
Implicit User Modeling for Personalized Search

Xuehua Shen, Bin Tan, ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign

ABSTRACT
Information retrieval systems (e.g., web search engines) are criti-
cal for overcoming information overload. A major deficiency of
existing retrieval systems is that they generally lack user model-
ing and are not adaptive to individual users, resulting in inherently
non-optimal retrieval performance. For example, a tourist and a
programmer may use the same word “java” to search for different
information, but the current search systems would return the same
results. In this paper, we study how to infer a user’s interest from
the user’s search context and use the inferred implicit user model
for personalized search . We present a decision theoretic framework
and develop techniques for implicit user modeling in information
retrieval. We develop an intelligent client-side web search agent
(UCAIR) that can perform eager implicit feedback, e.g., query ex-
pansion based on previous queries and immediate result reranking
based on clickthrough information. Experiments on web search
show that our search agent can improve search accuracy over the
popular Google search engine.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models, Rel-
evance feedback, Search Process

General Terms
Algorithms

Keywords
implicit feedback, personalized search, user model, interactive re-
trieval

1. INTRODUCTION
Although many information retrieval systems (e.g., web search

engines and digital library systems) have been successfully deployed,
the current retrieval systems are far from optimal. A major defi-
ciency of existing retrieval systems is that they generally lack user
modeling and are not adaptive to individual users [17]. This in-
herent non-optimality is seen clearly in the following two cases:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

(1) Different users may use exactly the same query (e.g., “Java”) to
search for different information (e.g., the Java island in Indonesia or
the Java programming language), but existing IR systems return the
same results for these users. Without considering the actual user, it
is impossible to know which sense “Java” refers to in a query. (2)
A user’s information needs may change over time. The same user
may use “Java” sometimes to mean the Java island in Indonesia
and some other times to mean the programming language. With-
out recognizing the search context, it would be again impossible to
recognize the correct sense.

In order to optimize retrieval accuracy, we clearly need to model
the user appropriately and personalize search according to each in-
dividual user. The major goal of user modeling for information
retrieval is to accurately model a user’s information need, which is,
unfortunately, a very difficult task. Indeed, it is even hard for a user
to precisely describe what his/her information need is.

What information is available for a system to infer a user’s infor-
mation need? Obviously, the user’s query provides the most direct
evidence. Indeed, most existing retrieval systems rely solely on
the query to model a user’s information need. However, since a
query is often extremely short, the user model constructed based
on a keyword query is inevitably impoverished . An effective way
to improve user modeling in information retrieval is to ask the user
to explicitly specify which documents are relevant (i.e., useful for
satisfying his/her information need), and then to improve user mod-
eling based on such examples of relevant documents. This is called
relevance feedback, which has been proved to be quite effective for
improving retrieval accuracy [19, 20]. Unfortunately, in real world
applications, users are usually reluctant to make the extra effort to
provide relevant examples for feedback [11].

It is thus very interesting to study how to infer a user’s infor-
mation need based on anyimplicit feedback information, which
naturally exists through user interactions and thus does not require
any extra user effort. Indeed, several previous studies have shown
that implicit user modeling can improve retrieval accuracy. In [3],
a web browser(Curious Browser)is developed to record a user’s
explicit relevance ratings of web pages (relevance feedback) and
browsing behavior when viewing a page, such as dwelling time,
mouse click, mouse movement and scrolling (implicit feedback).
It is shown that the dwelling time on a page, amount of scrolling
on a page and the combination of time and scrolling have a strong
correlation with explicit relevance ratings, which suggests that im-
plicit feedback may be helpful for inferring user information need.
In [10], user clickthrough data is collected as training data to learn
a retrieval function, which is used to produce a customized ranking
of search results that suits a group of users’ preferences. In [25],
the clickthrough data collected over a long time period is exploited
through query expansion to improve retrieval accuracy.

While a user may have general long term interests and prefer-
ences for information, often he/she is searching for documents to
satisfy an “ad hoc” information need, which only lasts for a short
period of time; once the information need is satisfied, the user
would generally no longer be interested in such information. For
example, a user may be looking for information about used cars
in order to buy one, but once the user has bought a car, he/she is
generally no longer interested in such information. In such cases,
implicit feedback information collected over a long period of time
is unlikely to be very useful, but the immediate search context and
feedback information, such as which of the search results for the
current information need are viewed, can be expected to be much
more useful. Consider the query “Java” again. Any of the follow-
ing immediate feedback information about the user could poten-
tially help determine the intended meaning of “Java” in the query:
(1) The previous query submitted by the user is “hashtable” (as op-
posed to, e.g., “travel Indonesia”). (2) In the search results, the user
viewed a page where words such as “programming”, “software”,
and “applet” occur many times.

