### **Problem-solving agents**

Solving Problems by Searching

### Chapter 3

Note: this is offline problem solving; solution executed "eyes closed." Online problem solving involves acting without complete knowledge.

Chapter 3 1

Chapter 3 3

### Outline

- $\diamond$  Problem-solving agents
- $\diamondsuit$  Problem types
- $\diamond$  Problem formulation
- $\diamond$  Example problems
- $\diamondsuit$  Basic search algorithms

### **Example:** Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

Formulate goal: be in Bucharest

### Formulate problem:

states: various cities actions: drive between cities

### Find solution:

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest



Chapter 3 5

# **Problem types**

Deterministic, fully observable  $\implies$  single-state problem Agent knows exactly which state it will be in; solution is a sequence

Non-observable  $\implies$  conformant problem

Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable  $\implies$  contingency problem percepts provide **new** information about current state solution is a contingent plan or a policy often interleave search, execution

Unknown state space  $\implies$  exploration problem ("online")

## Example: vacuum world

Single-state, start in #5. Solution??



Chapter 3 7

### Example: vacuum world

1

5

7

Single-state, start in #5. <u>Solution</u>?? [Right, Suck]

Conformant, start in  $\{1, 2, 3, 4, 5, 6, 7, 8\}$ e.g., Right goes to  $\{2, 4, 6, 8\}$ . Solution??



### Example: vacuum world



### Single-state problem formulation

A problem is defined by four items:

♦ initial state e.g., "at Arad"

 $\diamondsuit$  successor function S(x) = set of action-state pairse.g.,  $S(Arad) = \{ \langle Arad \rightarrow Zerind, Zerind \rangle, \ldots \}$ 

 $\Diamond$  goal test, can be explicit, e.g., x = "at Bucharest" implicit, e.g., NoDirt(x)

 $\Diamond$  path cost (additive)

e.g., sum of distances, number of actions executed, etc. c(x, a, y) is the step cost, assumed to be > 0

A solution is a sequence of actions leading from the initial state to a goal state

Chapter 3 11

### Example: vacuum world Single-state, start in #5. <u>Solution</u>?? [Right, Suck] 1 Conformant, start in $\{1, 2, 3, 4, 5, 6, 7, 8\}$ 3 e.g., Right goes to $\{2, 4, 6, 8\}$ . Solution?? [Right, Suck, Left, Suck]5

Contingency

♦ Murphy's Law (non-deterministic): *Suck* can dirty a clean carpet; start in #5 $\diamond$  Local sensing (partially-observable): dirt, location only, start in  $\{\#5, \#7\}$ .

### Solution??

[Right, while dirt do Suck] [*Right*, **if** *dirt* **then** *Suck*]



Chapter 3 9

### Selecting a state space

Real world is absurdly complex

 $\Rightarrow$  state space must be **abstracted** for problem solving

- $\diamond$  (Abstract) state = set of real states
- $\Diamond$  (Abstract) action = complex combination of real actions e.g., "Arad  $\rightarrow$  Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- ♦ For guaranteed realizability, **any** real state "in Arad" must get to some real state "in Zerind"
- $\diamond$  (Abstract) solution = set of real paths that are solutions in the real world
- $\diamond$  Each abstract action should be "easier" than the original problem!

Example: vacuum world state space graph



states?? actions?? goal test?? path cost??



states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??

Chapter 3 15



states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??



states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??

Example: vacuum world state space graph



states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

# Example: The 8-puzzle



|            | 1 | 2 | 3 |  |  |
|------------|---|---|---|--|--|
|            | 4 | 5 | 6 |  |  |
|            | 7 | 8 |   |  |  |
| Goal State |   |   |   |  |  |

states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??

Chapter 3 19



states?? actions?? goal test?? path cost??

Example: The 8-puzzle 2 2 3 7 1 5 5 4 6 6 3 7 8 8 Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??

Chapter 3 18

## Example: The 8-puzzle

| 7 2 4       | 1 2 3      |
|-------------|------------|
| 5 6         | 4 5 6      |
| 8 3 1       | 7 8        |
| Start State | Goal State |

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??

