Solving Problems by Searching

Chapter 3

Outline

- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
static: seq, an action sequence, initially empty
 state, some description of the current world state
 goal, a goal, initially null
 problem, a problem formulation

state ← Update-State(state, percept)
if seq is empty then
 goal ← Formulate-Goal(state)
 problem ← Formulate-Problem(state, goal)
 seq ← Search(problem)
 if seq is failure then return a null action
action ← First(seq)
seq ← Rest(seq)
return action

Note: this is offline problem solving; solution executed "eyes closed." Online problem solving involves acting without complete knowledge.

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem types

Deterministic, fully observable \(\implies\) single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable \(\implies\) conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable \(\implies\) contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space \(\implies\) exploration problem ("online")

Example: vacuum world

Single-state, start in #5. Solution??

Conformant, start in \(\{1, 2, 3, 4, 5, 6, 7, 8\}\)
e.g., Right goes to \(\{2, 4, 6, 8\}\). Solution??
Example: vacuum world

Single-state, start in #5. Solution??

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
 e.g., *Right* goes to {2, 4, 6, 8}. Solution??
 [Right, Suck, Left, Suck]

Contingency
 ◇ Murphy’s Law (non-deterministic): *Suck*
 can dirty a clean carpet; start in #5
 ◇ Local sensing (partially-observable): dirt, location only, start in {#5,#7}.
 Solution??

Single-state problem formulation

A problem is defined by four items:

◇ **initial state** e.g., “at Arad”

◇ **successor function** \(S(x) = \text{set of action–state pairs} \)
 e.g., \(S(\text{Arad}) = \{ (\text{Arad} \rightarrow \text{Zerind}, \text{Zerind}), \ldots \} \)

◇ **goal test**, can be
 explicit, e.g., \(x = \text{“at Bucharest”} \)
 implicit, e.g., \(\text{NoDirt}(x) \)

◇ **path cost** (additive)
 e.g., sum of distances, number of actions executed, etc.
 \(c(x, a, y) \) is the **step cost**, assumed to be \(\geq 0 \)

A **solution** is a sequence of actions
leading from the initial state to a goal state

Selecting a state space

Real world is absurdly complex
 \(\Rightarrow \) state space must be **abstracted** for problem solving

◇ (Abstract) state = set of real states

◇ (Abstract) action = complex combination of real actions
 e.g., “Arad \(\rightarrow \) Zerind” represents a complex set of possible routes, detours, rest stops, etc.

◇ For guaranteed realizability, **any** real state “in Arad” must get to some real state “in Zerind”

◇ (Abstract) solution =
 set of real paths that are solutions in the real world

◇ Each abstract action should be “easier” than the original problem!
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??
Example: The 8-puzzle

<table>
<thead>
<tr>
<th>Start State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 2 4</td>
<td>1 2 3</td>
</tr>
<tr>
<td>5 6</td>
<td>4 5 6</td>
</tr>
<tr>
<td>8 3 1</td>
<td>7 8</td>
</tr>
</tbody>
</table>

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with **no robot included!**
path cost??: time to execute

Tree search algorithms

Basic idea:
 offline, simulated exploration of state space
 by generating successors of already-explored states
 (a.k.a. expanding states)

function
TREE-SEARCH(problem, strategy) returns a solution, or failure
loop do
 initialize the frontier using the initial state of problem
 if the frontier is empty then **return** failure
 choose a leaf node and remove it from the frontier based on strategy
 if the node contains a goal state then **return** the corresponding solution
 else expand the chosen node and add the resulting nodes to the frontier
end
Tree search example

A state is a (representation of) a physical configuration.
A node is a data structure constituting part of a search tree.
Includes parent, children, depth, path cost $g(x)$.
States do not have parents, children, depth, or path cost!

The expand function creates new nodes, filling in the various fields and using the successor function of the problem to create the corresponding states.
Search strategies

A strategy is defined by picking the order of node expansion.

Strategies are evaluated along the following dimensions:
- **completeness**—does it always find a solution if one exists?
- **time complexity**—number of nodes generated/expanded
- **space complexity**—maximum number of nodes in memory
- **optimality**—does it always find a least-cost solution?

Time and space complexity are measured in terms of
- \(b \)—maximum branching factor of the search tree
- \(d \)—depth of the "shallowest" solution
- \(m \)—maximum depth of the state space (may be \(\infty \))

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition:
- ◊ Breadth-first search
- ◊ Uniform-cost search
- ◊ Depth-first search
- ◊ Depth-limited search
- ◊ Iterative deepening search

Breadth-first search

Expand shallowest unexpanded node

Implementation:
- *frontier* is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:
- *frontier* is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:
- *frontier* is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

- **Complete:** Yes (if b is finite)
- **Time:** ??
Properties of breadth-first search

Complete?? Yes (if \(b \) is finite)

Time (# of visited nodes)?? \(1 + b + b^2 + b^3 + \ldots + b^d = O(b^d) \)

Time (# of generated nodes)? \(b + b^2 + b^3 + \ldots + b^d + (b^{d+1} - b) = O(b^{d+1}) \)

Space??

