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Strong Regularities in World Wide Web Surfing
Bernardo A. Huberman, Peter L. T. Pirolli, James E. Pitkow,

Rajan M. Lukose

One of the most common modes of accessing information in the World Wide Web is
surfing from one document to another along hyperlinks. Several large empirical studies
have revealed common patterns of surfing behavior. A model that assumes that users
make a sequence of decisions to proceed to another page, continuing as long as the
value of the current page exceeds some threshold, yields the probability distribution for
the number of pages that a user visits within a given Web site. This model was verified
by comparing its predictions with detailed measurements of surfing patterns. The model
also explains the observed Zipf-like distributions in page hits observed at Web sites.

The exponential growth of the World
Wide Web is making it the standard infor-
mation system for an increasing segment of
the world’s population. The Web allows
inexpensive and fast access to unique and
novel services, including electronic com-
merce, information resources, and enter-
tainment, provided by individuals and in-
stitutions scattered throughout the world
(1). Despite the advantages of this new
medium, the Internet still fails to serve the
needs of the user community in a number of
ways. Surveys of Web users find that slow
access and inability to find relevant infor-
mation are the two most frequently report-
ed problems (2). The slow access is at least
in part a result of congestion (3), whereas
the difficulty in finding useful information
is related to the balkanization of the Web
structure (4). Because it is difficult to solve
this fragmentation problem by designing an
effective and efficient classification scheme,
an alternative approach is to seek regulari-
ties in user patterns that can then be used to
develop technologies for increasing the
density of relevant data for users.

A common way of finding information
on the Web is through query-based search
engines, which enable quick access to in-
formation that is often not the most rele-
vant. This lack of relevance is partly attrib-
utable to the impossibility of cataloging an
exponentially growing amount of informa-
tion in ways that anticipate users’ needs.

But because the Web is structured as a
hypermedia system, in which documents are
linked to one another by authors, it also
supports an alternative and effective mode
of use in which users surf from one docu-
ment to another along hypermedia links
that appear relevant to their interests.

Here, we describe several strong regular-
ities of Web user surfing patterns discovered
through extensive empirical studies of dif-
ferent user communities. These regularities
can be described by a law of surfing, derived
below, that determines the probability dis-
tribution of the depth—that is, the number
of pages a user visits within a Web site. In
conjunction with a spreading activation al-
gorithm, the law can be used to simulate the
surfing patterns of users on a given Web
topology. This leads to accurate predictions
of page hits. Moreover, it explains the ob-
served Zipf-like distributions of page hits to
Web sites (5).

We start by deriving the probability
P(L) of the number of links L that a user
follows in a Web site. This can be done by
considering that there is value in each page
a user visits, and that clicking on the next
page assumes that it will be valuable as well.
Because the value of the next page is not
certain, we can assume that it is stochasti-
cally related to the previous one. In other
words, the value of the current page VL is
the value of the previous one VL21 plus or
minus a random term. Thus, the page values
can be written as

VL 5 VL21 1 εL (1)

where the values εL are independent and
identically distributed Gaussian random
variables. A particular sequence of page val-
uations is a realization of a random process
and thus is different for each user. Within
this formulation, an individual will continue
to surf until the expected cost of continuing
is perceived to be larger than the discounted
expected value of the information to be
found in the future. This can be thought of
as a real option in financial economics, for
which it is well known that there is a thresh-
old value for exercising the option to con-
tinue (6, 7). Even if the value of the current
page is negative, it may be worthwhile to
proceed, because a collection of high-value
pages may still be found. If the value is
sufficiently negative, however, then it is no
longer worth the risk to continue. That is,
when VL falls below some threshold value, it
is optimal to stop.

The number of links a user follows before
the page value first reaches the stopping
threshold is a random variable L. For the
random walk of Eq. 1, the probability dis-
tribution of first passage times to a thresh-
old is given asymptotically by the two-pa-
rameter inverse Gaussian distribution

P(L) 5 Î l

2pL3 expF2l(L 2 m)2

2m2L G (2)

(8), with mean E(L) 5 m and variance
Var(L) 5 m3/l, where l is a scale parameter.
This distribution has two characteristics
worth stressing in the context of user surfing
patterns. First, it has a very long tail, which
extends much farther than that of a normal
distribution with comparable mean and vari-
ance. This implies a finite probability for
events that would be unlikely if described by
a normal distribution. Consequently, large
deviations from the average number of user
clicks computed at a site will be observed.
Second, because of the asymmetry of the
distribution function, the typical behavior of
users will not be the same as their average
behavior. Thus, because the mode is lower
than the mean, care must be exercised with
available data on the average number of
clicks, as this average overestimates the typ-
ical depth being surfed.