### Example: robotic assembly



states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute

Chapter 3 23



states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of *n*-Puzzle family is NP-hard]

### Tree search algorithms

Basic idea:

offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier based on strategy
 if the node contains a goal state then return the corresponding solution
 else expand the chosen node and add the resulting nodes to the frontier

end





Tree search example



Chapter 3 27



### Implementation: states vs. nodes

A state is a (representation of) a physical configuration A node is a data structure constituting part of a search tree includes parent, children, depth, path cost q(x)States do not have parents, children, depth, or path cost! parent, action depth = 6State Node 5 4 g = 6 8 6 1 state 3 2

The EXPAND function creates new nodes, filling in the various fields and using the SUCCESSORFN of the problem to create the corresponding states.

### Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions: completeness—does it always find a solution if one exists? time complexity—number of nodes generated/expanded space complexity—maximum number of nodes in memory optimality—does it always find a least-cost solution?

### Time and space complexity are measured in terms of

- b---maximum branching factor of the search tree
- *d*—depth of the "shallowest" solution
- *m*—maximum depth of the state space (may be  $\infty$ )

### Breadth-first search

Expand shallowest unexpanded node

### Implementation:



Chapter 3 29

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

- $\diamond$  Breadth-first search
- $\diamondsuit$  Uniform-cost search
- $\diamondsuit$  Depth-first search
- $\diamondsuit$  Depth-limited search
- $\diamond$  Iterative deepening search

### Breadth-first search

Expand shallowest unexpanded node

### Implementation:

frontier is a FIFO queue, i.e., new successors go at end



### Breadth-first search

Expand shallowest unexpanded node

### Implementation:

frontier is a FIFO queue, i.e., new successors go at end

E

A

G

Chapter 3 33

Breadth-first search

Expand shallowest unexpanded node

### Implementation:

 $\mathit{frontier}\xspace$  is a FIFO queue, i.e., new successors go at end



# Properties of breadth-first search

Complete??

Chapter 3 35

# Properties of breadth-first search

**Complete**?? Yes (if *b* is finite)

<u>Time??</u>

## Properties of breadth-first search

Complete?? Yes (if *b* is finite)

Time (# of visited nodes)??  $1 + b + b^2 + b^3 + \ldots + b^d = O(b^d)$ 

Time (# of generated nodes)??  $b+b^2+b^3+\ldots+b^d+(b^{d+1}-b)=O(b^{d+1})$ 

Space??

# Properties of breadth-first search

Complete?? Yes (if *b* is finite)

Time (# of generated nodes)??  $b+b^2+b^3+...+b^d+(b^{d+1}-b) = O(b^{d+1})$ 

Space??  $O(b^{d+1})$  (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

 $\label{eq:space} \begin{array}{l} \mbox{Space is the big problem; can easily generate nodes at 100MB/sec} \\ \mbox{so 24hrs} = 8640GB. \end{array}$ 

Chapter 3 37

Properties of breadth-first search

Complete?? Yes (if *b* is finite)

Time (# of generated nodes)??  $b+b^2+b^3+...+b^d+(b^{d+1}-b) = O(b^{d+1})$ 

Space??  $O(b^{d+1})$  (keeps every node in memory)

Optimal??

### Uniform-cost search

Expand least-cost unexpanded node

Implementation:

*frontier* = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost  $\geq \epsilon$  (lowest step cost)

<u>Time</u>?? # of nodes with  $g \leq \text{ cost of optimal solution, } O(b^{\lceil C^*/\epsilon \rceil})$  where  $C^*$  is the cost of the optimal solution