Optimal??

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

\[\text{frontier} = \text{queue ordered by path cost, lowest first} \]

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost \(\geq \epsilon \) (lowest step cost)

Time?? # of nodes with \(g \leq \) cost of optimal solution, \(O(b^{c^*/\epsilon}) \)

where \(C^* \) is the cost of the optimal solution

Space?? # of nodes with \(g \leq \) cost of optimal solution, \(O(b^{C^*/\epsilon}) \)

Optimal?? Yes—nodes expanded in increasing order of \(g(n) \)
Depth-first search

Expand deepest unexpanded node

Implementation:

frontier = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:
\[\textit{frontier} = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

\[
\text{frontier} = \text{LIFO queue, i.e., put successors at front}
\]

Depth-first search

Expand deepest unexpanded node

Implementation:

\[
\text{frontier} = \text{LIFO queue, i.e., put successors at front}
\]
Properties of depth-first search

Complete??

Yes: in finite spaces
No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

Time??

$O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

$O(bm)$, i.e., linear space!

Optimal??

Complete??

Yes: in finite spaces

No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

Time??

$O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

$O(bm)$, i.e., linear space!

Optimal??
Properties of depth-first search

Complete?? Yes: in finite spaces
No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

Time?? $O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? $O(bm)$, i.e., linear space!

Optimal?? No

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

```
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? ← false
    if Goal-Test(problem, State[node]) then return node
    else if Depth[node] = limit then return cutoff
    else for each successor in Expand(node, problem) do
        result ← Recursive-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? ← true
        else if result ≠ failure then return result
        if cutoff-occurred? then return cutoff else return failure
```

Iterative deepening search

```
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
    inputs: problem, a problem
    for depth ← 0 to ∞ do
        result ← DEPTH-LIMITED-SEARCH(problem, depth)
        if result ≠ cutoff then return result
    end
```

Iterative deepening search $l = 0$
Iterative deepening search $l = 1$

Limit = 1

Iterative deepening search $l = 2$

Limit = 2

Iterative deepening search $l = 3$

Limit = 3

Properties of iterative deepening search

Complete??
Properties of iterative deepening search

Complete?? Yes

Time (# of generated nodes)?? \(db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d) \)

Space?? \(O(b^d) \)

Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison for \(b = 10 \) and \(d = 5 \), solution at far right leaf:

\[
N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 \\
N(\text{BFS Visited}) = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110 \\
N(\text{BFS Generated}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100
\]

BFS can be modified to apply goal test when a node is generated
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time ((\text{big-O}))</td>
<td>(b^d)</td>
<td>(b^{\lceil C*/\epsilon \rceil})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space ((\text{big-O}))</td>
<td>(b^d)</td>
<td>(b^{\lceil C*/\epsilon \rceil})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
</tbody>
</table>

Graph search

Function `Graph-Search(problem)` returns a solution, or failure

- `frontier` ← a list with node from the initial state of `problem`
- `explored` ← an empty set

Loop do

- if `frontier` is empty then return failure
- `node` ← `Remove-Front(frontier)`
- if `node` contains a goal state then return `Solution(node)`
- add `State[node]` to `explored`
- expand `node`
- add to `frontier` the resulting nodes that are not in `explored` or not in `frontier` or [better than the corresponding nodes in `frontier` in some algs]

end

`frontier` (aka fringe or open); `explored` (aka visited or closed)

Informed Search

- So far the search algorithms are “uninformed”—independent to the problems
- Informed search—incorporating knowledge related to the problem for guiding search

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

![Graph with repeated states](image-url)
Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
frontier is a queue sorted in decreasing order of desirability

Special cases:
- greedy search
- A* search

Greedy search

Evaluation function \(h(n) \) (heuristic)
= estimate of cost from \(n \) to the closest goal

E.g., \(h_{SLD}(n) \) = straight-line distance from \(n \) to Bucharest
Greedy search expands the node that appears to be closest to goal

Romania with step costs in km

Greedy search example

Straight-line distance to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobrosta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitești 98
Rimnicu Vilcea 193
Sibiu 253
Timișoara 129
Urziceni 80
Vaslui 199
Iași 87
Zerind 374
Greedy search example

Chapter 3 77

Properties of greedy search

Complete??

Chapter 3 79
<table>
<thead>
<tr>
<th>Properties of greedy search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?? Yes—Complete in finite space with repeated-state checking</td>
</tr>
<tr>
<td>No—can get stuck in loops, e.g., with Oradea as goal,</td>
</tr>
<tr>
<td>Iasi → Neamt → Iasi → Neamt →</td>
</tr>
<tr>
<td>Time??</td>
</tr>
<tr>
<td>Space??</td>
</tr>
<tr>
<td>Optimal?? No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Properties of greedy search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?? Yes—Complete in finite space with repeated-state checking</td>
</tr>
<tr>
<td>No—can get stuck in loops, e.g.,</td>
</tr>
<tr>
<td>Iasi → Neamt → Iasi → Neamt →</td>
</tr>
<tr>
<td>Time?? $O(b^m)$, but a good heuristic can give dramatic improvement</td>
</tr>
<tr>
<td>Space?? $O(b^m)$, but a good heuristic can give dramatic improvement</td>
</tr>
<tr>
<td>Optimal?? No</td>
</tr>
</tbody>
</table>
A* search

Idea: avoid expanding paths that are already expensive

Evaluation function \(f(n) = g(n) + h(n) \)

- \(g(n) \) = cost so far to reach \(n \)
- \(h(n) \) = estimated cost to goal from \(n \)
- \(f(n) \) = estimated total cost of path through \(n \) to goal

A* search uses an **admissible** heuristic
i.e., \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the true cost from \(n \).
(Also require \(h(n) \geq 0 \), so \(h(G) = 0 \) for any goal \(G \).)

E.g., \(h_{SLD}(n) \) never overestimates the actual road distance

Theorem: A* search is optimal
Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.

Want to prove: $f(G_2) > f(n)$ [A* will never select G_2 for expansion]

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- $g(G) \geq f(n)$ since h is admissible
Properties of A^\ast

Complete??

Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in $[\text{relative error in } h \times d]$

Space??

Optimal??
Properties of A*:

- **Complete?** Yes, unless there are infinitely many nodes with $f \leq f(G)$
- **Time?** Exponential in \([\text{relative error in } h \times d]\)
- **Space?** Exponential
- **Optimal?** Yes—cannot expand f_{i+1} until f_i is finished, where $f_{i+1} > f_i$

C^* is the cost for the optimal solution:

- A* expands all nodes with $f(n) < C^*$
- A* expands some nodes with $f(n) = C^*$
- A* expands no nodes with $f(n) > C^*$

A* vs Uniform-cost Search:

- $f(n) = g(n) + h(n)$
- Isn’t UCS just A* with $h(n)$ being zero (admissible)?
- Both are optimal, why is A* usually “faster?”

Consider $h(n)$ is perfect, $f(n)$ is the actual total path cost.
A* vs Uniform-cost Search

\[f(n) = g(n) + h(n) \]

Isn’t UCS just A* with \(h(n) \) being zero (admissible)?

Both are optimal, why is A* usually “faster?”

Consider \(h(n) \) is perfect, \(f(n) \) is the actual total path cost.

- If \(n \) doesn’t lead to a goal state, \(f(n) = \infty \)
 - A* ?
 - UCS ?

- If \(n \) doesn’t lead to the optimal goal, but \(n^* \) does: \(f(n) > f(n^*) \)
 - A* ?
 - UCS ?

Consistency

Consider \(n' \) is a successor of \(n \), a heuristic is consistent if

\[h(n) \leq c(n, a, n') + h(n'), \]

Let’s find the relationship between \(f(n) \) and \(f(n') \):

\[
\begin{align*}
 f(n') &= g(n') + h(n') \\
 f(n') &= g(n') + c(n, a, n') + h(n') \\
 f(n') &\geq g(n) + h(n) \quad \text{[since } h \text{ is consistent]} \\
 f(n') &\geq f(n)
\end{align*}
\]

i.e. \(f(n) \) values for a sequence of nodes along *any* path are nondecreasing (similar to \(g(n) \) values in UCS).

A* using GRAPH-SEARCH is optimal if \(h(n) \) is consistent (using a similar argument as UCS).
Optimality of A* (consistent heuristics)

Lemma: A* expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Admissible vs Consistent Heuristics

Consistency is a slightly stronger/stricter requirement than admissibility.

$\text{consistentHeuristics} \subseteq \text{admissibleHeuristics}$

Admissible heuristics are usually consistent.

Not easy to concord admissible, but not consistent heuristics.

Admissible heuristics

E.g., for the 8-puzzle:

$h_1(n) =$ number of misplaced tiles

$h_2(n) =$ total Manhattan distance

(i.e., no. of squares from desired location of each tile)

$h_1(S) = ??$

$h_2(S) = ??$

$h_1(S) = 6$

$h_2(S) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$
Dominance

If $h_2(n) \geq h_1(n)$ for all n (both admissible)
then h_2 dominates h_1 and is faster for search

Typical search costs:

$d = 14$ IDS = 3,473,941 nodes
$A^*(h_1) = 539$ nodes
$A^*(h_2) = 113$ nodes

$d = 24$ IDS = 54,000,000,000 nodes
$A^*(h_1) = 39,135$ nodes
$A^*(h_2) = 1,641$ nodes

Given any admissible heuristics h_a, h_b

$h(n) = \max(h_a(n), h_b(n))$

is also admissible and dominates h_a, h_b

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)

Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$
and is a lower bound on the shortest (open) tour

Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search
Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
 – incomplete and not always optimal

A* search expands lowest $g + h$
 – complete and optimal
 – also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems