Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution.

Then state space = set of “complete” configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable.

In such cases, can use iterative improvement algorithms; keep a single “current” state, try to improve it.

Constant space, suitable for online as well as offline search.

Example: Traveling Salesperson Problem

Start with any complete tour, perform pairwise exchanges.

Variants of this approach get within 1% of optimal very quickly with thousands of cities.
Example: \(n \)-queens

Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal.

Move a queen to reduce number of conflicts.

Almost always solves \(n \)-queens problems almost instantaneously for very large \(n \), e.g., \(n = 1 \text{ million} \).

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia".

```
function HILL-CLIMBING( problem ) returns a state that is a local maximum
   inputs: problem, a problem
   local variables: current, a node
                   neighbor, a node
   current ← Make-Node(Initial-State[problem])
   loop do
      neighbor ← a highest-valued successor of current
      if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
      current ← neighbor
   end
```

Hill-climbing contd.

Useful to consider state space landscape.

Random-restart hill climbing overcomes local maxima (eventually a good initial state).

Random sideways moves escape from shoulders loop on flat maxima.

Ridges
Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
 schedule, a mapping from time to "temperature"
local variables: current, a node
 next, a node
 T, a "temperature" controlling prob. of downward steps

$\text{current} \leftarrow \text{Make-Node}(\text{Initial-State}[\text{problem}])$
for $t \leftarrow 1$ to ∞
 $T \leftarrow \text{schedule}[t]$
 if $T = 0$ then return current
 $\text{next} \leftarrow$ a randomly selected successor of current
 $\Delta E \leftarrow \text{Value}[\text{next}] - \text{Value}[\text{current}]$
 if $\Delta E > 0$ then $\text{current} \leftarrow \text{next}$
 else $\text{current} \leftarrow \text{next}$ only with probability $e^{\Delta E/T}$

Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{-E(x) / T}$$

T decreased slowly enough \implies always reach best state x^*
because $e^{E(x^*) / T} / e^{E(x) / T} = e^{E(x^*) - E(x) / T} \gg 1$ for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Local beam search

Idea: k random initial states; choose and keep top k of all their successors

◊ Not the same as k hill climbing searches run in parallel!
◊ Searches that find good states recruit other searches to join them
◊ However, if the successors from an initial state are not selected, the search starting from that state is effectively abandoned.

Problem: quite often, all k states end up on same local hill
Idea: choose k successors randomly, biased towards good ones (Stochastic Beam Search)

Observe the close analogy to natural selection!
Genetic algorithms

= stochastic beam search + generate successors from pairs of states

<table>
<thead>
<tr>
<th>Fitness</th>
<th>Selection</th>
<th>Pairs</th>
<th>Cross-Over</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>24748552</td>
<td>24 31%</td>
<td>32752411</td>
<td>32748552</td>
<td>3274552</td>
</tr>
<tr>
<td>32752411</td>
<td>23 29%</td>
<td>24748552</td>
<td>24752411</td>
<td>24752441</td>
</tr>
<tr>
<td>24415124</td>
<td>20 26%</td>
<td>32752411</td>
<td>32752124</td>
<td>32452124</td>
</tr>
<tr>
<td>32543213</td>
<td>11 14%</td>
<td>24415124</td>
<td>24415141</td>
<td>24415137</td>
</tr>
</tbody>
</table>

Continuous state spaces

◊ Suppose we want to site three airports in Romania:
 – 6-D state space defined by \((x_1, y_2), (x_2, y_2), (x_3, y_3)\)
 – objective function \(f(x_1, y_2, x_2, y_2, x_3, y_3) = \)
 sum of squared distances from each city to nearest airport

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)
Crossover helps iff substrings are meaningful components

\[
\begin{array}{ccc}
\text{Fitness} & \text{Selection} & \text{Pairs} \\
\end{array}
\]

Continuous state spaces–Discretization

◊ Suppose we want to site three airports in Romania:
 – 6-D state space defined by \((x_1, y_2), (x_2, y_2), (x_3, y_3)\)
 – objective function \(f(x_1, y_2, x_2, y_2, x_3, y_3) = \)
 sum of squared distances from each city to nearest airport

◊ Discretization methods turn continuous space into discrete space
◊ each state has six discrete variables (e.g. \(\pm \delta \) miles, where \(\delta\) is a constant) [or grid cells]
◊ each state has how many possible successors?

