Agents and environments

Agents include humans, robots, softbots, thermostats, etc. The agent function maps from percept histories to actions:

\[f : \mathcal{P}^* \rightarrow \mathcal{A} \]

The agent program runs on the physical architecture to produce \(f \)

Outline

- Agents and environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Vacuum-cleaner world

Percepts: location and contents, e.g., \([A, Dirty]\)

Actions: Left, Right, Suck, NoOp
A vacuum-cleaner agent

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[B, Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[B, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[A, Clean], [A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Clean], [A, Dirty]</td>
<td>Suck</td>
</tr>
</tbody>
</table>

function REFLEX-VACUUM-AGENT([location, status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the “right/correct” function?
Can it be implemented in a small agent program?

Rationality

Fixed performance measure evaluates the environment sequence
– one point per square cleaned up in time T?
– one point per clean square per time step, minus one per move?
– penalize for $> k$ dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

Rational \neq omniscient
– percepts may not supply all relevant information

Rational \neq clairvoyant
– action outcomes may not be as expected

Hence, rational \neq successful

Rational \Rightarrow exploration, learning, autonomy

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure?? safety, destination, profits, legality, comfort, ...

Environment?? US streets/freeways, traffic, pedestrians, weather, ...

Actuators?? steering, accelerator, brake, horn, speaker/display, ...

Sensors?? video, accelerometers, gauges, engine sensors, keyboard, GPS, ...
Internet shopping agent

- **Performance measure**: price, quality, appropriateness, efficiency
- **Environment**: current and future WWW sites, vendors, shippers
- **Actuators**: display to user, follow URL, fill in form
- **Sensors**: HTML pages (text, graphics, scripts)

Environment types

<table>
<thead>
<tr>
<th>Environment types</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deterministic??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodic??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-agent??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fully observable vs. partially observable
 - Can the agent observe/know everything in a state?
- Deterministic vs. stochastic
 - Does the current state plus action fully determine the next state?
- Episodic vs. sequential
 - Does the action affect the future action(s)?
 - Going to class does not affect doing homework in the future.
 - How you make a move in a chess game affects your moves later.
- Static vs. dynamic
 - Can the environment change while the agent is thinking?
- Discrete vs. continuous
 - Finitely distinct or infinitely continuous?
- Single agent vs. multi-agent – Does the agent deal with other agents?
<table>
<thead>
<tr>
<th>Environment types</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
</tr>
<tr>
<td>Episodic??</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Static??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Discrete??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Single-agent??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment types</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
</tr>
<tr>
<td>Episodic??</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Static??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Discrete??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Single-agent??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th></th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable??</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deterministic??</td>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
</tr>
<tr>
<td>Episodic??</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Static??</td>
<td>Yes</td>
<td>Semi</td>
<td>Semi</td>
<td>No</td>
</tr>
<tr>
<td>Discrete??</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Single-agent??</td>
<td>Yes</td>
<td>No</td>
<td>Yes (except auctions)</td>
<td>No</td>
</tr>
</tbody>
</table>

The environment type largely determines the agent design.

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent.

Agent types

Four basic types in order of increasing generality:
- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can be turned into learning agents.

Simple reflex agents

- **Agent**
 - Sensors
 - What the world is like now
 - Condition-action rules
 - What action I should do now
 - Actuators

- **Environment**
Example

function REFLEX-VACUUM-AGENT([location, status]) returns an action
 if status = Dirty then return Suck
 else if location = A then return Right
 else if location = B then return Left

Example

function REFLEX-VACUUM-AGENT([location, status]) returns an action
 state ← UPDATE-STATE(state, location, status)
 if state = ... AND status = Dirty then ...
Utility-based agents

- **Agent**
 - Sensors
 - State
 - What the world evolves
 - How the world is like now
 - What it will be like if I do action A
 - How happy I will be in such a state
 - What action I should do now

- **Environment**
 - Actuators

- **Utility**

Learning agents

- **Agent**
 - Sensors
 - Critic
 - Learning element
 - Performance element
 - Problem generator

- **Environment**
 - Actuators

Summary

- **Agents** interact with **environments** through **actuators** and **sensors**
- The **agent function** describes what the agent does in all circumstances
- The **performance measure** evaluates the environment sequence
- A **perfectly rational** agent maximizes expected performance
- **Agent programs** implement (some) agent functions
- **PEAS** descriptions define task environments
- Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?
- Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based