To the best of our knowledge, how to exploit such immediate
and short-term search context to improve search has so far not been
well addressed in the previous work. In this paper, we study how to
construct and update a user model based on theimmediatesearch
context and implicit feedback information and use the model to im-
prove the accuracy ofad hocretrieval. In order tomaximallyben-
efit the user of a retrieval system through implicit user modeling,
we propose to perform “eager implicit feedback”. That is, as soon
as we observe any new piece of evidence from the user, we would
update the system’s belief about the user’s information need and
respond with improved retrieval results based on the updated user
model. We present a decision-theoretic framework for optimizing
interactive information retrieval based on eager user model updat-
ing, in which the system responds to every action of the user by
choosing a system action to optimize a utility function. In a tradi-
tional retrieval paradigm, the retrieval problem is to match a query
with documents and rank documents according to their relevance
values. As a result, the retrieval process is a simple independent
cycle of “query” and “result display”. In the proposed new retrieval
paradigm, the user’s search context plays an important role and the
inferred implicit user model is exploited immediately to benefit the
user. The new retrieval paradigm is thus fundamentally different
from the traditional paradigm, and is inherently more general.

We further propose specific techniques to capture and exploit two
types of implicit feedback information: (1) identifying related im-
mediately preceding query and using the query and the correspond-
ing search results to select appropriate terms to expand the current
query, and (2) exploiting the viewed document summaries to im-
mediately rerank any documents that have not yet been seen by the
user. Using these techniques, we develop a client-side web search
agent UCAIR (User-Centered Adaptive Information Retrieval) on
top of a popular search engine (Google). Experiments on web
search show that our search agent can improve search accuracy over
Google. Since the implicit information we exploit already naturally
exists through user interactions, the user does not need to make any
extra effort. Thus the developed search agent can improve existing
web search performance without additional effort from the user.

The remaining sections are organized as follows. In Section 2,
we discuss the related work. In Section 3, we present a decision-
theoretic interactive retrieval framework for implicit user modeling.
In Section 4, we present the design and implementation of an in-
telligent client-side web search agent (UCAIR) that performs eager
implicit feedback. In Section 5, we report our experiment results
using the search agent. Section 6 concludes our work.

2. RELATED WORK
Implicit user modeling for personalized search has been stud-

ied in previous work, but our work differs from all previous work
in several aspects: (1) We emphasize the exploitation ofimmedi-
atesearch context such as the related immediately preceding query
and the viewed documents in the same session, while most previous
work relies on long-term collection of implicit feedback informa-
tion [25]. (2) We perform eager feedback and bring the benefit of
implicit user modeling as soon as any new implicit feedback infor-
mation is available, while the previous work mostly exploits long-
term implicit feedback [10]. (3) We propose a retrieval framework
to integrate implicit user modeling with the interactive retrieval pro-
cess, while the previous work either studies implicit user modeling
separately from retrieval [3] or only studies specific retrieval mod-
els for exploiting implicit feedback to better match a query with
documents [23, 27, 22]. (4) We develop and evaluate a personal-
ized Web search agent with online user studies, while most existing
work evaluates algorithms offline without real user interactions.

Currently some search engines provide rudimentary personaliza-
tion, such as Google Personalized web search [6], which allows
users to explicitly describe their interests by selecting from pre-
defined topics, so that those results that match their interests are
brought to the top, and My Yahoo! search [16], which gives users
the option to save web sites they like and block those they dis-
like. In contrast, UCAIR personalizes web search through implicit
user modeling without any additional user efforts. Furthermore, the
personalization of UCAIR is provided on the client side. There are
two remarkable advantages on this. First, the user does not need to
worry about the privacy infringement, which is a big concern for
personalized search [26]. Second, both the computation of person-
alization and the storage of the user profile are done at the client
side so that the server load is reduced dramatically [9].

There have been many works studying user query logs [1] or
query dynamics [13]. UCAIR makes direct use of a user’s query
history to benefit the same userimmediatelyin the same search
session. UCAIR first judges whether two neighboring queries be-
long to the same information session and if so, it selects terms from
the previous query to perform query expansion.

Our query expansion approach is similar to automatic query ex-
pansion [28, 15, 5], but instead of using pseudo feedback to expand
the query, we use user’s implicit feedback information to expand
the current query. These two techniques may be combined.

3. OPTIMIZATION IN INTERACTIVE IR
In interactive IR, a user interacts with the retrieval system through

an “action dialogue”, in which the system responds to each user ac-
tion with some system action. For example, the user’s action may
be submitting a query and the system’s response may be returning
a list of 10 document summaries. In general, the space of user ac-
tions and system responses and their granularities would depend on
the interface of a particular retrieval system.

In principle, every action of the user can potentially provide new
evidence to help the system better infer the user’s information need.
Thus in order to respond optimally, the system should useall the
evidence collected so far about the user when choosing a response.
When viewed in this way, most existing search engines are clearly
non-optimal. For example, if a user has viewed some documents on
the first page of search results, when the user clicks on the “Next”
link to fetch more results, an existing retrieval system would still
return the next page of results retrieved based on the original query
without considering the new evidence that a particular result has
been viewed by the user.

We propose to optimize retrieval performance by adapting sys-
tem responses based oneveryaction that a user has taken, and cast
the optimization problem as a decision task. Specifically, at any
time, the system would attempt to do two tasks: (1) User model
updating: Monitor any useful evidence from the user regarding
his/her information need and update the user model as soon as such
evidence is available; (2) Improving search results: Rerank imme-
diately all the documents that the user has not yet seen, as soon
as the user model is updated. We emphasize eager updating and
reranking, which makes our work quite different from any existing
work. Below we present a formal decision theoretic framework for
optimizing retrieval performance through implicit user modeling in
interactive information retrieval.