GAs ≠ evolution: e.g., real genes encode replication machinery!
Continuous state spaces–Discretization

- Suppose we want to site three airports in Romania:
 - 6-D state space defined by \((x_1, y_2), (x_2, y_2), (x_3, y_3)\)
 - Objective function \(f(x_1, y_2, x_2, y_2, x_3, y_3) = \) sum of squared distances from each city to nearest airport
- Discretization methods turn continuous space into discrete space
- Each state has six discrete variables (e.g. \(\pm \delta\) miles, where \(\delta\) is a constant) [or grid cells]
- Each state has how many possible successors?
 - 12 [book] (action: change only one variable—\(x\) or (“xor”) \(y\) of one airport)
 - 3^6 - 1 (action: change at least one variable)
- What is the algorithm?

Continuous state spaces–No Discretization

- Gradient (of the objective function) methods compute
 \[
 \nabla f = \begin{bmatrix}
 \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial y_1} \\
 \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial y_2} \\
 \frac{\partial f}{\partial x_3} & \frac{\partial f}{\partial y_3}
 \end{bmatrix}
 \]
- To increase/reduce \(f\), e.g., by \(x \leftarrow x + \alpha \nabla f(x)\)
- Sometimes can solve for \(\nabla f(x) = 0\) exactly (e.g., only one airport).
- Otherwise, Newton–Raphson (1664, 1690) iterates \(x \leftarrow x - H_f^{-1}(x)\nabla f(x)\)
 to solve \(\nabla f(x) = 0\), where \(H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}\)

Contrast and Summary

- Ch. 3
- Ch. 4.1-2
- What is the key difference?

- Ch. 3: "It is the journey, not the destination." (optimize the path)
- Ch. 4.1-2: "It is the destination, not the journey" (optimize the goal)

Different problem formulation, do we still need:
- Initial state (state space): ?
- Successor function (actions): ?
- Step (path) cost: ?
- Goal test: ?
Contrast and Summary

♦ Ch. 3: "It is the journey, not the destination." (optimize the path)
♦ Ch. 4.1-2: "It is the destination, not the journey" (optimize the goal)
♦ Different problem formulation, do we still need:
 • Initial state (state space): yes [but different kind of states]
 • Successor function (actions): yes [but different kind of actions]
 • Step (path) cost: no [not the journey]
 • Goal test: no [optimize objective function]
♦ The n-queen and TSP problems can be formulated in either way, how?

Searching with Non-deterministic Actions

♦ performing an action might not yield the expected successor state
♦ Suck can clean one dirty square, but sometimes an adjacent dirty square as well
♦ Suck on a clean square can sometimes make it dirty

Skipping the rest

Erratic Vacuum World

♦ not just a sequence of actions, but backup/contingency plans
♦ from State 1: [Suck, if State = 5 then [Right, Suck] else []]

1 2
3 4
5 6
7 8

Chapter 4, Sections 4.1-4.2 21
Chapter 4, Sections 4.1-4.2 22
Chapter 4, Sections 4.1-4.2 23
Chapter 4, Sections 4.1-4.2 24
And-Or Search Tree

Every path reaches a goal, a repeated state, or a dead end

Sensorless problems

- No sensor—the agent does not know which state it is in
- Is it hopeless?

Slippery floor

Belief States

- Each "belief" state is a collection of possible "physical" states.
- 12 "reachable" belief states (out of 255 possible belief states)
- If the actions have uncertain outcomes, how many belief states are there?
Contingency problems

- Environment is partially observable
- Fixed sequence: [Suck, Right, Suck]
- Actions have uncertain outcomes
- Additional percepts during execution: [Suck, Right, if [R Dirty] then Suck]
- More in Chapter 12 (Planning)
- Adversarial environment (e.g., games): Chapter 6