
A Personalized Search Engine Based on
Web-Snippet Hierarchical Clustering

Paolo Ferragina
Dipartimento di Informatica, Pisa

ferragina@di.unipi.it

Antonio Gulli
Dipartimento di Informatica, Pisa

gulli@di.unipi.it

ABSTRACT
In this paper we propose a hierarchical clustering engine,
called SnakeT, that is able to organize on-the-fly the search
results drawn from 16 commodity search engines into a hi-
erarchy of labeled folders. The hierarchy offers a comple-
mentary view to the flat-ranked list of results returned by
current search engines. Users can navigate through the hier-
archy driven by their search needs. This is especially useful
for informative, polysemous and poor queries.

SnakeT is the first complete and open-source system in
the literature that offers both hierarchical clustering and
folder labeling with variable-length sentences. We exten-
sively test SnakeT against all available web-snippet cluster-
ing engines, and show that it achieves efficiency and efficacy
performance close to the best known engine Vivisimo.com.

Recently, personalized search engines have been intro-
duced with the aim of improving search results by focusing
on the users, rather than on their submitted queries. We
show how to plug SnakeT on top of any (un-personalized)
search engine in order to obtain a form of personalization
that is fully adaptive, privacy preserving, scalable, and non
intrusive for underlying search engines.

SnakeT is available at http://snaket.di.unipi.it/.

Categories and Subject Descriptors
H.3 [Information Storage And Retrieval]: Content
Analysis and Indexing, Information Search and Retrieval,
Online Information Services; I.5.3 [Text Processing]:
Clustering

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
Web Snippets Clustering, Search Engines, Information Ex-
traction, New Search Applications and Interfaces, Personal-
ized Web Ranking

1. INTRODUCTION
Web-snippet clustering is an innovative approach to help

users in searching the web [24]. It consists of clustering the

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

snippets1 returned by a (meta-)search engine into a hier-
archy of folders which are labeled with variable-length sen-
tences. The labels should capture the “theme” of the snip-
pets (and thus, of the corresponding web pages) contained
into their associated folders. This labeled hierarchy offers
a complementary view to the flat-ranked list of results re-
turned by current search engines. Users can exploit it by
navigating through the hierarchy of labeled folders, driven
by their search needs. This technique is useful for informa-
tive [5], polysemous or poor queries.

Web-snippet clustering is a challenging variant of classical
clustering because the hierarchy of labeled folders reflects in
an intelligible way the different and potentially unbounded
“themes” of the snippets returned by the queried search en-
gine(s). This induces two demanding requirements: (i) The
folder hierarchy must be formed on-the-fly from the snip-
pets, whereas canonical clustering is persistent since “the
folder structure is generated only once, and folder main-
tenance can be carried out at relatively infrequent inter-
vals” [27]. (ii) The folder must be labeled with meaningful
sentences drawn on-the-fly from the snippets. Any “fixed
set of category labels” as used in [3, 7] would be not flexible
enough to capture the snippets’ themes; moreover, due to
computational reasons, the clustering engine must process
only the (short and thus poor) snippets and not their corre-
sponding (long and thus informative) originating web pages.

Various industrial systems implement web-snippet
clustering in their (meta-)search engines: Vivisimo,
Mooter, Copernic, iBoogie, Kartoo, Groxis, Dog-
pile and Clusty. Their efficacy has been recognized
with the “best meta-search engine award” assigned by
SearchEngineWatch.com to Vivisimo from 2001 to
2003. In January 2005, the AOL portal adopted Vivisimo
on top of the search results provided by Google. Also
Google and Microsoft seem to be interested into it
[28, 29] because “clustering technology is the PageRank
of the future”. Very little information is available about
this industrial software. The scientific literature offers
several solutions to the web-snippet clustering problem, but
unfortunately the attainable performance is far from the
one achieved by Vivisimo (see Sect. 2).

Another approach to help users in searching the web is
the personalization of the flat-ranked lists of query results.
Personalized ranking is an intriguing extension of classical
link-based ranking that focuses on the users, rather than

1The term “snippet” is used here to denote a fragment of
a Web page returned by remote search engines and summa-
rizing the context of searched keywords.

801



the query, by combining web-graph link information with
some contextual/profiled information. Three requirements
of a good personalization should be: full adaptivity to the
variegate user behaviors/needs, privacy protection, and scal-
ability to the number of profiles. Examples of industrial
personalized services are Google [1], that collects category-
based profiles explicitly maintained by the users over a tiny
set of categories, Yahoo [2] and Eurekster, that require
a login and build the profiles based on the users’ activi-
ties. These approaches offer a partial solution because they
either allow profiles over a tiny set of choices (Google) or
need to maintain up-to-date profiles which are a critical and
private resource. In the scientific literature the personal-
ized ranking problem has been investigated proposing nice
scaling techniques to classical approaches. However, these
solutions ultimately need to compute, for each web page, a
number of ranking values that is related to the number of
user profiles (see Sect. 2).

The contribution of this paper is twofold: (i) We propose
the first publicly-available software for web-snippet cluster-
ing, called SnakeT, that achieves efficiency and efficacy
performance close to Vivisimo; (ii) We exploit the labeled
hierarchy of SnakeT to design an innovative form of per-
sonalized ranking that achieves full-adaptivity, privacy pro-
tection, and scalability. Overall this shows that between
ranking and web-snippet clustering does exist a mutual re-
inforcement relationship from which both of them may ben-
efit. In fact the better is the ranking, the more relevant are
the snippets from which SnakeT distills the hierarchy of
labeled folders, and thus the better is the personalization.