To test the validity of Eq. 2, we analyzed
data collected from a representative sample
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of America Online (AOL) Web users. For
each of 5 days (29 and 30 November and
1, 3, and 5 December 1997), the entire
activity of one of AOL’s caching proxies
was instrumented to record an anonymous
but unique user identifier, the time of
each URL (uniform resource locator) re-
quest, and the requested URL. For com-
parison with the predicted distribution, a
user who starts surfing at a particular site,
such as www.sciencemag.org, is said to have
stopped surfing after L links as soon as he or
she requests a page from a different Web site.
For this analysis, if the user later returned to
that site, a new length count L was started.
Requests for embedded media (such as imag-
es) were not counted.

On 5 December 1997, the 23,692 AOL
users in our sample made 3,247,054 page
requests from 1,090,168 Web sites. The mea-
sured cumulative distribution function
(CDF) of the depth L for that day is shown
in Fig. 1. Superimposed is the predicted func-
tion from the inverse Gaussian distribution
fitted by the method of moments (8). To test
the quality of the fit, we analyzed a quantile-
quantile against the fitted distribution. Both
techniques, along with a study of the regres-
sion residuals, confirmed the strong fit of the
empirical data to the theoretical distribu-
tion. The fit was significant at the P , 0.001
level and accounted for 99% of the variance.
Although the average number of pages
surfed at a site was almost three, users typi-
cally requested only one page. Other AOL
data from different dates showed the same
strength of fit to the inverse Gaussian with
nearly the same parameters.

For further confirmation of the model,
we considered the simplest alternative hy-
pothesis, in which a user at each page con-
ducts an independent Bernoulli trial to
make a stopping decision. This led to a
geometric distribution of depths, which was
found to be a poor fit to the data.

We also examined the navigational pat-
terns of the Web user population at Georgia
Institute of Technology for a period of 3
weeks, starting on 3 August 1994. The data
were collected from an instrumented version
of the National Center for Supercomputing
Applications’ Xmosaic that was deployed
across the students, faculty, and staff of the
College of Computing (9). One hundred and
seven users (67% of those invited) chose to
participate in the experiment. The instru-
mentation of Xmosaic recorded all user inter-
face events. Of all the collected events, 73%
were navigational, resulting in 31,134 page
requests. As with the AOL experiment, the
surfing depth of users was calculated across all
visits to each site for the duration of the
study. For the combined data, the mean num-
ber of clicks was 8.32 and the variance was
2.77. Comparison of the quantile-quantile,

the CDF, and a regression analysis of the
observed data against an inverse Gaussian
distribution of same mean and variance con-
firmed the ability of the law of surfing to fit
the data (R2 5 0.95, P , 0.001). Hence, the
model was able to fit surfing behavior with
data sets from diverse communities of users,
several years apart, who used different brows-
ers and connection speeds.

An interesting implication of the law of
surfing can be obtained by taking loga-
rithms on both sides of Eq. 2, which yields

log P(L) 5 2
3
2

log L 2
l(L 2 m)2

2m2L

1 logSÎ l

2pD (3)

That is, a log-log plot shows a straight line
whose slope approximates 3/2 for small values
of L and large values of the variance. As L
gets larger, the second term provides a down-
ward correction. Thus, Eq. 3 implies that, up
to a constant given by the third term, the
probability of finding a group surfing at a
given level scales inversely in proportion to
its depth, P(L) } L23/2. This Pareto scaling
relation was verified by plotting the available
data on a logarithmic scale. Figure 2 shows
that the inverse proportionality holds well
over a range of depths.

The previous data validated the law of
surfing for a population of users who had no
constraints on the Web sites they visited.
We also considered the case of surfing within

a single large Web site, which is important
from the point of view of site design. The site
used was the Xerox Corporation’s external
Web site (www.xerox.com). During the pe-
riod 23 to 30 August 1997, the Xerox site
consisted of 8432 HTML documents and
received an average of 165,922 requests per
day. The paths of individual users were re-
constructed by a set of heuristics that used
unique identifiers (“cookies”), when present,
or otherwise used the topology of the site
along with other information to disambigu-
ate users behind proxies. Automatic pro-
grams that request the entire contents of the
site (“spiders”) were removed from the anal-
ysis. Additionally, a stack-based history
mechanism was used to infer pages cached
either by the client or by intermediary cach-
es. This resulted in a data set consisting of
the full path of users and the number of
clicks performed at the Xerox Web site.

Figure 3 shows the CDF plot of the
Xerox Web site for 26 August 1997 against
the fitted inverse Gaussian defined by Eq. 2.
The mean number of clicks was 3.86, with a
variance of 6.08 and a maximum of 95
clicks. As with the client path distributions,
both the quantile-quantile and the CDF
plots of the site data showed a strong fit to
Eq. 2. Moreover, these results were very
consistent across all the days in the study.