3.1 A decision-theoretic framework
Let A be the set of all user actions andR(a) be the set of all

possible system responses to a user actiona ∈ A. At any time, let
At = (a1, ..., at) be the observed sequence of user actions so far
(up to time pointt) andRt−1 = (r1, ..., rt−1) be the responses that
the system has made responding to the user actions. The system’s
goal is to choose an optimal responsert ∈ R(at) for the current
user actionat.

LetM be the space of all possible user models. We further de-
fine a loss functionL(a, r,m) ∈ <, wherea ∈ A is a user action,
r ∈ R(a) is a system response, andm ∈ M is a user model.
L(a, r,m) encodes our decision preferences and assesses the op-
timality of responding withr when the current user model ism
and the current user action isa. According to Bayesian decision
theory, the optimal decision at timet is to choose a response that
minimizes the Bayes risk, i.e.,

r∗t = argmin
r∈R(at)

∫

M
L(at, r,mt)P (mt|U,D, At, Rt−1)dmt (1)

whereP (mt|U,D, At, Rt−1) is the posterior probability of the
user modelmt given all the observations about the userU we have
made up to timet.

To simplify the computation of Equation 1, let us assume that the
posterior probability massP (mt|U,D, At, Rt−1) is mostly con-
centrated on the modem∗

t = argmaxmt P (mt|U,D, At, Rt−1).
We can then approximate the integral with the value of the loss
function atm∗

t . That is,

r∗t ≈ argminr∈R(at)L(at, r,m
∗
t) (2)

wherem∗
t = argmaxmt P (mt|U,D, At, Rt−1).

Leaving aside how to define and estimate these probabilistic mod-
els and the loss function, we can see that such a decision-theoretic
formulation suggests that, in order to choose the optimal response
to at, the system should perform two tasks: (1) compute the cur-
rent user model and obtainm∗

t based on all the useful informa-
tion. (2) choose a responsert to minimize the loss function value
L(at, rt,m

∗
t). Whenat does not affect our belief aboutm∗

t , the
first step can be omitted and we may reusem∗

t−1 for m∗
t .

Note that our framework is quite general since we can poten-
tially model any kind of user actions and system responses. In most
cases, as we may expect, the system’s response is some ranking of
documents, i.e., for most actionsa, R(a) consists of all the pos-
sible rankings of the unseen documents, and the decision problem
boils down to choosing the best ranking of unseen documents based
on the most current user model. Whena is the action of submitting
a keyword query, such a response is exactly what a current retrieval
system would do. However, we can easily imagine that a more in-
telligent web search engine would respond to a user’s clicking of

the “Next” link (to fetch more unseen results) with a more opti-
mized ranking of documents based on any viewed documents in
the current page of results. In fact, according to our eager updating
strategy, we may even allow a system to respond to a user’s clicking
of browser’s “Back” button after viewing a document in the same
way, so that the user can maximally benefit from implicit feedback.
These are precisely what our UCAIR system does.

3.2 User models
A user modelm ∈ M represents what we know about the user

U , so in principle, it can contain any information about the user
that we wish to model. We now discuss two important components
in a user model.

The first component is a component model of the user’s informa-
tion need. Presumably, the most important factor affecting the opti-
mality of the system’s response is how well the response addresses
the user’s information need. Indeed, at any time, we may assume
that the system has some “belief” about what the user is interested
in, which we model through a term vector~x = (x1, ..., x|V |),
whereV = {w1, ..., w|V |} is the set of all terms (i.e., vocabulary)
andxi is the weight of termwi. Such a term vector is commonly
used in information retrieval to represent both queries and docu-
ments. For example, the vector-space model, assumes that both
the query and the documents are represented as term vectors and
the score of a document with respect to a query is computed based
on the similarity between the query vector and the document vec-
tor [21]. In a language modeling approach, we may also regard
the query unigram language model [12, 29] or the relevance model
[14] as a term vector representation of the user’s information need.
Intuitively, ~x would assign high weights to terms that characterize
the topics which the user is interested in.

The second component we may include in our user model is the
documents that the user has already viewed. Obviously, even if a
document is relevant, if the user has already seen the document, it
would not be useful to present the same document again. We thus
introduce another variableS ⊂ D (D is the whole set of documents
in the collection) to denote the subset of documents in the search
results that the user has already seen/viewed.

In general, at timet, we may represent a user model asmt =
(S, ~x, At, Rt−1), whereS is the seen documents,~x is the system’s
“understanding” of the user’s information need, and(At, Rt−1)
represents the user’s interaction history. Note that an even more
general user model may also include other factors such as the user’s
reading level and occupation.