Our paper offers the following specific contributions:

• We describe the anatomy of SnakeT, the first com-
plete system in the literature that offers both hierarchi-
cal clustering and folder labeling with variable-length
sentences drawn on-the-fly from snippets. One spe-
cialty is that we use gapped sentences as labels, namely
sequences of terms occurring not-contiguously into the
snippets. The disclosed softwares do not address all
these features together (Sect. 2).

• We suggest the use of web-snippet clustering as a
tool for personalized ranking. We show how to plug
SnakeT on top of any (un-personalized) search engine
in order to obtain a form of personalization. The key
idea is that a user issues a query on SnakeT, gets
back a labeled folder hierarchy, and then selects a set
of folder labels (themes) that best fit his/her query
needs. Given this selection, SnakeT personalizes the
original ranked list to the selected themes by filtering
out on-the-fly the snippets which do not belong to the
folders annotated by those selected themes. We think
that this is an innovative feature offered by SnakeT’s
interface, in that it allows to dynamically adapt the
ranked list of (about 200 or more) results to the lo-
cal choices made by any user. This approach of course
does not require an explicit login by the user, or a pre-
compilation of a constrained user profile, or a tracking
of the user’s past search behavior, or a modification of
the underlying search engines (Sect. 4).

• We provide a complete survey of the current litera-
ture and industrial systems (Sect. 2). We then com-
pare SnakeT against the best available systems by
executing an extensive set of experiments (Sect. 5).
As a further contribution we have built, and offer to

the community, a benchmark dataset for web-snippet
clustering containing 77 queries, selected from the top
searched ones on Lycos and Google during 2004.

• We have implemented and engineered a public and
open-source prototype that includes all the features
above. It runs on top of 16 search engines about
Web, Blog, News and Books domains. It has an in-
terface similar to Vivisimo (see Fig. 1) available at
http://snaket.di.unipi.it/.

Figure 1: Vivisimo (left) and SnakeT (right) on the
query “asthma”. Notice on top of SnakeT’s window
the personalization button.

2. RELATED WORK
The scientific literature offers various solutions to the web-

snippet clustering problem. In the simplest case, the folder
label is a “bag of words” and the folder clustering is flat. In
the more general case, the folder label is a variable-length
sentence and the folder clustering is hierarchical. We survey
these approaches by classifying them into a taxonomy.

Single words and flat clustering. Scat-
ter/Gather [15] was one of the first web-clustering
softwares on top of an IR engine. It may be considered to
belong to this class even if it was not tested upon a web
search engine. WebCat [11] uses Transactional K-Means
to produce the flat clustering. Retriever [17] uses robust
relational fuzzy clustering. The system of [30] expands
the set of retrieved snippets with all the in-linking and
out-linking pages to improve precision. However search
engines do not provide a cheap access to the web graph

802



thus making the link retrieval efficient if limited to a local
(partial) copy available at the clustering engine site. We
point out that standard methods such as nearest neighbor
and K-means [12], are in this category since they usually
exploit single terms as features. Among these softwares
only WebCat [11] is available on-line.

Sentences and flat clustering. Grouper [33] was the
first publicly available software to address the web-snippet
clustering problem. It used sentences of variable length to
label the folders, but these sentences were drawn as contigu-
ous portions of the snippets by means of a Suffix Tree data
structure. Lingo [25] uses SVD on a term-document ma-
trix to find meaningful long labels. The problem with this
approach is that SVD is time consuming when applied to
a large number of snippets. Recently, Microsoft [34] pro-
posed a system that extracts (contiguous) sentences of vari-
able length via regression on five different measures. How-
ever the clustering is flat, regression needs a training phase
(hard to adapt on the whole heterogenous web), and the
system is not available for testing. There are rumors about
the commercialization of this product [29]. Among the soft-
wares of this class, it is available on-line only Carrot2 [31],
an open source implementation of Grouper. The original
Grouper is no longer available, as the authors communi-
cated to us.

Single words and hierarchical clustering. FIHC [10]
uses an analysis based on the Frequent Itemsets Problem in
order to construct the folder hierarchy. CREDO [6] uses a
concept lattice on single words, and is the only system in
this class available on-line.

Sentences and hierarchical clustering. This is the
most interesting class including systems that try to mimic
Vivisimo. Lexical Affinities Clustering [22] was the
first system to propose this approach. It improves preci-
sion over recall by using a snippet representation made of
pair of words (not necessarily contiguous) linked by a lexi-
cal affinity, i.e. a correlation of their common appearance.
In [33] Etzioni proposed a simple extension of Grouper
to hierarchical clustering based on the size of folders over-
lap. SHOC [35] uses the Suffix Array for (contiguous) sen-
tences extraction and organizes the folders in a hierarchy via
an SVD approach. Highlight [32] adopts lexical analysis
and a probabilistic framework for hierarchy construction,
but the authors do not provide any evaluation. CIIRar-
chies [21] extracts sentences from the snippets by using a
pre-computed language model, and builds the hierarchy via
a recursive algorithm. The authors admit that their hierar-
chies are often non compact, have large depth and contain
some non content-bearing words which tend to repeat. 2

Recently, IBM [19] proposed a system that constructs the
folder hierarchy based on the minimization of an objective
function similar to the one we use in our SnakeT (cfr. Sect.
3.2). However their labels consist frequently of single words,
in the other (few) cases they are contiguous sentences. The
authors did not make this system available for testing. Sur-
prisingly enough, the only systems of this class available for
testing are Highlight and CIIRarchies.

Our SnakeT belongs to this last class, it is highly engi-

2Pg 91-92 in [20] “A disadvantage present in both snippet
and full text hierarchies is that they include uninformative
topics. As the hierarchies become further developed, we will
look for techniques to identify these uninformative topics.”

neered, available on-line and widely tested, and it aims at
overcoming the limitations of the systems above by using
gapped sentences as labels, by adopting some special knowl-
edge bases to rank and select the meaningful folder labels,
and by building a hierarchy of possibly overlapping folders.
We compared SnakeT against the softwares of the fourth
class available on line: CIIRarchies, Highlight. We also
tested Carrot2 for historical reasons: it offers the only
available implementation of Grouper. We did not test the
most recent results of [34, 19] because: they didn’t provide
us with an access to their software, and we could not repeat
their experiments because the original datasets are missing
and querying the same search engines gives now different
snippets (see Sect. 5.2). As industrial engines we compared
Mooter and Vivisimo because they are the most powerful
web-snippet clustering engines in their categories.

Name Word Sentences Word Sentences Online/
Flat Flat Hier. Hier. Software

WebCat + +
Retriever +

Scatter/Gather +
Wang et al. +

Grouper +
Carrot + +
Lingo + +

Microsoft +
FICH + +
Credo + +
IBM +

SHOC +
CIIRarchies + +

LA +
Highlight + +
SnakeT + +
Mooter + +

Vivisimo + +

Figure 2: Taxonomy of current solutions.

Personalized ranking algorithms. The scientific liter-
ature offers few solutions for the personalized ranking prob-
lem. [14] uses the pages contained in the web-directory
Dmoz.com to modify the random jump of Pagerank to-
wards a specific topic. The problem with this approach is
that one needs to compute for each page, and for each topic,
a different Pagerank value. A partial solution to this scal-
ing problem was given in [16], where the dependance from
the number of topics was reduced to be sub-linear but still
growing with them. [8] suggests to gather user profiles by
exploiting the user navigation sessions captured by a proxy,
and then applies [16]. Thus all of these solutions offer a lim-
ited answer to the features of full adaptivity, privacy pro-
tection and scalability required to a good personalization
service. The industrial scenario consists of a lab-preview by
Google [1] and Yahoo [2], and a full-working engine offered
by Eurekster. These approaches however need to main-
tain up-to-date and profiles, or require an explicit login.

3. THE ANATOMY OF SNAKET
Our software SnakeT consists of three algorithmic

phases: sentence selection and ranking, hierarchical clus-
tering and labeling, and personalized ranking. The first two
phases will be detailed in this section, personalization will
be discussed in the next section. See Fig. 3 for a graphical
description of SnakeT’s architecture.

803



Figure 3: The architecture of SnakeT.

3.1 Sentence selection and ranking
SnakeT uses a frequent itemset-like approach to ex-

tract meaningful labels. These labels are drawn on-the-fly
from the snippets as gapped sentences of variable length.
The quality of the extracted labels is improved, and eval-
uated, by exploiting two knowledge bases, detailed below.
This way, SnakeT overcomes the “contiguity limitation”
of Grouper’s labels and generalizes the notion of Lexical
Affinities [22] to more than two words.

Two knowledge bases. The sentence selection process
exploits two knowledge bases (KBs) which are built off-line
and then used at query time. The former KB is an indexed
collection of anchor texts3 extracted from more than 200 mil-
lions web pages. The anchor texts of the hyperlinks pointing
to a page are used at query time by SnakeT to enrich the
content of the corresponding (poor) snippets. The latter
KB is a ranking engine over the web-directory Dmoz.com
which is freely available, controlled by humans and thus of
high-quality. Dmoz classifies more than 3,500,000 sites in
more than 460,000 categories, and is used for ranking and
retrieval by many web search engines, like Google. We
are the first, to the best of our knowledge, to use the whole
Dmoz for snippet clustering.4 Our ranking engine imple-
ments a TFxIDF measure over pairs of words that is cen-
tered on Dmoz-categories (unlike the usual document-based
view). In detail, let #(w) be the total number of occur-
rences of the word w into Dmoz, #C(w) be the number of
Dmoz-categories in which w appears, and let #C be the to-
tal number of Dmoz-categories. Moreover let ns(Ci) be a
boosting factor for the category Ci that takes into account
its depth in the Dmoz-hierarchy (we are postulating an in-
creased importance for deeper categories since they are more
specific), and let b(w, Ci) be a boosting factor for the word
w if it is placed in a relevant part of Ci, such as its descrip-

3An anchor text is the segment of a web page surrounding
an hyperlink.
4Unlike [7], we are using Dmoz only for the ranking of the
sentences which are extracted on-the-fly from the snippets.
Therefore Dmoz is not used for building the folder hierarchy.

tion or title (we are postulating an increased importance of
terms in crucial parts of the category’s description). We

then define TF(w) = 1+log #(w), IDF(w) = log #C
#C(w)

and

compute the rank of a word w, with respect to a category
Ci, as: rank(w, Ci) = b(w, Ci) ∗ TF(w) ∗ IDF(w) ∗ ns(Ci).
The rank for a pair of words (wh, wk) is then defined
as: rank(wh, wk) = maxCi{

Q
r=h,k b(wr, Ci) ∗ TF(wr) ∗

IDF(wr) ∗ ns(Ci)}.
Query time processing. SnakeT draws about 200

snippets from 16 search engines and enriches them by query-
ing the anchor-text KB. The (enriched) snippets are subse-
quently filtered against a stop-list, stemmed, segmented into
phrases and finally analyzed for extracting Part-of-Speeches
and Named Entities. The overall process is called snippet
analyzer in Fig. 3.

