
CSE 4301/5290 Homework 4
Due: Nov 12, Thu, 5pm (holiday on 11/11); Submit

Server: class = ai , assignment = hw4

For programming problems (LISP/Java/C/C++/Python):

• Submit:

– all files that are needed to compile and run
– README.txt with compilation & run instructions

• Your program should compile and run on code.fit.edu

(Linux, remote access via ssh).

1. Q7.10, p281, 3Ed (Q7.8, p237, 2Ed). For 3Ed, add part
h: (Big ∧Dumb) ∨ ¬Dumb

2. In proof by contradiction (using the resolution inference
rule), when KB ∧¬α is unsatisfiable, we know α is true.
What do we know about α when KB ∧¬α is satisfiable?
When can we know that α is false? Explain your answers.

3. Using a truth table, prove that:

(a) (a∨ b)∧ (¬b∨ c) entails a∨ c [correct “resolution”]
(b) (a ∨ b ∨ c) ∧ (¬b ∨ ¬c ∨ d) does not entail a ∨ d.

[incorrect “resolution”]

4. Q7.2, p280, 3Ed (Q7.9, p238, 2Ed): Write sentences in
propositional logic, translate them into clauses, use res-
olution to infer answers for the three queries.

5. Programming: Given clauses (CNF) in propositional
logic, use resolution with at least 3 strategies to prior-
itize clauses to be resolved to gain speed [2 discussed in
class plus an additional one—described in the comments]
to solve:

(a) Wumpus, p247, 3Ed (p208, 2Ed): The initial KB
has R1 −R3; percepts are R4 and R5; queries are:

i. a pit at [1,2]?

ii. a pit at [2,2]?

(b) Unicorn, Q7.2, p280, 3Ed (Q7.9, p238, 2Ed): no
percepts, three queries.

Represent a clause (disjunction) using a string or a list.
For example, a ∨ ¬b ∨ c is represented as:

"a !b c"

(a (not b) c)

Represent CNF using a string or a list. For example,
(a ∨ ¬b ∨ c) ∧ (¬a ∨ d) is represented as:

"(a !b c) (!a d)"

((a (not b) c) ((not a) d))

For c/c++/java/python, you have at least three modules:
KB, TestWumpus, and TestUnicorn. Functions in your
implementation (stated in LISP) include:

; add percepts (a list of clauses) to kb and return the updated kb
(defun tell-kb (kb percepts) ...)

; given kb (a list of clauses), use resolution to infer an answer
; for the query
; return answer for the query
(defun ask-kb (kb query) ...)

; initialize kb, add percepts to kb,
; print queries and corresponding answers
; return ’done
(defun test-wumpus ()

(let* ((kb ...) ...)
...

)
)

(defun test-unicorn ()
(let* ((kb ...) ...)
...

)
)

CSE 5290 only

6. Formulate proof by contradiction using the resolution
inference rule into a state-space search problem that
finds the shortest proof (fewest applications of the
resolution inference rule). For using A*, discuss a
(non-constant-zero and non-constant-one) heuristic and
explain why it is admissible.

7. Programming: Given logical sentences, convert them into
CNF in the format used in the programming Problem 5
above. The allowed connectives are:

Connective prefix infix
∧ and &
∨ or |

¬ not !
⇒ imply =>

⇔ bicond <=>

For example, a ∧ b⇒ c is represented as:

"(a & b) => c"

(imply (and a b) c)

For c/c++/java/python, you have at least four modules:
ConvertToCNF, TestToyConvert, TestWumpusConvert,
and TestUnicornConvert. The functions/methods
(stated in LISP) include:

; convert sentence into CNF and return CNF
(defun convert-to-cnf (sentence) ...)

; convert toy kb to CNF, return CNF
; print each sentence and its cnf
(defun test-toy-convert ()

(let* ((kb ’(
(and (not a) b) ; "!a & b"
(or b (and c d)) ; "b | (c & d)"
(not (or d e)) ; "!(d | e)"
(not (and e f)) ; "!(e & f)"
(imply (and f g) h) ; "(f & g) => h"
(bicond (and h (not i)) (and j k)) ; "(h & !i) <=> (j & k)"

)))
...)

...
)

; convert the wumpus initial kb (Problem 5a) to CNF, return CNF
; print each sentence and its CNF
(defun test-wumpus-convert () ...)

; convert the unicorn intital kb (Problem 5b) to CNF, return CNF
; print each sentence and its CNF
(defun test-unicorn-convert () ...)