We next describe how Eq. 2 (in conjunc-
tion with a spreading activation algorithm)
can predict the number of hits for each page
in a Web site, a quantity of interest in elec-
tronic commerce. Spreading activation refers

Fig. 1. The CDF of AOL users as a
function of the number of surfing clicks.
The observed data were collected on 5
December 1997 from a representative
sample of 23,692 AOL users who
made 3,247,054 clicks. The fitted in-
verse Gaussian distribution has a mean
of m 5 2.98 and l 5 6.24.

Fig. 2. The frequency distribution of
surfing clicks on log-log scales. Data
collected from the Georgia Institute of
Technology, August 1994.
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to a class of algorithms that propagate nu-
merical values (or activation levels) among
the connected nodes of a graph (10). Their
application ranges from models of human
memory (11) and semantics (12) to informa-
tion retrieval (13). In the context of the
Web, the nodes correspond to pages and the
arcs to the hyperlinks among them, so that
spreading activation simulates the flow of
users through a Web site.

Consider a collection of n Web pages,
each indexed by i 5 1, 2, . . ., n, and con-
nected by hyperlink edges to form a graph.
The surfing activity of users can be simulat-
ed by assigning a weight, Sj,i, between the
ith and jth node. This weight can be inter-
preted as the fraction of continuing users at
node i who proceed to node j if SjSj,i 5 1,
where the sum is over all the nodes to node
i by an edge. Let fL be the fraction of users
who, having surfed along L 2 1 links, con-
tinue to surf to depth L. If the activation
value Ni,L is defined as the number of users
who are at node i after surfing through L
clicks, the resulting expression is

Ni,L11 5 fL O
j

Si,jNj,l (4)

The fraction fL is derived from Eq. 2; that is,
in a group of users fL is equal to the ratio of
the number of users who surf for L or more
links to the number who surf for L 2 1 or
more links. In terms of F(L,m,l), the CDF
of the inverse Gaussian, it is given by

fL 5
1 2 F(L,m,l)

1 2 F(L 2 1,m,l)
(5)

With this definition, Eq. 4 can be iterated
from initial conditions Ni,1. After most of
the surfers have stopped, the predicted ag-
gregate number of hits at each page is sim-
ply the sum over all iterations for each page.

Figure 4 shows the observed and predict-
ed daily average number of hits per page for
the Xerox corporate Web site data de-
scribed above. Equation 4 was initialized
with estimates from the data of the number
of users who started surfing at each page i,
Ni,1, and the proportion of users who surfed
from each page i to connected pages j, Si,j.
We used the inverse Gaussian estimated in
Fig. 3 for the Xerox site to compute fL and
iterated Eq. 4 for L 5 15 levels of surfing.
Figure 4 shows that the hits predicted by
spreading activation are highly correlated
with the observed hits (r 5 0.995).

This algorithm can also be used for a
number of interesting Web applications.
For example, if a Web site were to be reor-
ganized, spreading activation plus the law of
surfing could give an indication of the ex-
pected usage. Alternatively, it may be pos-
sible to automatically reorganize the Web
site structure in order to obtain a desired hit
pattern.

We also used a spreading activation mod-
el to address another universal finding in
studies of Web activity, that of a Zipf-like
distribution (14) in the number of hits per
page. We ran spreading activation simula-
tions on random graphs of 100 nodes each,
with an average of five links per node, using
various initial conditions. The resulting
probability distribution of the number of hits

received over the collection of pages fol-
lowed a Zipf’s law, in agreement with ob-
served data (5).

These results show that surfing patterns
on the Web display strong statistical reg-
ularities that can be described by a univer-
sal law. In addition, the success of the
model points to the existence of utility-
maximizing behavior underlying surfing. Be-
cause of the Web’s digital nature and great
use, it is relatively easy to obtain online data
that could reveal more novel patterns of
information foraging. For example, these
studies could be extended to determine the
relation between the characteristics of differ-
ent user communities and the law of surfing
parameters.

As the world becomes increasingly con-
nected by the Internet, the discovery of new
patterns in the use of the Web can throw a
timely light on the growth and develop-
ment of this new medium. This is important
because the sheer reach and structural com-
plexity of the Web makes it an ecology of
knowledge, with relationships, information
“food chains,” and dynamic interactions
that could soon become as rich as, if not
richer than, many natural ecosystems.
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Fig. 3. CDF for the number of users
surfing through the Xerox Web site
(www.xerox.com) on 26 August 1997
as a function of the number of clicks.

Fig. 4. Histogram of the predicted
number of visits per page (hits) to the
Xerox Web site versus the observed
number of visits generated by spread-
ing activation simulations on a log-log
scale.
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