If we assume that the uncertainty of a user modelmt is solely
due to the uncertainty of~x, the computation of our current estimate
of user modelm∗

t will mainly involve computing our best estimate
of ~x. That is, the system would choose a response according to

r∗t = argminr∈R(at)L(at, r, S, ~x∗, At, Rt−1) (3)

where~x∗ = argmax~x P (~x|U,D, At, Rt−1). This is the deci-
sion mechanism implemented in the UCAIR system to be described
later. In this system, we avoided specifying the probabilistic model
P (~x|U,D, At, Rt−1) by computing~x∗ directly with some existing
feedback method.

3.3 Loss functions
The exact definition of loss functionL depends on the responses,

thus it is inevitably application-specific. We now briefly discuss
some possibilities when the response is to rank all the unseen doc-
uments and present the topk of them. Letr = (d1, ..., dk) be the
top k documents,S be the set of seen documents by the user, and
~x∗ be the system’s best guess of the user’s information need. We

may simply define the loss associated withr as the negative sum
of the probability that each of thedi is relevant, i.e.,L(a, r,m) =

−∑k
i=1 P (relevant|di,m). Clearly, in order to minimize this

loss function, the optimal responser would contain thek docu-
ments with the highest probability of relevance, which is intuitively
reasonable.

One deficiency of this “top-k loss function” is that it is not sensi-
tive to the internal order of the selected topk documents, so switch-
ing the ranking order of a non-relevant document and a relevant one
would not affect the loss, which is unreasonable. To model rank-
ing, we can introduce a factor of the user model – the probability
of each of thek documents being viewed by the user,P (view|di),
and define the following “ranking loss function”:

L(a, r,m) = −
k∑

i=1

P (view|di)P (relevant|di,m)

Since in general, ifdi is ranked abovedj (i.e.,i < j), P (view|di) >
P (view|dj), this loss function would favor a decision to rank rel-
evant documents above non-relevant ones, as otherwise, we could
always switchdi with dj to reduce the loss value. Thus the sys-
tem should simply perform a regular retrieval and rank documents
according to the probability of relevance [18].

Depending on the user’s retrieval preferences, there can be many
other possibilities. For example, if the user does not want to see
redundant documents, the loss function should include some re-
dundancy measure onr based on the already seen documentsS.

Of course, when the response is not to choose a ranked list of
documents, we would need a different loss function. We discuss
one such example that is relevant to the search agent that we im-
plement. When a user enters a queryqt (current action), our search
agent relies on some existing search engine to actually carry out
search. In such a case, even though the search agent does not have
control of the retrieval algorithm, it can still attempt to optimize the
search results through refining the query sent to the search engine
and/or reranking the results obtained from the search engine. The
loss functions for reranking are already discussed above; we now
take a look at the loss functions for query refinement.

Let f be the retrieval function of the search engine that our agent
uses so thatf(q) would give us the search results using queryq.
Given that the current action of the user is entering a queryqt (i.e.,
at = qt), our response would bef(q) for someq. Since we have
no choice off , our decision is to choose a goodq. Formally,

r∗t = argminrtL(a, rt,m)

= argminf(q)L(a, f(q),m)

= f(argminqL(qt, f(q),m))

which shows that our goal is to findq∗ = argminqL(qt, f(q),m),
i.e., an optimal query that would give us the bestf(q). A different
choice of loss functionL(qt, f(q),m) would lead to a different
query refinement strategy. In UCAIR, we heuristically computeq∗

by expandingqt with terms extracted fromrt−1 wheneverqt−1 and
qt have high similarity. Note thatrt−1 andqt−1 are contained in
m as part of the user’s interaction history.

3.4 Implicit user modeling
Implicit user modeling is captured in our framework through

the computation of~x∗ = argmax~x P (~x|U,D, At, Rt−1), i.e., the
system’s current belief of what the user’s information need is. Here
again there may be many possibilities, leading to different algo-
rithms for implicit user modeling. We now discuss a few of them.

First, when two consecutive queries are related, the previous
query can be exploited to enrich the current query and provide more

search context to help disambiguation. For this purpose, instead of
performing query expansion as we did in the previous section, we
could also compute an updated~x∗ based on the previous query and
retrieval results. The computed new user model can then be used to
rank the documents with a standard information retrieval model.

Second, we can also infer a user’s interest based on the sum-
maries of the viewed documents. When a user is presented with a
list of summaries of top ranked documents, if the user chooses to
skip the firstn documents and to view the(n+1)-th document, we
may infer that the user is not interested in the displayed summaries
for the firstn documents, but is attracted by the displayed summary
of the (n + 1)-th document. We can thus use these summaries as
negative and positive examples to learn a more accurate user model
~x∗. Here many standard relevance feedback techniques can be ex-
ploited [19, 20]. Note that we should use the displayed summaries,
as opposed to the actual contents of those documents, since it is
possible that the displayed summary of the viewed document is
relevant, but the document content is actually not. Similarly, a dis-
played summary may mislead a user to skip a relevant document.
Inferring user models based on such displayed information, rather
than the actual content of a document is an important difference
between UCAIR and some other similar systems.

In UCAIR, both of these strategies for inferring an implicit user
model are implemented.

