
Solving Problems by Searching

Chapter 3

Chapter 3 1

Outline

♦ Problem-solving agents

♦ Problem types

♦ Problem formulation

♦ Example problems

♦ Basic search algorithms

Chapter 3 2

Problem-solving agents

function Simple-Problem-Solving-Agent(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state←Update-State(state, percept)

if seq is empty then

goal←Formulate-Goal(state)

problem←Formulate-Problem(state, goal)

seq←Search(problem)

if seq is failure then return a null action

action←First(seq)

seq←Rest(seq)

return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

Chapter 3 3

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Chapter 3 4

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 5

Problem types

Deterministic, fully observable =⇒ single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)

Chapter 3 6

Example: vacuum world

Single-state, start in #5. Solution??
1 2

3 4

5 6

7 8

Chapter 3 7

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??

1 2

3 4

5 6

7 8

Chapter 3 8

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency
♦ Murphy’s Law (non-deterministic): Suck
can dirty a clean carpet; start in #5
♦ Local sensing (partially-observable): dirt,
location only, start in {#5,#7}.
Solution??

1 2

3 4

5 6

7 8

Chapter 3 9

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency
♦ Murphy’s Law (non-deterministic): Suck
can dirty a clean carpet; start in #5
♦ Local sensing (partially-observable): dirt,
location only, start in {#5,#7}.
Solution??
[Right,while dirt do Suck]
[Right, if dirt then Suck]

1 2

3 4

5 6

7 8

Chapter 3 10

Single-state problem formulation

A problem is defined by four items:

♦ initial state e.g., “at Arad”

♦ successor function S(x) = set of action–state pairs
e.g., S(Arad) = {〈Arad→ Zerind, Zerind〉, . . .}

♦ goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

♦ path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state

Chapter 3 11

Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

♦ (Abstract) state = set of real states

♦ (Abstract) action = complex combination of real actions
e.g., “Arad → Zerind” represents a complex set

of possible routes, detours, rest stops, etc.

♦ For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

♦ (Abstract) solution =
set of real paths that are solutions in the real world

♦ Each abstract action should be “easier” than the original problem!

Chapter 3 12

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??
actions??
goal test??
path cost??

Chapter 3 13

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??

Chapter 3 14

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??

Chapter 3 15

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??

Chapter 3 16

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

Chapter 3 17

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??
actions??
goal test??
path cost??

Chapter 3 18

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??

Chapter 3 19

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??

Chapter 3 20

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??

Chapter 3 21

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Chapter 3 22

Example: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute

Chapter 3 23

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier based on strategy

if the node contains a goal state then return the corresponding solution

else expand the chosen node and add the resulting nodes to the frontier

end

Chapter 3 24

Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Chapter 3 25

Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Chapter 3 26

Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Chapter 3 27

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.

Chapter 3 28

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the “shallowest” solution
m—maximum depth of the state space (may be ∞)

Chapter 3 29

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

♦ Breadth-first search

♦ Uniform-cost search

♦ Depth-first search

♦ Depth-limited search

♦ Iterative deepening search

Chapter 3 30

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Chapter 3 31

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Chapter 3 32

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Chapter 3 33

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Chapter 3 34

Properties of breadth-first search

Complete??

Chapter 3 35

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Chapter 3 36

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time (# of visited nodes)?? 1 + b + b2 + b3 + . . . + bd = O(bd)

Time (# of generated nodes)?? b+b2+b3+ . . .+bd+(bd+1−b) = O(bd+1)

Space??

Chapter 3 37

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time (# of generated nodes)?? b+b2+b3+ . . .+bd+(bd+1−b) = O(bd+1)

Space?? O(bd+1) (keeps every node in memory)

Optimal??

Chapter 3 38

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time (# of generated nodes)?? b+b2+b3+ . . .+bd+(bd+1−b) = O(bd+1)

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8640GB.

Chapter 3 39

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
frontier = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost ≥ ǫ (lowest step cost)

Time?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ǫ⌉)

where C∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ǫ⌉)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Chapter 3 40

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 41

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 42

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 43

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 44

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 45

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 46

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 47

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 48

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 49

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 50

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 51

Depth-first search

Expand deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 52

Properties of depth-first search

Complete??

Chapter 3 53

Properties of depth-first search

Complete?? Yes: in finite spaces
No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

Time??

Chapter 3 54

Properties of depth-first search

Complete?? Yes: in finite spaces
No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

Chapter 3 55

Properties of depth-first search

Complete?? Yes: in finite spaces
No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Chapter 3 56

Properties of depth-first search

Complete?? Yes: in finite spaces
No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

Chapter 3 57

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff

cutoff-occurred?← false

if Goal-Test(problem,State[node]) then return node

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node,problem) do

result←Recursive-DLS(successor,problem, limit)

if result = cutoff then cutoff-occurred?← true

else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

Chapter 3 58

Iterative deepening search

function Iterative-Deepening-Search(problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end

Chapter 3 59

Iterative deepening search l = 0

Limit = 0 A A

Chapter 3 60

Iterative deepening search l = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C

Chapter 3 61

Iterative deepening search l = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Chapter 3 62

Iterative deepening search l = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Chapter 3 63

Properties of iterative deepening search

Complete??

Chapter 3 64

Properties of iterative deepening search

Complete?? Yes

Time??

Chapter 3 65

Properties of iterative deepening search

Complete?? Yes

Time (# of generated nodes)?? db1 + (d− 1)b2 + . . . + bd = O(bd)

Space??

Chapter 3 66

Properties of iterative deepening search

Complete?? Yes

Time (# of generated nodes)?? db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal??

Chapter 3 67

Properties of iterative deepening search

Complete?? Yes

Time (# of generated nodes)?? db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

Nvisited(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110

Ngenerated(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

BFS can be modified to apply goal test when a node is generated

Chapter 3 68

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes Yes No Yes, if l ≥ d Yes
Time (big-O) bd b⌈C

∗/ǫ⌉ bm bl bd

Space (big-O) bd b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yes∗ Yes No No Yes∗

Chapter 3 69

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential
one!

A

B

C

D

A

BB

CCCC

Chapter 3 70

Graph search

function Graph-Search(problem) returns a solution, or failure

frontier← a list with node from the initial state of problem

explored← an empty set

loop do

if frontier is empty then return failure

node←Remove-Front(frontier)

if node contains a goal state then return Solution(node)

add State[node] to explored

expand node

add to frontier the resulting nodes that are

not in explored or

not in frontier or

[better than the corresponding nodes in frontier in some algs]

end

frontier (aka fringe or open); explored (aka visited or closed)

Chapter 3 71

Informed Search

♦ So far the search algorithms are “uninformed”—independent to the prob-
lems

♦ Informed search–incorporating knowledge related to the problem for guid-
ing search

Chapter 3 72

Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
frontier is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

Chapter 3 73

Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 74

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 3 75

Greedy search example

Arad

366

Chapter 3 76

Greedy search example

Zerind

Arad

Sibiu Timisoara

253 329 374

Chapter 3 77

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Chapter 3 78

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Chapter 3 79

Properties of greedy search

Complete??

Chapter 3 80

Properties of greedy search

Complete?? Yes–Complete in finite space with repeated-state checking
No–can get stuck in loops, e.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →

Time??

Chapter 3 81

Properties of greedy search

Complete?? Yes–Complete in finite space with repeated-state checking
No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Time?? O(bm), but a good heuristic can give dramatic improvement

Space??

Chapter 3 82

Properties of greedy search

Complete?? Yes–Complete in finite space with repeated-state checking
No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm), but a good heuristic can give dramatic improvement

Optimal??

Chapter 3 83

Properties of greedy search

Complete?? Yes–Complete in finite space with repeated-state checking
No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm), but a good heuristic can give dramatic improvement

Optimal?? No

Chapter 3 84

A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f (n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f (n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

Chapter 3 85

A∗ search example

Arad

366=0+366

Chapter 3 86

A∗ search example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

Chapter 3 87

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Chapter 3 88

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

Chapter 3 89

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Chapter 3 90

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Chapter 3 91

Optimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G.

G

n

G2

Start

Want to prove: f (G2) > f (n) [A∗ will never select G2 for expansion]

f (G2) = g(G2) since h(G2) = 0

g(G2) > g(G) since G2 is suboptimal

g(G) ≥ f (n) since h is admissible

Chapter 3 92

Properties of A∗

Complete??

Chapter 3 93

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)

Time??

Chapter 3 94

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)

Time?? Exponential in [relative error in h × d]

Space??

Chapter 3 95

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)

Time?? Exponential in [relative error in h × d]

Space?? Exponential

Optimal??

Chapter 3 96

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f (G)

Time?? Exponential in [relative error in h × d]

Space?? Exponential

Optimal?? Yes—cannot expand fi+1 until fi is finished, where fi+1 > fi

C∗ is the cost for the optimal solution:

A∗ expands all nodes with f (n) < C∗

A∗ expands some nodes with f (n) = C∗

A∗ expands no nodes with f (n) > C∗

Chapter 3 97

A* vs Uniform-cost Search

f (n) = g(n) + h(n)

Isn’t UCS just A* with h(n) being zero (admissible)?

Both are optimal, why is A* usually “faster?”

Chapter 3 98

A* vs Uniform-cost Search

f (n) = g(n) + h(n)

Isn’t UCS just A* with h(n) being zero (admissible)?

Both are optimal, why is A* usually “faster?”

Consider h(n) is perfect, f (n) is ?

Chapter 3 99

A* vs Uniform-cost Search

f (n) = g(n) + h(n)

Isn’t UCS just A* with h(n) being zero (admissible)?

Both are optimal, why is A* usually “faster?”

Consider h(n) is perfect, f (n) is the actual total path cost.

Chapter 3 100

A* vs Uniform-cost Search

f (n) = g(n) + h(n)

Isn’t UCS just A* with h(n) being zero (admissible)?

Both are optimal, why is A* usually “faster?”

Consider h(n) is perfect, f (n) is the actual total path cost.

• If n doesn’t lead to a goal state, f (n) =∞

– A* ?

– UCS ?

Chapter 3 101

A* vs Uniform-cost Search

f (n) = g(n) + h(n)

Isn’t UCS just A* with h(n) being zero (admissible)?

Both are optimal, why is A* usually “faster?”

Consider h(n) is perfect, f (n) is the actual total path cost.

• If n doesn’t lead to a goal state, f (n) =∞

– A* doesn’t explore n.

– UCS doesn’t know and keeps on exploring n (and its sucessors).

• If n doesn’t lead to the optimal goal, but n∗ does: f (n) > f (n∗)

– A* ?

– UCS ?

Chapter 3 102

A* vs Uniform-cost Search

f (n) = g(n) + h(n)

Isn’t UCS just A* with h(n) being zero (admissible)?

Both are optimal, why is A* usually “faster?”

Consider h(n) is perfect, f (n) is the actual total path cost.

• If n doesn’t lead to a goal state, f (n) =∞

– A* doesn’t explore n.

– UCS doesn’t know and keeps on exploring n (and its sucessors).

• If n doesn’t lead to the optimal goal, but n∗ does: f (n) > f (n∗)

– A* doesn’t explore n and *only* explores n∗ !

– UCS doesn’t know and keeps on exploring n (and its sucessors).

In terms of speed, the worst case for A* is when h(n) is zero, but we don’t
use h(n) = 0.

Chapter 3 103

Consistency

Consider n′ is a successor of n, a heuristic is consistent if

n

c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′),

Let’s find the relationship between f (n) and f (n′):

f (n′) = g(n′) + h(n′)

f (n′) = g(n) + c(n, a, n′) + h(n′)

f (n′) ≥ g(n) + h(n) [since h is consistent]

f (n′) ≥ f (n)

i.e. f (n) values for a sequence of nodes along *any* path are nondecreasing
(similar to g(n) values in UCS).

A* using GRAPH-SEARCH is optimal if h(n) is consistent (using a similar
argument as UCS).

Chapter 3 104

Optimality of A∗ (consistent heuristics)

Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Chapter 3 105

Admissible vs Consistent Heuristics

Consistency is a slightly stronger/stricter requirement than admissibility.

consistentHeuristics ⊂ admissibleHeuristics

Admissible heuristics are usually consistent.

Not easy to concort admissible, but not consistent heuristics.

Chapter 3 106

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??

Chapter 3 107

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Chapter 3 108

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is faster for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

Chapter 3 109

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 3 110

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour

Chapter 3 111

Summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

Chapter 3 112

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
– incomplete and not always optimal

A∗ search expands lowest g + h
– complete and optimal
– also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 3 113

