
©Silberschatz, Korth and Sudarshan1Database System Concepts

Tuple and Domain Calculus

 Tuple Relational Calculus

 Domain Relational Calculus

©Silberschatz, Korth and Sudarshan2Database System Concepts

Banking Example

 Recall the banking database:

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

©Silberschatz, Korth and Sudarshan3Database System Concepts

Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form:

{ t | P(t) }

 Read as “the set of all tuples t such that predicate P is true for t”

 P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan4Database System Concepts

Predicate Calculus Formula

 The predicate P(t) will contain several types of syntactic elements:

 Tuple and relation variables:

t customer -- t has all of the attributes of customer

u depositor -- u has all the attributes of depositor

v loan -- v has all the attributes of load

©Silberschatz, Korth and Sudarshan5Database System Concepts

Predicate Calculus Formula

 Attribute names:

t[customer-name] t[customer-street] t[customer-city]

u[account-number] u[customer-name]

v[amount] v[loan-number] v[branch-name]

©Silberschatz, Korth and Sudarshan6Database System Concepts

Predicate Calculus Formula

 Comparisons: , , , , ,

t[customer-name] = “Smith”

u[account-number] = A-175

v[amount] 1000

t[customer-city] = “Orlando”

“Orlando” = t[customer-city]

u[loan-number] = v[loan-number]

©Silberschatz, Korth and Sudarshan7Database System Concepts

Predicate Calculus Formula

 Connectives: , v‚

u[account-number] = A-175 u[balance] > 1000

(t[customer-name] = “Smith” t[city] = “Orlando”) v (u[account-number] = A-175)

©Silberschatz, Korth and Sudarshan8Database System Concepts

Predicate Calculus Formula

 Implication: x y, if x is true, then y is true

(t[customer-name] = “Smith”) (t[city] = “Orlando” v u[amount] < 500)

 By the way, x y x v y

©Silberschatz, Korth and Sudarshan9Database System Concepts

Predicate Calculus Formula

 Quantifiers:

 t r (Q(t)) ”there exists” a tuple t in relation r such that Q(t) is true

 t r (Q(t)) Q(t) is true “for all” tuples t in relation r

t customer (t[customer-name] = “Smith”)

u account (u[balance] > 1000 u[branch-name] = “Perryridge”)

©Silberschatz, Korth and Sudarshan10Database System Concepts

Example Queries

 Find the loan-number, branch-name, and amount for loans of over

$1200.

 How about the following?

{t | s loan (t[loan-number] = s[loan-number] t[branch-name] = s[branch-name]

 t[amount] = s[amount] s [amount] 1200)}

{t | t loan t [amount] 1200}

{t | t [amount] 1200}

{t | s loan (t[loan-number] = s[loan-number] t[branch-name] = s[branch-name]

 t[amount] = s[amount] t [amount] 1200)}

©Silberschatz, Korth and Sudarshan11Database System Concepts

Example Queries

 Find the loan number for each loan having an amount greater than $1200.

Note a relation on [loan-number] is implicitly defined by the expression.

{t | s loan (t[loan-number] = s[loan-number] s[amount] 1200)}

©Silberschatz, Korth and Sudarshan12Database System Concepts

Example Queries

 Find the names of all customers who have a loan and an account at the

bank.

 Find the names of all customers having a loan, an account, or both at

the bank.

{t | s borrower(t[customer-name] = s[customer-name])

 u depositor(t[customer-name] = u[customer-name])}

{t | s borrower(t[customer-name] = s[customer-name])

 u depositor(t[customer-name] = u[customer-name])}

©Silberschatz, Korth and Sudarshan13Database System Concepts

Example Queries

 If someone has an account or a loan at the bank, shouldn’t their name

appear in the customer relation?

 If it is the case that a name will appear in customer if and only if it

appears in borrower or depositor, then:

However, there is nothing in the text or schema description to indicate

this is the case, so the depositor and borrower relations must be

examined.

{t | s customer(t[customer-name] = s[customer-name])}

©Silberschatz, Korth and Sudarshan14Database System Concepts

Example Queries

 Find the names of all customers having a loan at the Perryridge branch.

{t | s borrower(t[customer-name] = s[customer-name]

 u loan(u[branch-name] = “Perryridge”

 u[loan-number] = s[loan-number]))

 v depositor (v[customer-name] = t[customer-name]) }

 Find the names of all customers who have a loan at the Perryridge branch,

but no account at any branch of the bank.

{t | s borrower(t[customer-name] = s[customer-name]

 u loan(u[branch-name] = “Perryridge”

 u[loan-number] = s[loan-number]))}

©Silberschatz, Korth and Sudarshan15Database System Concepts

Example Queries

 Find the names of customers and their cities of residence for those

customers having a loan from the Perryridge branch.

 Note the above contains a mistake…and a couple of other issues too…

{t | s loan(s[branch-name] = “Perryridge”

 u borrower (u[loan-number] = s[loan-number]

 t [customer-name] = u[customer-name])

 v customer (u[customer-name] = v[customer-name]

 t[customer-city] = v[customer-city])))}

©Silberschatz, Korth and Sudarshan16Database System Concepts

Safety of Expressions

 Some tuple calculus expressions result in infinite relations.

{t | t r}

{ t | t[A]=5 true }

{ t | u customer (t[customer-name] = u[customer-name])}

 Such expressions don’t make sense in the context of databases.

©Silberschatz, Korth and Sudarshan17Database System Concepts

Safety of Expressions

 Hence, we restrict our use to what are called “safe” expressions.

 An expression {t | P(t)} in tuple calculus is said to be safe if every value in the result
of the expression is a function of some value in the database, i.e., appears in, or is a
modified version of a value in one of the relations, or is a tuple or constant that
appears in P.

 In other words, the results have to come directly or indirectly out of the database.

©Silberschatz, Korth and Sudarshan18Database System Concepts

Example Queries

 Find the names of all customers who have an account at all branches
located in the city of Brooklyn:

 Note that the above query is unsafe, but why?

 Consider a branch relation that consists of no Brooklyn branches.

 Every customer is in the result.

 Even “garbage” values are in the result.

{t | s branch(s[branch-city] = “Brooklyn”

 u account(u[branch-name] = s[branch-name]

 v depositor(v[account-number] = u[account-number]

 t[customer-name] = v[customer-name])))}

©Silberschatz, Korth and Sudarshan19Database System Concepts

Another, Safe Version

 Find the names of all customers who have an account at all branches
located in Brooklyn (safe version):

 Note how this solution eliminates the “garbage” values.

{t | c customer (t[customer.name] = c[customer-name])

 s branch(s[branch-city] = “Brooklyn”

 u account(u[branch-name] = s[branch-name]

 v depositor(v[account-number] = u[account-number]

 t[customer-name] = v[customer-name])))}

©Silberschatz, Korth and Sudarshan20Database System Concepts

Example Queries

 What would happen if we changed the logical implication to a
conjunction?

 More specifically, what would be the meaning of the tuple calculus
expression?

 This is a more restrictive query (somewhat arbitrary) than the original,
however, unlike the first expression, it is safe (why?).

{t | s branch(s[branch-city] = “Brooklyn”

 u account(u[branch-name] = s[branch-name]

 v depositor(v[account-number] = u[account-number]

 t[customer-name] = v[customer-name])))}

©Silberschatz, Korth and Sudarshan21Database System Concepts

Example Queries

 Similarly one could ask what would happen if we changed the logical
implication to a disjunction?

 Exercise:

 What would be the meaning of the tuple calculus expression? More
specifically, what would have to be true for a tuple to appear in the result?

 Is the expression safe?

{t | s branch(s[branch-city] = “Brooklyn”

 u account(u[branch-name] = s[branch-name]

 v depositor(v[account-number] = u[account-number]

 t[customer-name] = v[customer-name])))}

©Silberschatz, Korth and Sudarshan22Database System Concepts

Domain Relational Calculus

 A nonprocedural query language equivalent in power to the tuple

relational calculus

 A query is an expression of the form:

{ x1, x2, …, xn | P(x1, x2, …, xn)}

 x1, x2, …, xn represent domain variables

 P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan23Database System Concepts

Example Queries

 Find the loan-number, branch-name, and amount for loans of over $1200

{ c, a | l (c, l borrower b(l, b, a loan

b = “Perryridge”))}

or { c, a | l (c, l borrower l, “Perryridge”, a loan)}

 Find the names of all customers who have a loan at the

Perryridge branch; also include the loan amount:

{ c | l, b, a (c, l borrower l, b, a loan a > 1200)}

 Find the names of all customers who have a loan of over $1200

{ l, b, a | l, b, a loan a > 1200}

©Silberschatz, Korth and Sudarshan24Database System Concepts

Example Queries

 Find the names of all customers having a loan, an account, or both at
the Perryridge branch:

{ c | s, n (c, s, n customer)

 x,y,z((x, y, z branch y = “Brooklyn”)

 a,b(a, x, b account c,a depositor))}

 Find the names of all customers who have an account at all

branches located in Brooklyn:

{ c | l (c, l borrower

 b,a(l, b, a loan b = “Perryridge”))

 a(c, a depositor

 b,n(a, b, n account b = “Perryridge”))}

©Silberschatz, Korth and Sudarshan25Database System Concepts

Safety of Expressions

 As with tuple calculus, we restrict ourselves to those domain relational

calculus expressions that are “safe,” i.e., whose resulting values come

directly or indirectly from the database.