4. UCAIR: A PERSONALIZED
SEARCH AGENT

4.1 Design
In this section, we present a client-side web search agent called

UCAIR, in which we implement some of the methods discussed
in the previous section for performing personalized search through
implicit user modeling. UCAIR is a web browser plug-in1 that
acts as a proxy for web search engines. Currently, it is only im-
plemented for Internet Explorer and Google, but it is a matter of
engineering to make it run on other web browsers and interact with
other search engines.

The issue of privacy is a primary obstacle for deploying any real
world applications involving serious user modeling, such as per-
sonalized search. For this reason, UCAIR is strictly running as
a client-side search agent, as opposed to a server-side application.
This way, the captured user information always resides on the com-
puter that the user is using, thus the user does not need to release
any information to the outside. Client-side personalization also al-
lows the system to easily observe a lot of user information that may
not be easily available to a server. Furthermore, performing person-
alized search on the client-side is more scalable than on the server-
side, since the overhead of computation and storage is distributed
among clients.

As shown in Figure 1, the UCAIR toolbar has 3 major compo-
nents: (1) The (implicit) user modeling module captures a user’s
search context and history information, including the submitted
queries and any clicked search results and infers search session
boundaries. (2) The query modification module selectively im-
proves the query formulation according to the current user model.
(3) The result re-ranking module immediately re-ranks any unseen
search results whenever the user model is updated.

In UCAIR, we consider four basic user actions: (1) submitting a
keyword query; (2) viewing a document; (3) clicking the “Back”
button; (4) clicking the “Next” link on a result page. For each
of these four actions, the system responds with, respectively, (1)
1UCAIR is available at: http://sifaka.cs.uiuc.edu/ir/ucair/download.html

Search
Engine
(e.g.,

 Google)
Search History Log

(e.g.,past queries,
clicked results)

Query
Modification

Result
Re-Ranking

User
Modeling

Result Buffer

UCAIR
User query

results

clickthrough…

Figure 1: UCAIR architecture

generating a ranked list of results by sending a possibly expanded
query to a search engine; (2) updating the information need model
~x; (3) reranking the unseen results on the current result page based
on the current model~x; and (4) reranking the unseen pages and
generating the next page of results based on the current model~x.

Behind these responses, there are three basic tasks: (1) Decide
whether the previous query is related to the current query and if so
expand the current query with useful terms from the previous query
or the results of the previous query. (2) Update the information
need model~x based on a newly clicked document summary. (3)
Rerank a set of unseen documents based on the current model~x.
Below we describe our algorithms for each of them.

4.2 Session boundary detection and query ex-
pansion

To effectively exploit previous queries and their corresponding
clickthrough information, UCAIR needs to judge whether two ad-
jacent queries belong to the same search session (i.e., detect ses-
sion boundaries). Existing work on session boundary detection is
mostly in the context of web log analysis (e.g., [8]), and uses sta-
tistical information rather than textual features. Since our client-
side agent does not have access to server query logs, we make ses-
sion boundary decisions based on textual similarity between two
queries. Because related queries do not necessarily share the same
words (e.g., “java island” and “travel Indonesia”), it is insufficient
to use only query text. Therefore we use the search results of the
two queries to help decide whether they are topically related. For
example, for the above queries “java island” and “travel Indone-
sia”’, the words “java”, “bali”, “island”, ”indonesia” and ”travel”
may occur frequently in both queries’ search results, yielding a high
similarity score.

We only use the titles and summaries of the search results to cal-
culate the similarity since they are available in the retrieved search
result page and fetching the full text of every result page would sig-
nificantly slow down the process. To compensate for the terseness
of titles and summaries, we retrieve more results than a user would
normally view for the purpose of detecting session boundaries (typ-
ically 50 results).

The similarity between the previous queryq′ and the current
queryq is computed as follows. Let{s′1, s′2, . . . , s′n′} and
{s1, s2, . . . , sn} be the result sets for the two queries. We use
the pivoted normalization TF-IDF weighting formula [24] to com-

pute a term weight vector~si for each resultsi. We define theav-
erage result~savg to be the centroid of all the result vectors, i.e.,
(~s1 + ~s2 + . . . + ~sn)/n. The cosine similarity between the two
average results is calculated as

~s′avg · ~savg/

√
~s′

2

avg · ~s2
avg

If the similarity value exceeds a predefined threshold, the two queries
will be considered to be in the same information session.

If the previous query and the current query are found to belong
to the same search session, UCAIR would attempt to expand the
current query with terms from the previous query and its search
results. Specifically, for each term in the previous query or the
corresponding search results, if its frequency in the results of the
current query is greater than a preset threshold (e.g. 5 results out
of 50), the term would be added to the current query to form an
expanded query. In this case, UCAIR would send this expanded
query rather than the original one to the search engine and return
the results corresponding to the expanded query. Currently, UCAIR
only uses the immediate preceding query for query expansion; in
principle, we could exploit all related past queries.

4.3 Information need model updating
Suppose at timet, we have observed that the user has viewed

k documents whose summaries ares1, ..., sk. We update our user
model by computing a new information need vector with a standard
feedback method in information retrieval (i.e., Rocchio [19]). Ac-
cording to the vector space retrieval model, each clicked summary
si can be represented by a term weight vector~si with each term
weighted by a TF-IDF weighting formula [21]. Rocchio computes
the centroid vector of all the summaries and interpolates it with the
original query vector to obtain an updated term vector. That is,

~x = α~q + (1− α)
1

k

k∑
i=1

~si

where~q is the query vector,k is the number of summaries the user
clicks immediately following the current query andα is a parameter
that controls the influence of the clicked summaries on the inferred
information need model. In our experiments,α is set to0.5. Note
that we update the information need model whenever the user views
a document.

4.4 Result reranking
In general, we want to rerank all the unseen results as soon as the

user model is updated. Currently, UCAIR implements reranking in
two cases, corresponding to the user clicking the “Back” button
and “Next” link in the Internet Explorer. In both cases, the current
(updated) user model would be used to rerank the unseen results so
that the user would see improved search results immediately.

To rerank any unseen document summaries, UCAIR uses the
standard vector space retrieval model and scores each summary
based on the similarity of the result and the current user information
need vector~x [21]. Since implicit feedback is not completely reli-
able, we bring up only a small number (e.g. 5) of highest reranked
results to be followed by any originally high ranked results.

Google result (user query = “java map”) UCAIR result (user query =“java map”)
previous query = “travel Indonesia” previous query = “hashtable”
expanded user query = “java map Indonesia” expanded user query = “java map class”

1 Java map projections of the world ... Lonely Planet - Indonesia Map Map (Java 2 Platform SE v1.4.2)
www.btinternet.com/ se16/js/mapproj.htm www.lonelyplanet.com/mapshells/... java.sun.com/j2se/1.4.2/docs/...

2 Java map projections of the world ... INDONESIA TOURISM : CENTRAL JAVA - MAP Java 2 Platform SE v1.3.1: Interface Map
www.btinternet.com/ se16/js/oldmapproj.htm www.indonesia-tourism.com/... java.sun.com/j2se/1.3/docs/api/java/...

3 Java Map INDONESIA TOURISM : WEST JAVA - MAP An Introduction to Java Map Collection Classes
java.sun.com/developer/... www.indonesia-tourism.com/ ... www.oracle.com/technology/...

4 Java Technology Concept Map IndoStreets - Java Map An Introduction to Java Map Collection Classes
java.sun.com/developer/onlineTraining/... www.indostreets.com/maps/java/ www.theserverside.com/news/...

5 Science@NASA Home Indonesia Regions and Islands Maps, Bali, Java, ... Koders - Mappings.java
science.nasa.gov/Realtime/... www.maps2anywhere.com/Maps/... www.koders.com/java/

6 An Introduction to Java Map Collection ClassesIndonesia City Street Map,... Hibernate simplifies inheritance mapping
www.oracle.com/technology/... www.maps2anywhere.com/Maps/... www.ibm.com/developerworks/java/...

7 Lonely Planet - Java Map Maps Of Indonesia tmap30.map Class Hierarchy
www.lonelyplanet.com/mapshells/ www.embassyworld.com/maps/... tmap.pmel.noaa.gov/...

8 ONJava.com: Java API Map Maps of Indonesia by Peter Loud Class Scope
www.onjava.com/pub/a/onjava/apimap/ users.powernet.co.uk/... jalbum.net/api/se/datadosen/util/Scope.html

9 GTA San Andreas : Sam Maps of Indonesia by Peter Loud Class PrintSafeHashMap
www.gtasanandreas.net/sam/ users.powernet.co.uk/mkmarina/indonesia/ jalbum.net/api/se/datadosen/...

10 INDONESIA TOURISM : WEST JAVA - MAP indonesiaphoto.com Java Pro - Union and Vertical Mapping of Classes
www.indonesia-tourism.com/... www.indonesiaphoto.com/... www.fawcette.com/javapro/...

Table 1: Sample results of query expansion

5. EVALUATION OF UCAIR
We now present some results on evaluating the two major UCAIR

functions: selective query expansion and result reranking based on
user clickthrough data.

5.1 Sample results
The query expansion strategy implemented in UCAIR is inten-

tionally conservative to avoid misinterpretation of implicit user mod-
els. In practice, whenever it chooses to expand the query, the ex-
pansion usually makes sense. In Table 1, we show how UCAIR can
successfully distinguish two different search contexts for the query
“java map”, corresponding to two different previous queries (i.e.,
“travel Indonesia” vs. “hashtable”). Due to implicit user modeling,
UCAIR intelligently figures out to add “Indonesia” and “class”,
respectively, to the user’s query “java map”, which would other-
wise be ambiguous as shown in the original results from Google
on March 21, 2005. UCAIR’s results are much more accurate than
Google’s results and reflect personalization in search.

The eager implicit feedback component is designed to immedi-
ately respond to a user’s activity such as viewing a document. In
Figure 2, we show how UCAIR can successfully disambiguate an
ambiguous query “jaguar” by exploiting a viewed document sum-
mary. In this case, the initial retrieval results using “jaguar” (shown
on the left side) contain two results about the Jaguar cars followed
by two results about the Jaguar software. However, after the user
views the web page content of the second result (about “Jaguar
car”) and returns to the search result page by clicking “Back” but-
ton, UCAIR automatically nominates two new search results about
Jaguar cars (shown on the right side), while the original two results
about Jaguar software are pushed down on the list (unseen from the
picture).

