has all the attributes of load

©Silberschatz, Korth and Sudarshan5Database System Concepts

Predicate Calculus Formula

 Attribute names:

t[customer-name] t[customer-street] t[customer-city]

u[account-number] u[customer-name]

v[amount] v[loan-number] v[branch-name]

©Silberschatz, Korth and Sudarshan6Database System Concepts

Predicate Calculus Formula

 Comparisons: , , , , , 

t[customer-name] = “Smith”

u[account-number] = A-175

v[amount]  1000

t[customer-city] = “Orlando”

“Orlando” = t[customer-city]

u[loan-number] = v[loan-number]

©Silberschatz, Korth and Sudarshan7Database System Concepts

Predicate Calculus Formula

 Connectives: , v‚ 

u[account-number] = A-175  u[balance] > 1000

(t[customer-name] = “Smith”  t[city] = “Orlando”) v  (u[account-number] = A-175)

©Silberschatz, Korth and Sudarshan8Database System Concepts

Predicate Calculus Formula

 Implication: x  y, if x is true, then y is true

(t[customer-name] = “Smith”)  (t[city] = “Orlando” v u[amount] < 500)

 By the way, x  y x v y

©Silberschatz, Korth and Sudarshan9Database System Concepts

Predicate Calculus Formula

 Quantifiers:

 t r (Q(t)) ”there exists” a tuple t in relation r such that Q(t) is true

 t r (Q(t)) Q(t) is true “for all” tuples t in relation r

t customer (t[customer-name] = “Smith”)

u account (u[balance] > 1000  u[branch-name] = “Perryridge”)

©Silberschatz, Korth and Sudarshan10Database System Concepts

Example Queries

 Find the loan-number, branch-name, and amount for loans of over

$1200.

 How about the following?

{t |  s loan (t[loan-number] = s[loan-number]  t[branch-name] = s[branch-name]

 t[amount] = s[amount]  s [amount]  1200)}

{t | t  loan  t [amount]  1200}

{t | t [amount]  1200}

{t |  s loan (t[loan-number] = s[loan-number]  t[branch-name] = s[branch-name]

 t[amount] = s[amount]  t [amount]  1200)}

©Silberschatz, Korth and Sudarshan11Database System Concepts

Example Queries

 Find the loan number for each loan having an amount greater than $1200.

Note a relation on [loan-number] is implicitly defined by the expression.

{t | s loan (t[loan-number] = s[loan-number]  s[amount]  1200)}

©Silberschatz, Korth and Sudarshan12Database System Concepts

Example Queries

 Find the names of all customers who have a loan and an account at the

bank.

 Find the names of all customers having a loan, an account, or both at

the bank.

{t | s  borrower(t[customer-name] = s[customer-name])

 u  depositor(t[customer-name] = u[customer-name])}

{t | s  borrower(t[customer-name] = s[customer-name])

 u  depositor(t[customer-name] = u[customer-name])}

©Silberschatz, Korth and Sudarshan13Database System Concepts

Example Queries

 If someone has an account or a loan at the bank, shouldn’t their name

appear in the customer relation?

 If it is the case that a name will appear in customer if and only if it

appears in borrower or depositor, then:

However, there is nothing in the text or schema description to indicate

this is the case, so the depositor and borrower relations must be

examined.

{t | s  customer(t[customer-name] = s[customer-name])}

©Silberschatz, Korth and Sudarshan14Database System Concepts

Example Queries

 Find the names of all customers having a loan at the Perryridge branch.

{t | s  borrower(t[customer-name] = s[customer-name]

 u  loan(u[branch-name] = “Perryridge”

 u[loan-number] = s[loan-number]))

  v  depositor (v[customer-name] = t[customer-name]) }

 Find the names of all customers who have a loan at the Perryridge branch,

but no account at any branch of the bank.

{t | s  borrower(t[customer-name] = s[customer-name]

 u  loan(u[branch-name] = “Perryridge”

 u[loan-number] = s[loan-number]))}

©Silberschatz, Korth and Sudarshan15Database System Concepts

Example Queries

 Find the names of customers and their cities of residence for those

customers having a loan from the Perryridge branch.

 Note the above contains a mistake…and a couple of other issues too…

{t | s  loan(s[branch-name] = “Perryridge”

 u  borrower (u[loan-number] = s[loan-number]

 t [customer-name] = u[customer-name])

  v  customer (u[customer-name] = v[customer-name]

 t[customer-city] = v[customer-city])))}

©Silberschatz, Korth and Sudarshan16Database System Concepts

Safety of Expressions

 Some tuple calculus expressions result in infinite relations.

{t |  t r}

{ t | t[A]=5  true }

{ t |   u customer (t[customer-name] = u[customer-name])}

 Such expressions don’t make sense in the context of databases.

©Silberschatz, Korth and Sudarshan17Database System Concepts

Safety of Expressions

 Hence, we restrict our use to what are called “safe” expressions.

 An expression {t | P(t)} in tuple calculus is said to be safe if every value in the result
of the expression is a function of some value in the database, i.e., appears in, or is a
modified version of a value in one of the relations, or is a tuple or constant that
appears in P.

 In other words, the results have to come directly or indirectly out of the database.

©Silberschatz, Korth and Sudarshan18Database System Concepts

Example Queries

 Find the names of all customers who have an account at all branches
located in the city of Brooklyn:

 Note that the above query is unsafe, but why?

 Consider a branch relation that consists of no Brooklyn branches.

 Every customer is in the result.

 Even “garbage” values are in the result.

{t |  s  branch(s[branch-city] = “Brooklyn” 

 u  account(u[branch-name] = s[branch-name]

  v  depositor(v[account-number] = u[account-number]

 t[customer-name] = v[customer-name])))}

©Silberschatz, Korth and Sudarshan19Database System Concepts

Another, Safe Version

 Find the names of all customers who have an account at all branches
located in Brooklyn (safe version):

 Note how this solution eliminates the “garbage” values.

{t |  c  customer (t[customer.name] = c[customer-name]) 

 s  branch(s[branch-city] = “Brooklyn” 

 u  account(u[branch-name] = s[branch-name]

  v  depositor(v[account-number] = u[account-number]

 t[customer-name] = v[customer-name])))}

©Silberschatz, Korth and Sudarshan20Database System Concepts

Example Queries

 What would happen if we changed the logical implication to a
conjunction?

 More specifically, what would be the meaning of the tuple calculus
expression?

 This is a more restrictive query (somewhat arbitrary) than the original,
however, unlike the first expression, it is safe (why?).

{t |  s  branch(s[branch-city] = “Brooklyn” 

 u  account(u[branch-name] = s[branch-name]

  v  depositor(v[account-number] = u[account-number]

 t[customer-name] = v[customer-name])))}

©Silberschatz, Korth and Sudarshan21Database System Concepts

Example Queries

 Similarly one could ask what would happen if we changed the logical
implication to a disjunction?

 Exercise:

 What would be the meaning of the tuple calculus expression? More
specifically, what would have to be true for a tuple to appear in the result?

 Is the expression safe?

{t |  s  branch(s[branch-city] = “Brooklyn” 

 u  account(u[branch-name] = s[branch-name]

  v  depositor(v[account-number] = u[account-number]

 t[customer-name] = v[customer-name])))}

©Silberschatz, Korth and Sudarshan22Database System Concepts

Domain Relational Calculus

 A nonprocedural query language equivalent in power to the tuple

relational calculus

 A query is an expression of the form:

{  x1, x2, …, xn  | P(x1, x2, …, xn)}

 x1, x2, …, xn represent domain variables

 P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan23Database System Concepts

Example Queries

 Find the loan-number, branch-name, and amount for loans of over $1200

{ c, a  |  l ( c, l   borrower  b( l, b, a   loan 

b = “Perryridge”))}

or { c, a  |  l ( c, l   borrower   l, “Perryridge”, a   loan)}

 Find the names of all customers who have a loan at the

Perryridge branch; also include the loan amount:

{ c  |  l, b, a ( c, l   borrower   l, b, a   loan  a > 1200)}

 Find the names of all customers who have a loan of over $1200

{ l, b, a  |  l, b, a   loan  a > 1200}

©Silberschatz, Korth and Sudarshan24Database System Concepts

Example Queries

 Find the names of all customers having a loan, an account, or both at
the Perryridge branch:

{ c  |  s, n ( c, s, n   customer) 

 x,y,z(( x, y, z   branch  y = “Brooklyn”) 

 a,b( a, x, b   account   c,a   depositor))}

 Find the names of all customers who have an account at all

branches located in Brooklyn:

{ c  |  l ( c, l   borrower

  b,a( l, b, a   loan  b = “Perryridge”))

  a( c, a   depositor

  b,n( a, b, n   account  b = “Perryridge”))}

©Silberschatz, Korth and Sudarshan25Database System Concepts

Safety of Expressions

 As with tuple calculus, we restrict ourselves to those domain relational

calculus expressions that are “safe,” i.e., whose resulting values come

directly or indirectly from the database.