**Space**?? # of nodes with  $g \leq \text{ cost of optimal solution, } O(b^{\lceil C^*/\epsilon \rceil})$ 

**Optimal**?? Yes—nodes expanded in increasing order of g(n)

# Depth-first search

Expand deepest unexpanded node

### Implementation:



# Depth-first search

Expand deepest unexpanded node

### Implementation:



Chapter 3 43

Chapter 3 41

# Depth-first search

Expand deepest unexpanded node

### Implementation:





# Depth-first search

Expand deepest unexpanded node

### Implementation:



# Depth-first search

Expand deepest unexpanded node

### Implementation:



Ĺ

# Depth-first search

Expand deepest unexpanded node

### Implementation:



Chapter 3 47

Chapter 3 45

# Depth-first search

Expand deepest unexpanded node

### Implementation:





# Depth-first search

Expand deepest unexpanded node

### Implementation:



# Depth-first search

Expand deepest unexpanded node

### Implementation:





# Depth-first search

Expand deepest unexpanded node

### Implementation:



Chapter 3 51

# Depth-first search

Expand deepest unexpanded node

### Implementation:

frontier = LIFO queue, i.e., put successors at front



# Depth-first search

Expand deepest unexpanded node

### Implementation:



# Properties of depth-first search

### Complete??

# Properties of depth-first search

Complete?? Yes: in finite spaces

No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path

<u>Time</u>??  $O(b^m)$ : terrible if m is much larger than d

but if solutions are dense, may be much faster than breadth-first

Space??

Chapter 3 55

### Chapter 3 53

Properties of depth-first search

<u>Complete</u>?? Yes: in finite spaces No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path

Time??

### Properties of depth-first search

<u>Complete</u>?? Yes: in finite spaces No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path

<u>Time</u>??  $O(b^m)$ : terrible if m is much larger than dbut if solutions are dense, may be much faster than breadth-first

**Space??** *O*(*bm*), i.e., linear space!

### Optimal??

### Properties of depth-first search

Complete?? Yes: in finite spaces

No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path

<u>Time</u>??  $O(b^m)$ : terrible if m is much larger than dbut if solutions are dense, may be much faster than breadth-first

Space?? *O*(*bm*), i.e., linear space!

Optimal?? No

### Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution
 inputs: problem, a problem

for depth  $\leftarrow$  0 to  $\infty$  do result  $\leftarrow$  DEPTH-LIMITED-SEARCH(problem, depth)

if  $result \neq cutoff$  then return result

end

Chapter 3 59

Chapter 3 57

Depth-limited search

= depth-first search with depth limit l,

i.e., nodes at depth  $\boldsymbol{l}$  have no successors

### **Recursive implementation**:

| function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail/cutoff<br>RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit) |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| ${\bf function} \ {\bf Recursive-DLS} ({\it node, problem, limit}) \ {\bf returns} \ {\sf soln}/{\sf fail}/{\sf cutoff}$                    |
| $cutoff$ - $occurred$ ? $\leftarrow$ false                                                                                                  |
| if GOAL-TEST(problem, STATE[node]) then return node                                                                                         |
| else if $Depth[node] = limit$ then return $cutoff$                                                                                          |
| else for each successor in EXPAND(node, problem) do                                                                                         |
| $result \leftarrow \text{Recursive-DLS}(successor, problem, limit)$                                                                         |
| <b>if</b> $result = cutoff$ <b>then</b> $cutoff$ -occurred? $\leftarrow$ <b>true</b>                                                        |
| else if $result \neq failure$ then return $result$                                                                                          |
| if cutoff-occurred? then return cutoff else return failure                                                                                  |

### Iterative deepening search l = 0

 $Limit = 0 \qquad \blacktriangleright \textcircled{0}$ 

# Iterative deepening search l = 3



Chapter 3 63



Iterative deepening search l = 1

Chapter 3 61



# Properties of iterative deepening search

Complete??

### Properties of iterative deepening search

Complete?? Yes

<u>Time</u>??

### Properties of iterative deepening search

Complete?? Yes

Time (# of generated nodes)??  $db^1 + (d-1)b^2 + ... + b^d = O(b^d)$ 

Space?? O(bd)

Optimal??

Chapter 3 65

### Properties of iterative deepening search

Complete?? Yes

Time (# of generated nodes)??  $db^1 + (d-1)b^2 + ... + b^d = O(b^d)$ 

Space??

### Properties of iterative deepening search

### Complete?? Yes

Time (# of generated nodes)??  $db^1 + (d-1)b^2 + ... + b^d = O(b^d)$ 

Space?? *O*(*bd*)

 $\label{eq:optimal} \frac{\mbox{Optimal}?? \mbox{ Yes, if step cost} = 1}{\mbox{Can be modified to explore uniform-cost tree}}$ 

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

 $N(\mathsf{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$   $N_{visited}(\mathsf{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110$  $N_{generated}(\mathsf{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100$ 

BFS can be modified to apply goal test when a node is generated

# Summary of algorithms

| Criterion     | Breadth-<br>First | Uniform-<br>Cost                 | Depth-<br>First | Depth-<br>Limited | Iterative<br>Deepening |
|---------------|-------------------|----------------------------------|-----------------|-------------------|------------------------|
| Complete?     | Yes               | Yes                              | No              | Yes, if $l \ge d$ | Yes                    |
| Time (big-O)  | $b^d$             | $b^{\lceil C^*/\epsilon\rceil}$  | $b^m$           | $b^l$             | $b^d$                  |
| Space (big-O) | $b^d$             | $b^{\lceil C^*/\epsilon \rceil}$ | bm              | bl                | bd                     |
| Optimal?      | Yes*              | Yes                              | No              | No                | Yes*                   |

# Graph search

| function GRAPH-SEARCH( <i>problem</i> ) returns a solution, or failure                       |
|----------------------------------------------------------------------------------------------|
| $\mathit{frontier} \leftarrow a$ list with node from the initial state of $\mathit{problem}$ |
| $explored \leftarrow an empty set$                                                           |
| loop do                                                                                      |
| if <i>frontier</i> is empty then return failure                                              |
| $node \leftarrow \text{Remove-Front}(frontier)$                                              |
| if node contains a goal state then return SOLUTION(node)                                     |
| add STATE[node] to explored                                                                  |
| expand node                                                                                  |
| add to <i>frontier</i> the resulting nodes that are                                          |
| not in <i>explored</i> or                                                                    |
| not in <i>frontier</i> or                                                                    |
| [better than the corresponding nodes in <i>frontier</i> in some algs]                        |
| end                                                                                          |

frontier (aka fringe or open); explored (aka visited or closed)

Chapter 3 71

# Informed Search

 $\diamondsuit$  So far the search algorithms are "uninformed"—independent to the problems

 $\diamondsuit$  Informed search–incorporating knowledge related to the problem for guiding search

# Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!



### Best-first search

Idea: use an evaluation function for each node - estimate of "desirability"

 $\Rightarrow$  Expand most desirable unexpanded node

### Implementation:

frontier is a queue sorted in decreasing order of desirability

Special cases:

greedy search A\* search

# Greedy search

Evaluation function h(n) (heuristic)

= estimate of cost from  $\boldsymbol{n}$  to the closest goal

E.g.,  $h_{\rm SLD}(n) = {\rm straight-line}\ {\rm distance}\ {\rm from}\ n$  to Bucharest

Greedy search expands the node that **appears** to be closest to goal

Chapter 3 73

Chapter 3 75



# Greedy search example





Chapter 3 77

Greedy search example

Properties of greedy search

Complete??

# Properties of greedy search

 $\label{eq:complete} \underbrace{ \mbox{Complete} ?? \mbox{Yes-Complete in finite space with repeated-state checking } \\ \mbox{No-can get stuck in loops, e.g., with Oradea as goal, } \\ \mbox{lasi} \rightarrow \mbox{Neamt} \rightarrow \mbox{lasi} \rightarrow \mbox{Neamt} \rightarrow \\ \end{aligned}$ 

Time??

# Properties of greedy search

 $\label{eq:complete} \underbrace{ \mbox{Complete}?? \mbox{Yes-Complete in finite space with repeated-state checking } No-can get stuck in loops, e.g., \\ lasi \rightarrow \mbox{Neamt} \rightarrow \mbox{lasi} \rightarrow \mbox{Neamt} \rightarrow$ 

<u>Time</u>??  $O(b^m)$ , but a good heuristic can give dramatic improvement

Space??  $O(b^m)$ , but a good heuristic can give dramatic improvement

**Optimal**??

Chapter 3 83

### Chapter 3 81

# Properties of greedy search

<u>Time</u>??  $O(b^m)$ , but a good heuristic can give dramatic improvement

Space??