5.2 Quantitative evaluation
To further evaluate UCAIR quantitatively, we conduct a user

study on the effectiveness of the eager implicit feedback compo-
nent. It is a challenge to quantitatively evaluate the potential per-
formance improvement of our proposed model and UCAIR over
Google in an unbiased way [7]. Here, we design a user study,
in which participants would do normal web search and judge a
randomly and anonymously mixed set of results from Google and
UCAIR at the end of the search session; participants do not know
whether a result comes from Google or UCAIR.

We recruited 6 graduate students for this user study, who have
different backgrounds (3 computer science, 2 biology, and 1 chem-

<top>

<num> Number: 716

<title> Spammer arrest sue

<desc> Description: Have any spammers
been arrested or sued for sending unsolicited
e-mail?

<narr> Narrative: Instances of arrests,
prosecutions, convictions, and punishments
of spammers, and lawsuits against them are
relevant. Documents which describe laws to
limit spam without giving details of lawsuits
or criminal trials are not relevant.

</top>

Figure 3: An example of TREC query topic, expressed in a
form which might be given to a human assistant or librarian

istry). We use query topics from TREC2 2004 Terabyte track [2]
and TREC 2003 Web track [4] topic distillation task in the way to
be described below.

An example topic from TREC 2004 Terabyte track appears in
Figure 3. The title is a short phrase and may be used as a query
to the retrieval system. The description field provides a slightly
longer statement of the topic requirement, usually expressed as a
single complete sentence or question. Finally the narrative supplies
additional information necessary to fully specify the requirement,
expressed in the form of a short paragraph.

Initially, each participant would browse 50 topics either from
Terabyte track or Web track and pick 5 or 7 most interesting topics.
For each picked topic, the participant would essentially do the nor-
mal web search using UCAIR to find many relevant web pages by
using the title of the query topic as the initial keyword query. Dur-
ing this process, the participant may view the search results and
possibly click on some interesting ones to view the web pages, just
as in a normal web search. There is no requirement or restriction
on how many queries the participant must submit or when the par-
ticipant should stop the search for one topic. When the participant
plans to change the search topic, he/she will simply press a button

2Text REtrieval Conference: http://trec.nist.gov/

Figure 2: Screen shots for result reranking

to evaluate the search results before actually switching to the next
topic.

At the time of evaluation, 30 top ranked results from Google and
UCAIR (some are overlapping) are randomly mixed together so
that the participant would not know whether a result comes from
Google or UCAIR. The participant would then judge the relevance
of these results. We measure precision at topn (n = 5, 10, 20, 30)
documents of Google and UCAIR. We also evaluate precisions at
different recall levels.

Altogether, 368 documents judged as relevant from Google search
results and 429 documents judged as relevant from UCAIR by par-
ticipants. Scatter plots of precision at top 10 and top 20 documents
are shown in Figure 4 and Figure 5 respectively (The scatter plot
of precision at top 30 documents is very similar to precision at top
20 documents). Each point of the scatter plots represents the preci-
sions of Google and UCAIR on one query topic.

Table 2 shows the average precision at top n documents among
32 topics. From Figure 4, Figure 5 and Table 2, we see that the
search results from UCAIR are consistently better than those from
Google by all the measures. Moreover, the performance improve-
ment is more dramatic for precision at top 20 documents than that
at precision at top 10 documents. One explanation for this is that
the more interaction the user has with the system, the more click-
through data UCAIR can be expected to collect. Thus the retrieval
system can build more precise implicit user models, which lead to
better retrieval accuracy.

Ranking Method prec@5 prec@10 prec@20 prec@30
Google 0.538 0.472 0.377 0.308
UCAIR 0.581 0.556 0.453 0.375

Improvement 8.0% 17.8% 20.2% 21.8%

Table 2: Table of average precision at top n documents for 32
query topics

The plot in Figure 6 shows the precision-recall curves for UCAIR
and Google, where it is clearly seen that the performance of UCAIR

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UCAIR prec@10

G
oo

gl
e

pr
ec

@
10

Scatterplot of Precision at Top 10 Documents

Figure 4: Precision at top 10 documents of UCAIR and Google

is consistently and considerably better than that of Google at all
levels of recall.

6. CONCLUSIONS
In this paper, we studied how to exploit implicit user modeling to

intelligently personalize information retrieval and improve search
accuracy. Unlike most previous work, we emphasize the use ofim-
mediatesearch context and implicit feedback information as well
aseagerupdating of search results to maximally benefit a user. We
presented a decision-theoretic framework for optimizing interac-
tive information retrieval based on eager user model updating, in
which the system responds to every action of the user by choos-
ing a system action to optimize a utility function. We further pro-
pose specific techniques to capture and exploit two types of implicit
feedback information: (1) identifying related immediately preced-
ing query and using the query and the corresponding search results
to select appropriate terms to expand the current query, and (2)
exploiting the viewed document summaries to immediately rerank
any documents that have not yet been seen by the user. Using these
techniques, we develop a client-side web search agent (UCAIR)
on top of a popular search engine (Google). Experiments on web
search show that our search agent can improve search accuracy over

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UCAIR prec@20

G
oo

gl
e

pr
ec

@
20

Scatterplot of Precision at Top 20 documents

Figure 5: Precision at top 20 documents of UCAIR and Google

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

recall

pr
ec

is
io

n

Precision−Recall curves

Google Result
UCAIR Result

Figure 6: Precision at top 20 result of UCAIR and Google

Google. Since the implicit information we exploit already naturally
exists through user interactions, the user does not need to make any
extra effort. The developed search agent thus can improve exist-
ing web search performance without any additional effort from the
user.

7. ACKNOWLEDGEMENT
We thank the six participants of our evaluation experiments. This

work was supported in part by the National Science Foundation
grants IIS-0347933 and IIS-0428472.

8. REFERENCES
[1] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman,

and O. Frieder. Hourly analysis of a very large topically
categorized web query log. InProceedings of SIGIR 2004,
pages 321–328, 2004.

[2] C. Clarke, N. Craswell, and I. Soboroff. Overview of the
TREC 2004 terabyte track. InProceedings of TREC 2004,
2004.

[3] M. Claypool, P. Le, M. Waseda, and D. Brown. Implicit
interest indicators. InProceedings of Intelligent User
Interfaces 2001, pages 33–40, 2001.

[4] N. Craswell, D. Hawking, R. Wilkinson, and M. Wu.
Overview of the TREC 2003 web track. InProceedings of
TREC 2003, 2003.

[5] W. B. Croft, S. Cronen-Townsend, and V. Larvrenko.
Relevance feedback and personalization: A language
modeling perspective. InProeedings of Second DELOS
Workshop: Personalisation and Recommender Systems in
Digital Libraries, 2001.

[6] Google Personalized. http://labs.google.com/personalized.
[7] D. Hawking, N. Craswell, P. B. Thistlewaite, and D. Harman.

Results and challenges in web search evaluation.Computer
Networks, 31(11-16):1321–1330, 1999.

[8] X. Huang, F. Peng, A. An, and D. Schuurmans. Dynamic
web log session identification with statistical language
models.Journal of the American Society for Information
Science and Technology, 55(14):1290–1303, 2004.

[9] G. Jeh and J. Widom. Scaling personalized web search. In
Proceedings of WWW 2003, pages 271–279, 2003.

[10] T. Joachims. Optimizing search engines using clickthrough
data. InProceedings of SIGKDD 2002, pages 133–142,
2002.

[11] D. Kelly and J. Teevan. Implicit feedback for inferring user
preference: A bibliography.SIGIR Forum, 37(2):18–28,
2003.

[12] J. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval. In
Proceedings of SIGIR’01, pages 111–119, 2001.

[13] T. Lau and E. Horvitz. Patterns of search: Analyzing and
modeling web query refinement. InProceedings of the
Seventh International Conference on User Modeling (UM),
pages 145 –152, 1999.

[14] V. Lavrenko and B. Croft. Relevance-based language
models. InProceedings of SIGIR’01, pages 120–127, 2001.

[15] M. Mitra, A. Singhal, and C. Buckley. Improving automatic
query expansion. InProceedings of SIGIR 1998, pages
206–214, 1998.

[16] My Yahoo! http://mysearch.yahoo.com.
[17] G. Nunberg. As google goes, so goes the nation.New York

Times, May 2003.
[18] S. E. Robertson. The probability ranking principle in ı.̊

Journal of Documentation, 33(4):294–304, 1977.
[19] J. J. Rocchio. Relevance feedback in information retrieval. In

The SMART Retrieval System: Experiments in Automatic
Document Processing, pages 313–323. Prentice-Hall Inc.,
1971.

[20] G. Salton and C. Buckley. Improving retrieval performance
by retrieval feedback.Journal of the American Society for
Information Science, 41(4):288–297, 1990.

[21] G. Salton and M. J. McGill.Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[22] X. Shen, B. Tan, and C. Zhai. Context-sensitive information
retrieval using implicit feedback. InProceedings of SIGIR
2005, pages 43–50, 2005.

[23] X. Shen and C. Zhai. Exploiting query history for document
ranking in interactive information retrieval (Poster). In
Proceedings of SIGIR 2003, pages 377–378, 2003.

[24] A. Singhal. Modern information retrieval: A brief overview.
Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 24(4):35–43, 2001.

[25] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web
search based on user profile constructed without any effort
from users. InProceedings of WWW 2004, pages 675–684,
2004.

[26] E. Volokh. Personalization and privacy.Communications of
the ACM, 43(8):84–88, 2000.

[27] R. W. White, J. M. Jose, C. J. van Rijsbergen, and
I. Ruthven. A simulated study of implicit feedback models.
In Proceedings of ECIR 2004, pages 311–326, 2004.

[28] J. Xu and W. B. Croft. Query expansion using local and
global document analysis. InProceedings of SIGIR 1996,
pages 4–11, 1996.

[29] C. Zhai and J. Lafferty. Model-based feedback in KL
divergence retrieval model. InProceedings of the CIKM
2001, pages 403–410, 2001.