SnakeT then generates the gapped sentences used for the
labeling of the folders via an incremental approach (see mod-
ule sentence generator in Fig. 3). Initially, SnakeT extracts
from the (enriched) snippets all the pairs of words which
occur within some fixed proximity window. These pairs are
then ranked using the above Dmoz-based engine and some
boosting factors that depend on PoS and NE. Low ranked
word-pairs are discarded. The remaining pairs are incre-
mentally merged to form longer gapped sentences. We use
neither suffix trees nor suffix arrays for word-pairs merging,
since in our (gapped) sentences words may occur not con-
tiguously in the snippets. Our approach is therefore based
on a combination of inverted lists and bitmaps, built fast and
on-the-fly over the snippets. These data structures allow to
efficiently and incrementally merge a gapped sentence g with
a word pair (wh, wk) if they appear in the same snippet and
within a proximity window. The resulting longer gapped
sentence preserves the original order in which g, wh, wk ap-
pear in the source snippet. The rank of this sentence is a
function of the ranks of its constituting pairs of adjacent
words, and is computed by the Dmoz ranking engine. Low
ranked sentences are discarded and the process is repeated
until no merge is possible or sentences are formed by 8 words
(this number is customizable). All the sentences that have
been not discarded in whole process provide the candidate
labels for the annotation of the leaves of the folder hierarchy.
We notice that the cost of the merging process is negligible
with respect to the other operations, since it is linear in the
size of the inverted lists.

3.2 Hierarchical clustering
SnakeT uses an innovative bottom-up hierarchical clus-

tering algorithm whose aim is to construct a folder hierarchy
which is compact in terms of total number of folders, balanced
in terms of descending folders, and overlapping because a
snippet might cover multiple themes. SnakeT also aims at
assigning folder labels that are accurate with respect to the
snippets’ themes, distinct to avoid an overwhelming repeti-
tion in the words, and intelligible by means of variable-length
sentences. The overall process is called hierarchy builder in
Fig. 3.

Initially, snippets are grouped into folders according to
the (candidate) gapped sentences they share. These folders
provide the leaves of our hierarchy, and their labels provide
their annotations (called primary labels). We are postulating
that snippets sharing the same gapped sentence deal with the
same theme, and thus must be clustered into the same folder.

In order to agglomerate (leaf) folders for the hierarchy

804



construction, SnakeT enriches each folder C with a set of
secondary labels, defined as gapped sentences that occur in
the c% of C’s snippets (currently c = 80). The primary label
provides a finer description of C, its secondary labels provide
a coarser description of the folder’s snippets. To manage pri-
mary and secondary labels efficiently, we concatenate them
into a unique string and use a special character as a sep-
arator. This string is called the signature of the folder C,
denoted by sig(C).

The inductive step of the bottom-up hierarchy construc-
tion process consists of three main phases: parent formation,
ranking and pruning. A parent folder P is created for each
group C1, C2, . . . , Cj of folders that share a gapped sentence
among their signatures (hence, both primary and secondary
labels are deployed). The shared sentence provides the pri-
mary label of P , and thus its annotating label `(P ). The set
of secondary labels of P is formed by the secondary labels
of the Ci’s that occur in at least the c% of P ’s snippets.
sig(P ) is obtained by concatenating `(P ) with all P ’s sec-
ondary labels. We note that the efficient computation of the
shared sentence `(P ) is done via a Suffix Array built over all
folder signatures. Since `(P ) is computed among the gapped
sentences, it is a gapped sentence and is not necessarily a
substring of `(C1), . . . , `(Cj).

After the formation of all parent folders and their labels,
SnakeT ranks them by exploiting the rank of the labels of
their children folders. Indeed, the rank of P is computed
from the rank of the labels of the Cis (see Sect. 3.1). Then,
SnakeT builds a weighted bipartite graph G in which the
sets vertices are given by the parent folders (currently under
construction) and their children folders, the edges denote the
parent-child relationship, and the weight of a vertex is the
rank of the corresponding folder.

This graph is exploited in the next pruning phase, whose
goal is to clean up the current level of the folder hierar-
chy in order to match the goals stated at the beginning of
the section. SnakeT adopts two different pruning rules to
discard some of the currently formed parent folders. The
first rule aims at discarding parent folders which are re-
dundant wrt a graph-covering relation: if two parent fold-
ers cover (almost) the same children folders, then SnakeT
keeps the parent folder having the largest rank. The sec-
ond rule aims at discarding parent folders which are redun-
dant wrt a syntactic-similarity relation among labels: if two
parent folders are annotated with (almost) the same label-
ing words, then SnakeT keeps the parent folder having the
largest rank. This latter rule takes into account label con-
ciseness, accuracy and distinctiveness. The rules are applied
on the weighted bipartite graph via a greedy approach (de-
tails in the full paper). The number of the discarded folders
is not negligible and their deletion contributes to make the
overall hierarchy more intelligible and compact. We note
that the graph-covering rule is similar to the one proposed
in [19], but here we additionally use gapped sentences as
labels and apply the syntactic-similarity relation to obtain
better folder labels (see e.g. Fig. 6).

After the pruning, the remaining parent folders provide
the next level upon which the bottom-up process is repeated
again. The process is currently stopped after that three lev-
els have been built (a deeper hierarchy would be not user
friendly). We remark that a snippet may occur in many fold-
ers, and this is consistent with the observation that a web
page can cover multiple themes. Moreover, we observe that

the use of gapped sentences allows SnakeT to cluster to-
gether two snippets even if some terms are missing, or even,
occur in different order within them. For example snip-
pets containing the sentences “John Fitzegerald Kennedy”,
“Kennedy John” and “John F. Kennedy” would be clustered
together by SnakeT.

Fig. 4 reports the time complexity of SnakeT and of the
other engines. Experiments showed that on a small number
of snippets and extracted labels SnakeT achieves excellent
results.

Flat Time Hierarchical Time
Clustering Complexity Clustering Complexity

Retriever O(nk) LA O(n2 log n2)
Wang et al. O(kn log n) IBM O(kn)

Grouper O(n) SHOC O(n)
Carrot O(n)

Microsoft O(n) SnakeT O(n logn + m log mp)

Figure 4: Notation: n is the number of processed
snippets, k is the number of desired folders, m is
the number of extracted sentences/words, p is the
number of labels extracted by SnakeT.

4. PERSONALIZING SEARCH RESULTS
Link-based ranking approaches tend to produce results

which are biased towards the most popular meaning of an
ambiguous query: “Jaguar” on Google does not get an-
swers related to the mayan civilization in the first ten results.
Conversely, SnakeT is able to distill from the web snippets
few key concepts (possibly some of low rank, see Fig. 5) that
may be subsequently deployed by the user to personalize the
results produced by the underlying search engines (see Fig.
8). SnakeT exploits the labeled folder hierarchy also for
query refinement, disambiguation and knowledge extraction
as detailed below (see the module personalization engine in
Fig. 3).

Figure 5: Knowledge extraction for “jaguar”

Hierarchy browsing for knowledge extraction. Users
can navigate through the hierarchy by expanding or col-
lapsing on-the-fly its folders. The expansion is cheap since
occurs at the client side. The navigation can be seen as a

805



form of knowledge extraction process that allows the user
to acquire several points of view on the 200 or more query
results, without the effort of scanning all of them. This is
useful because users frequently look at just the first top-ten
results of the flat-ranked list. See Fig. 5 where a user learns
from the folder labels created for the query “jaguar” that
this term refers to: an animal, a car, the mayan civilization,
a British rock-band, and Mac OS X.

Hierarchy browsing for results selection. Users can
narrow the ranked list of snippet results to those ones which
generate a label l, by just clicking on l. This is pretty
much similar to what Vivisimo does, with the speciality
that SnakeT does everything at the client side.

Query Refinement. Once the user looks at the folder hier-
archy, (s)he can decide to refine the query Q in two different
ways. Either (s)he can deploy the folder labels to choose new
keywords for composing a new refined query to be submit-
ted to SnakeT. Or (s)he can choose as additional keywords
the words of a label l, by clicking on it. In this latter case
SnakeT submits automatically the refined query Q′ = Q∧ l
to its pool of search engines, and then builds a new folder
hierarchy for them. See Fig. 6 where the query “allergy”
may be refined as “latex allergy” by clicking onto the la-
bel “Relief/Latex Allergy”. This is a form of query expan-
sion/suggestion used by many commercial search engines,
here re-interpreted in the web-snippet hierarchical cluster-
ing framework.

Figure 6: Hierarchy browsing for “Allergy”

Personalized Ranking. Users can select a set of labels
L = {l1, . . . , lf} and ask SnakeT to filter out from the
ranked list, returned by the queried search engines, the snip-
pets which do not belong to the folders labeled by L’s labels.
We think that this is the most innovative feature offered by
SnakeT’s interface, in that it allows to dynamically adapt
the ranked list of (about 200 or more) results to the local
choices made by any user. As far we know, we are the first to
suggest the use of web-snippet clustering as a tool for person-
alizing the ranked list of results returned by a (meta-)search

engine. This feature turns out to be particularly effective
when the users submit informative [5], polysemous, or poor
queries. See Fig. 8 for an example in which a user aiming
at introductory material about the programming language
“java”, first formulates the query “java”, and then selects
the labels “Tutorials” and “Training” for getting personal-
ized results.

Figure 7: SnakeT on the query “java”

Figure 8: Personalized SnakeT: the user selects the
two labels “Tutorial” and “Training” and gets its
personalized ranked list.

We refer the reader to Sect. 2 for a discussion of the lit-
erature on personalization. We note here that SnakeT’s
personalization is fully adaptive, scalable, and non intrusive
for the user. It is fully adaptive and scalable because it is
not profile-based and users can adapt the choice of their se-
lected labels according to their subjective and time-varying
interests. SnakeT also protects the user privacy because it
does not require an explicit login, a pre-compilation of a
user profile, and tracking the user’s past searches.

Notice that the user can change multiple times the se-
lected labels and thus modify on-the-fly his/her set of per-
sonalized results. The filtering is done on all the 200
(or more) snippets returned by the queried search engines.
Everything occurs at the client side, thus being computa-
tionally cheap. In summary, SnakeT is a plug-in that turns

806



any un-personalized (meta-)search engine into a personal-
ized one.

Personalized Web Interface. We remark that SnakeT
offers a lightweight web-client interface that does not require
to maintain any state on the server. For each query, the
server performs the hierarchical clustering of the snippets
returned by the queried engines and then sends to the web
client all the information needed to perform the above tasks
via a one-time communication in XML. Folder expansion,
browsing and personalization is scalable since they occur at
the client side. Conversely, Vivisimo requires a commu-
nication between the client and the server for each folder
refinement.

5. EXPERIMENTAL RESULTS
SnakeT runs currently on a commodity PC with Linux,

P4 CPU and RAM 1.5Gb. This is the system where we
executed our tests. For space reasons we report just the
most important results, whereas a more extensive testing is
available on line, see [9]. See Fig. 9 for time figures.

Figure 9: Time (secs) taken by SnakeT to retrieve
and cluster a growing number of snippets on the
query “data mining”.

The literature of web-snippet clustering offers three dif-
ferent methodologies for comparing the systems in Fig. 2:
anecdotal evidence for the quality of the results, user sur-
veys conducted on a set of users for a set of queries, and
some mathematical functions. There is not a general con-
sensus about the measure to use for evaluating a web-snippet
clustering engine. Moreover, although there are many pro-
posals for evaluating flat clustering [13, 23], it is still open
the definition of a mathematical evaluation which takes into
account the expressiveness of the labels within a folder hier-
archy. In the following, we evaluate SnakeT by executing
some user surveys, by drawing anecdotal evidence of the
overall efficacy of SnakeT and of its modules, and by ex-
tending the methodology of [34] with the goal of addressing
the “label expressiveness” issue. These last two evaluations
deploy a unique (in the literature) dataset of snippets, en-
riched with clustering results, that we have collected from
the 16 search engines using 77 queries, selected from the top
searched ones on Lycos and Google during 2004. This
dataset is available on line [9] and can be used freely by the
research community either to reproduce our experiments or
to test any new web-snippet clustering engine.

5.1 Users surveys
First Study: Is web clustering beneficial? This study

was aimed at understanding whether a Web-snippet clus-
tering engine is a useful complement to the flat, ranked list
of results offered by classical search engines (like Google).
We asked to 45 people, of intermediate web ability, to use
Vivisimo during their day-by-day search activities. After
a test period of 20 days, 85% of them reported that using
the tool ”[..] get a good sense of range alternatives with
their meaningful labels”, and 72% said that the most use-
ful feature is ”[..] the ability to produce on-the-fly clus-
ters in response to a query, with labels extracted from
the text”. This study confirms the evaluation reported by
SearchEngineWatch.com.

Second Study: SnakeT vs other available systems.
We selected 18 queries from our dataset belonging to many
different topics (iraq, bush, data mining, bill gates, last
minute, car rental, mp3, divx, sony, final fantasy, ipo, eq-
uity, google ipo, warterlo, second war, aids, allergy, nasa),
and asked to three users to compare our results against those
provided by Mooter, CIIRarchies, Highlight, Car-
rot2 (see Sect. 2). For a large part of the queries the users
did not like Mooter, since it provides folders labeled with
single words. Carrot2 often tends to create a number of
folders which exceeds the number of snippets, thus impact-
ing negatively onto the usability of such software. Carrot2
also fails to cluster together similar labels such as “knowl-
edge, knowledge discovery”, “mining and knowledge”, and
furthermore it labels the hierarchy paths with sentences
which are one the substring of the other thus introducing
few additional knowledge during the browsing. Highlight
obtains its top-level’s labels by using classification, so that
they are few and of little use. Moreover, its clustering fre-
quently produces identical subtrees under different top level
categories and a number of folders which exceeds the num-
ber of snippets themselves (e.g 160 folders for the ”iraq”
query). CIIRarchies provides good hierarchies but, as the
authors admit, they are often not compact, have large depth
and contain some non content-bearing words which tend to
repeat. From the point of view of the performance we re-
mark that the two best available tools, CIIRarchies and
Highlight, are significantly slower than SnakeT. We also
remind to the reader that no other system is available on
line for comparison, as discussed in Sect. 2, and that our
three-users survey is fair because of the objectivity of their
negative comments.

Third Study: SnakeT vs Vivisimo. We tried to draw a
preliminary evaluation of our software against Vivisimo. We
selected 20 students of the University of Pisa and asked them
to execute the above 18 queries on these two engines. 75%
of them were satisfied of the quality of our folder hierarchy
and of its labels. Hence we can state that SnakeT achieves
performance close to Vivisimo. See Fig. 10 for details.

5.2 SnakeT’s dataset and anecdotal evidence
We have built a dataset consisting of the snippets collected

by 16 search engines in response to 77 queries. It is avail-
able on-line [9]. Queries are selected among the top searched
ones on Lycos and Google during 2004. For each query
we retrieved from 180 to 220 snippets. The dataset has been
manually annotated by humans who judged the correctness
of the results wrt the query. Moreover, the dataset has been
enriched with the labels of the folders produced by SnakeT.
This way the dataset can be used to infer anecdotal evi-
dence about the quality of the folder hierarchy and to tune

807



Figure 10: Left: judgement of SnakeT’s results.
Right: user preferences.

the software modules building up SnakeT (Figs. 5,6,7,8 are
extracted from the dataset). As far we know, this dataset
is the largest available on line and the only one built over
queries retrieved by many search engines. It can be used
freely by the research community either to reproduce our
experimental results or to test any new web-snippet cluster-
ing engine. This dataset is crucial because the web-snippet
clustering is a form of ephemeral clustering [22], and thus
its results may change over the time as a consequence of a
change in the list of snippets returned by the search engines.

5.3 Evaluation ofSnakeT

We ran an extensive testing to tune up the different mod-
ules composing SnakeT. Because of the 10-page limit we
are forced to report here few results, and thus we refer the
reader to [26] for a full report. We evaluated SnakeT by
using our dataset and a mathematical measure that extends
the one adopted in [34] by taking into account the labeled
folder hierarchy. We actually evaluated the precision at the
first N labels associated to the top-level folders generated
by SnakeT for each of the 77 queries. Precision at top N is
defined as: P@N = M@N

N
, where M@N is the number of la-

bels which have been manually tagged relevant among the N
top-level labels computed by SnakeT. If a label l has been
tagged as “ambiguous”, we judge l relevant if the majority
of its children labels are relevant. We believe that P@N,
specialized on the top-level folder labels, reflects the natural
user behavior of considering these labels as the most impor-
tant for hierarchy navigation. We use P@3, P@5, P@7 and
P@10 since the lazy users does not like to browse a wider
folder hierarchy.

Benefits of using Dmoz. The Dmoz index acts as a rank-
ing engine for driving the selection of the best gapped sen-
tences as folder labels. This engine produces both a sig-
nificative boost of P@N and an increase in the number of
relevant top-level labels. In our experiments we noticed this
phenomenon on a very large set of queries (see Fig. 11).

Figure 11: P@N using the Dmoz index

Benefits of using anchor-text index. This index was
introduced to enrich the pages that do not have a good tex-
tual description, or belong to the web frontier reached by
the spiders. We have in this set also the top authorities
which are described well by many other sites [18]. In Fig. 12
we report different values of P@N for the query “Yahoo”,
using or not using the anchor-text index. It may be ob-
served a nice phenomenon common to many queries: The
anchor-texts increase P@N for the lower values of N.

Figure 12: P@N using the Anchor index

Benefits of using multiple engines. Multiple engines
offer a better coverage of the web because of the low over-
lap of current search engines [4]. Usually this is seen as a
limitation, rather than a resource, because of the difficulty
in combining their multiple ranked lists. Fig. 13 reports a
different view on this issue: the use of query results com-
ing from many search engines produces a more detailed and
meaningful labeled folder hierarchy. This may better help
the user in exploiting the various forms of personalization
offered by SnakeT.

Figure 13: Number of top levels folders

Benefits of using gapped sentences as folder labels.
Since some software uses contiguous sentences as folder la-
bels (see Carrot2 and [34]), we tried to evaluate the im-
pact of SnakeT’s gapped sentences on the meaningfulness
of the selected labels. We studied the distribution of the
gaps for the most relevant pair of words within the snippets
of our dataset. Fig. 14 reports the distribution, in loga-
rithmic scale, of four relevant word-pairs for the query “car
rental” within different text gaps. Due to these experimen-
tal observations, SnakeT adopts a maximum gap of four for
generating the gapped sentences.
We are left with the study on the overall performance of
SnakeT. Here, we comment on the most salient aspects
and refer to Table 19 for details.
Label precision over our dataset. For all 77 queries
composing our dataset (Sect. 5.2), we achieved an aver-
age precision over the top-level folder labels of P@3=91%,
P@5=83%, P@7=78% and P@10=79%, see Fig. 15.
Number of top-level labels. SnakeT was tuned to pro-
duce only meaningful top-level labels and to discard those

808



Figure 14: Log-distribution of relevant word pairs

Figure 15: P@N on our dataset

below a fixed rank. Therefore not all the queries produce
ten top-level labels (and hence ten top-level folders). In
Fig. 16 we report the exact number of generated top-level
labels (folders) for all the 77 queries of our dataset. Notice
that all queries produce at least three, and many of them
produce up to ten, top-level labels.

Figure 16: Number of queries generating N top-level
labels in our dataset (TopLabels@N)

Precision over the personalized results. In sect. 3.1
we described the ranking adopted by SnakeT to aggregate
the results of the 16 search engines, and in sect. 4 we de-
scribed how SnakeT personalizes the search results. We
studied how the precision changes when SnakeT’s person-
alization is applied. We used over the snippets the following
precision measure: P@Nsnippets = MS@N

N
, where MS@N

is the number of snippets which have been manually tagged
relevant among the N top-snippets returned by SnakeT’s
personalization. We measured an increase in P@Nsnippet of
about 22% averaged over N and over our dataset of queries.
In Fig. 17 we compare P@Nsnippets for personalized vs. un-
personalized results on the query “divx”.
Number of web snippets contained into folders. The
weight of a folder is the number of snippets it contains. A hi-
erarchy is defined weight balanced if nodes at the same level
have comparable weights. In Fig. 18 we report the distribu-
tion of the weights for the top-level folders generated for the

Figure 17: P@N over the snippets for “divx”

query “data mining”. For space constrains, we expanded
only the top-folder “Software”. Notice that SnakeT’s hi-
erarchy is balanced, and this phenomenon occurs on many
queries of our dataset. We remark that a good balance is
crucial for personalization since it enforces the folder hier-
archy to equally detail all the concepts behind the query.

Figure 18: Covering Distribution for “data mining”

6. CONCLUSION
SnakeT is a unifying hierarchical web-snippet clustering

system with a web interface for web search, books, news and
blog domains. Space constraints prevented us to describe
the extension of SnakeT to the last three domains. Readers
can nonetheless check on-line these features. Given the ex-
tensive experiments executed on SnakeT and the engineer-
ing of its modules, we can state that its time performance
and quality of the labeled folder hierarchy are comparable to
Vivisimo but SnakeT is open-source. In addition, SnakeT
provides an innovative form of personalized ranking that is
fully adaptive to user needs, privacy preserving and scalable
to the number of users.

7. REFERENCES
[1] http://labs.google.com/personalized.
[2] http://mysearch.yahoo.com/.

[3] G. Attardi, A. Gulli, and F. Sebastiani. Theseus:
categorization by context. In WWW8, 1999.

[4] K. Bharat and A. Broder. A technique for measuring the
relative size and overlap of public web search engines. In
WWW7, 1998.

809



[5] A. Broder. A taxonomy of web search. In SIGIR Forum 36,
2002.

[6] C. Carpineto and G. Romano. Concept Data Analysis:
Theory and Applications. John Wiley & Sons, 2004.

[7] H. Chen and S. T. Dumais. Bringing order to the web:
automatically categorizing search results. In SIGCHI00.

[8] P. A. Chirita, D. Olmedilla, and W. Nejdl. PROS: A
personalized ranking platform for web search. In Int. Conf.
on Adaptive Hypermedia and Web-based Syst., 2004.

[9] SnakeT Dataset. http://roquefort.di.unipi.it/∼gulli/
listAllowed/testSnakeT/.

[10] B. Fung, K. Wang, and M. Ester. Large hierarchical
document clustering using frequent itemsets. In SDM03.

[11] F. Giannotti, M. Nanni, and D. Pedreschi. Webcat:
Automatic categorization of web search results. In SEBD03.

[12] J. Grabmeier and A. Rudolph. Techniques of cluster
algorithms in data mining. In Data Mining and Knowledge
Discovery, volume 6(4), pages 303–360, 2002.

[13] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On
clustering validation techniques. In JIIS, 2001.

[14] T. Haveliwala. Topic-sensitive pagerank. In WWW12, 2002.

[15] M. A. Hearst and J. O. Pedersen. Reexamining the cluster
hypothesis: Scatter/gather on retrieval results. In
SIGIR-96.

[16] G. Jeh and J. Widom. Scaling personalized Web search. In
WWW13, 2003.

[17] Z. Jiang, A. Joshi, R. Krishnapuram, and L. Yi. Retriever:
Improving web search engine results using clustering. In
Managing Business with Electronic Commerce 02.

[18] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In JASM, 1999.

[19] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and
R. Krishnapuram. A hierarchical monothetic document
clustering algorithm for summarization and browsing
search results. In WWW13, 2004.

[20] D. J. Lawrie. Language Models for Hierarchical
Summarization. PhD thesis, Amherst, 2003.

[21] D. J. Lawrie and W. B. Croft. Generating hiearchical
summaries for web searches. In SIGIR03.

[22] Y. S. Maarek, R. Fagin, I. Z. Ben-Shaul, and D. Pelleg.
Ephemeral document clustering for web applications.
Technical Report RJ 10186, IBM Research, 2000.

[23] M. Meila. Comparing clusterings. Technical Report 418,
University of Washington, 2002.

[24] Javed Mostafa. Seeking better web searches. Scientific
American, February 2005.

[25] S. Osinski and D. Weiss. Conceptual clustering using lingo
algorithm: Evaluation on open directory project data. In
IIPWM04, 2004.

[26] SnakeT Test Results. http:
//roquefort.di.unipi.it/∼gulli/listAllowed/testing/.

[27] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw Hill, 1983.

[28] http://www.searchenginelowdown.com/2004/10/
web-20-exclusive-demonstration-of.html.

[29] http://www.betanews.com/article/
Microsoft Tests Search Clustering/1106319504.

[30] Y. Wang and M. Kitsuregawa. On combining link and
contents information for web page clustering. In DEXA02.

[31] D. Weiss and J. Stefanowski. Web search results clustering
in polish: Experimental evaluation of carrot. In IIS03.

[32] Y. Wu and X. Chen. Extracting features from web search
returned hits for hierarchical classification. In IKE03.

[33] O. Zamir and O. Etzioni. Grouper: a dynamic clustering
interface to Web search results. In WWW8, 1999.

[34] H. Zeng, Q. He, Z. Chen, and W. Ma. Learning to cluster
web search results. In SIGIR04.

[35] D. Zhang and Y. Dong. Semantic, hierarchical, online
clustering of web search results. In WIDM01.

QUERIES M@3 M@5 M@7 M@10

adsl 3 4 6
aids 3 5
airline flight tracking 3
allergy 3 5 7 10
asthma 3 5 7 10
athens 2 2 3
avril lavigne 3 5 6 8
bats 3 4 6 6
bible 3 5 6 8
britney spears 3 5 7 10
bush 3 4
christina aguillera 3
data mining 3 5 7 10
david beckham 2 4 6 8
divx 3 5
dragon ball 3 3 5 8
dvd 3 5 7 10
dylan dog 3 3 3 5
eminem 3 5 7
fbi 3 5 7
final fantasy 3 5 7 10
final ipo 1 1 3
firewall 3 5 7
google 3 5
grande fratello 3 5 7 8
guppy 3 3 4
halloween 3 4 5 6
harry potter 3 5 7 10
hurricane 3 5 7
ikea 2 2 2
iraq 3 4 6 9
jaguar 3 4 6
janet jackson 3 4 4 7
java 3 5 7 10
jennifer lopez 3 5 6
kazaa 3 4 4
las vegas 3 5 6 6
madonna 3 5 7 9
marjuiana 2 4 6 9
matrix 2 2 4 7
michelle vieth 3 4 4
morpheus 3 5 7 9
mousetrap 3 3 5 6
movie 3 5 6 9
mp3 3
music 3 5 7 10
napster 3 4
nasa 2
news 2 3 4 4
new york 3 5 5 6
nokia suonerie 2
nostradamus 3 4 4
pagerank 3
perl 3 4 6 9
pink 2 3 3
pisa 2 3 3
pokemon 2 3 5
retrovirus 2 3 3 5
sailor moon 3 5 5 5
samba 3 5 6 7
search 2 4 6
seti 2 3 5
shakira 3 4 6
silvio berlusconi 2 4 4
simpson 2 4 4 7
skateboard 3 5 6 9
sony 3 5 7
spiderman 2 3 4 7
tattos 3 5 7 9
terrorism 3 5 7 10
time 3 5 6 8
travel 3 5 7
vasco rossi 3 4 4 6
waterloo 3 5 6 7
winmx 2 2
wtc 3 3
wwf 3 4 6 7

P@3 P@5 P@7 P@10
91% 83% 78% 79%

Figure 19: M@N and P@N for SnakeT ’s dataset

810