### Properties of greedy search

<u>Time</u>??  $O(b^m)$ , but a good heuristic can give dramatic improvement

Space??  $O(b^m)$ , but a good heuristic can give dramatic improvement

Optimal?? No

### $A^*$ search

### A<sup>\*</sup> search example

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \mathrm{cost} \ \mathrm{so} \ \mathrm{far} \ \mathrm{to} \ \mathrm{reach} \ n$ 

 $h(n) = {\sf estimated \ cost \ to \ goal \ from \ } n$ 

 $f(\boldsymbol{n}) = \text{estimated total cost of path through } \boldsymbol{n} \text{ to goal}$ 

A\* search uses an admissible heuristic

i.e.,  $h(n) \leq h^*(n)$  where  $h^*(n)$  is the **true** cost from n. (Also require  $h(n) \geq 0$ , so h(G) = 0 for any goal G.)

E.g.,  $h_{\rm SLD}(n)$  never overestimates the actual road distance

Theorem:  $A^*$  search is optimal



Chapter 3 85

A<sup>\*</sup> search example



A\* search example





# Optimality of A<sup>\*</sup> (standard proof)

Suppose some suboptimal goal  $G_2$  has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.



Want to prove:  $f(G_2) > f(n)$  [A\* will never select  $G_2$  for expansion]

| $f(G_2) = g(G_2)$ | since $h(G_2) = 0$        |
|-------------------|---------------------------|
| $g(G_2) > g(G)$   | since $G_2$ is suboptimal |
| $g(G) \ge f(n)$   | since $h$ is admissible   |

# Properties of A<sup>\*</sup>

Complete??

# Properties of A<sup>\*</sup>

**Complete**?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time</u>?? Exponential in [relative error in  $h \times d$ ]

Space??

### Chapter 3 93

# Properties of A<sup>\*</sup>

Complete?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time??</u>

# **Properties of A**<sup>\*</sup>

**Complete**?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time</u>?? Exponential in [relative error in  $h \times d$ ]

Space?? Exponential

Optimal??

# Properties of A<sup>\*</sup>

**Complete**?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time</u>?? Exponential in [relative error in  $h \times d$ ]

Space?? Exponential

**Optimal**?? Yes—cannot expand  $f_{i+1}$  until  $f_i$  is finished, where  $f_{i+1} > f_i$ 

 $C^*$  is the cost for the optimal solution:

- $\mathsf{A}^*$  expands all nodes with  $f(n) < C^*$
- $\mathsf{A}^*$  expands some nodes with  $f(n) = C^*$
- $\mathsf{A}^*$  expands no nodes with  $f(n) > C^*$

# A\* vs Uniform-cost Search

f(n) = g(n) + h(n)

Isn't UCS just A\* with h(n) being zero (admissible)?

Both are optimal, why is A\* usually "faster?"

Consider h(n) is perfect, f(n) is ?

Chapter 3 97

A\* vs Uniform-cost Search

f(n) = g(n) + h(n)

Isn't UCS just A\* with h(n) being zero (admissible)?

Both are optimal, why is A\* usually "faster?"

### A\* vs Uniform-cost Search

f(n) = g(n) + h(n)

Isn't UCS just A\* with h(n) being zero (admissible)?

Both are optimal, why is A\* usually "faster?"

Consider h(n) is perfect, f(n) is the actual total path cost.

# A\* vs Uniform-cost Search

f(n) = g(n) + h(n)

Isn't UCS just A\* with h(n) being zero (admissible)?

Both are optimal, why is A\* usually "faster?"

Consider h(n) is perfect, f(n) is the actual total path cost.

- $\bullet$  If n doesn't lead to a goal state,  $f(n)=\infty$ 
  - A\* ?
  - UCS ?

A\* vs Uniform-cost Search

f(n) = g(n) + h(n)

Isn't UCS just A\* with h(n) being zero (admissible)?

Both are optimal, why is A\* usually "faster?"

Consider h(n) is perfect, f(n) is the actual total path cost.

- $\bullet$  If n doesn't lead to a goal state,  $f(n)=\infty$ 
  - $A^*$  doesn't explore n.
  - UCS doesn't know and keeps on exploring n (and its successors).
- $\bullet$  If n doesn't lead to the optimal goal, but  $n^*$  does:  $f(n) > f(n^*)$ 
  - $A^*$  doesn't explore n and \*only\* explores  $n^*$  !
  - UCS doesn't know and keeps on exploring n (and its successors).

In terms of speed, the worst case for  $\mathsf{A}^{\pmb{*}}$  is when h(n) is zero, but we don't use h(n)=0.

Chapter 3 103

### Chapter 3 101

# A\* vs Uniform-cost Search

f(n) = g(n) + h(n)

Isn't UCS just A\* with h(n) being zero (admissible)?

Both are optimal, why is A\* usually "faster?"

Consider h(n) is perfect, f(n) is the actual total path cost.

 $\bullet$  If n doesn't lead to a goal state,  $f(n)=\infty$ 

 $- A^*$  doesn't explore n.

- UCS doesn't know and keeps on exploring n (and its successors).
- $\bullet$  If n doesn't lead to the optimal goal, but  $n^*$  does:  $f(n) > f(n^*)$

- A\* ?

- UCS ?

### Consistency

Consider n' is a successor of n, a heuristic is consistent if

i.e. f(n) values for a sequence of nodes along \*any\* path are nondecreasing (similar to g(n) values in UCS).

A\* using GRAPH-SEARCH is optimal if h(n) is consistent (using a similar argument as UCS).

# Optimality of A<sup>\*</sup> (consistent heuristics)

Lemma:  $A^*$  expands nodes in order of increasing f value<sup>\*</sup>

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with  $f = f_i$ , where  $f_i < f_{i+1}$ 



Chapter 3 105

### Admissible heuristics

3

6

3

6

E.g., for the 8-puzzle:

$$h_1(n) =$$
number of misplaced tiles

 $h_2(n) =$ total Manhattan distance

(i.e., no. of squares from desired location of each tile)

| 7 | 2          | 4 | 1 | 2          |
|---|------------|---|---|------------|
| 5 |            | 6 | 4 | 5          |
| 8 | 3          | 1 | 7 | 8          |
| s | tart State |   |   | Goal State |

 $\frac{h_1(S) = ??}{h_2(S) = ??}$ 

Chapter 3 107

### Admissible vs Consistent Heuristics

Consistency is a slightly stronger/stricter requirement than admissibility.

 $consistent Heuristics \subset admissible Heuristics$ 

Admissible heuristics are usually consistent.

Not easy to concort admissible, but not consistent heuristics.

# Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = \mathsf{number} \text{ of misplaced tiles}$$

 $h_2(n) =$ total Manhattan distance

(i.e., no. of squares from desired location of each tile)

| 7 | 2          | 4 | 1 | 2          |
|---|------------|---|---|------------|
| 5 |            | 6 | 4 | 5          |
| 8 | 3          | 1 | 7 | 8          |
|   | lant State |   |   | Cool State |

$$\frac{h_1(S) = ??}{h_2(S) = ??} \ 6$$

### Dominance

If  $h_2(n) \ge h_1(n)$  for all n (both admissible) then  $h_2$  dominates  $h_1$  and is faster for search

Typical search costs:

 $\begin{array}{ll} d=14 & {\rm IDS}={\rm 3,473,941} \mbox{ nodes} \\ {\rm A}^*(h_1)={\rm 539} \mbox{ nodes} \\ {\rm A}^*(h_2)={\rm 113} \mbox{ nodes} \\ d=24 & {\rm IDS}\approx{\rm 54,000,000,000} \mbox{ nodes} \\ {\rm A}^*(h_1)={\rm 39,135} \mbox{ nodes} \\ {\rm A}^*(h_2)={\rm 1,641} \mbox{ nodes} \end{array}$ 

Given any admissible heuristics  $h_a$ ,  $h_b$ ,

 $h(n) = \max(h_a(n), h_b(n))$ 

is also admissible and dominates  $h_a$ ,  $h_b$ 

### Relaxed problems contd.

Well-known example: travelling sales person problem (TSP) Find the shortest tour visiting all cities exactly once



Minimum spanning tree can be computed in  $O(n^2)$  and is a lower bound on the shortest (open) tour

Chapter 3 111

### Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then  $h_1(n)$  gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then  $h_2(n)$  gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

### Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

# Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest  $\boldsymbol{h}$ 

- incomplete and not always optimal

 $A^*$  search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems