Inference in first-order logic

Chapter 9

Chapter 9 1

Outline

- ♦ Reducing first-order inference to propositional inference
- ♦ Unification
- ♦ Generalized Modus Ponens
- ♦ Forward and backward chaining
- ♦ Logic programming
- ♦ Resolution

A brief history of reasoning

450B.C. Stoics	propositiona	Il logic, inference (maybe)
322B.C. Aristot	t <mark>le</mark> "syllogisms"	(inference rules), quantifiers
1565 Cardar	no probability t	theory (propositional logic $+$ uncertainty)
1847 Boole	propositiona	ıl logic (again)
Frege	first-order lo	ogic
1922 Wittge	<mark>enstein</mark> proof by tru	th tables
1930 Gödel	\exists complete	algorithm for FOL
1930 Herbra	i <mark>nd</mark> complete alg	gorithm for FOL (reduce to propositional)
1931 Gödel	¬∃ complet	e algorithm for arithmetic
1960 Davis/	Putnam "practical"	algorithm for propositional logic
1965 Robins	son "practical"	algorithm for FOL—resolution

Chapter 9 3

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

```
\frac{\forall v \ \alpha}{\text{SUBST}(\{v/g\}, \alpha)}
```

for any variable \boldsymbol{v} and ground term \boldsymbol{g}

```
\mathsf{E.g.,} \ \forall \, x \ \ King(x) \land Greedy(x) \ \Rightarrow \ Evil(x) \ \mathsf{yields}
```

```
\begin{array}{l} King(John) \wedge Greedy(John) \ \Rightarrow \ Evil(John) \\ King(Richard) \wedge Greedy(Richard) \ \Rightarrow \ Evil(Richard) \\ King(Father(John)) \wedge Greedy(Father(John)) \ \Rightarrow \ Evil(Father(John)) \\ \vdots \end{array}
```

Chapter 9 2 Chapter 9 4

Existential instantiation (EI)

For any sentence α , variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$\frac{\exists \, v \ \alpha}{\mathrm{Subst}(\{v/k\}, \alpha)}$$

E.g., $\exists x \ Crown(x) \land OnHead(x, John)$ yields

 $Crown(C_1) \wedge OnHead(C_1, John)$

provided C_1 is a new constant symbol, called a Skolem constant

Another example: from $\exists x \ d(x^y)/dy = x^y$ we obtain

$$d(e^y)/dy = e^y$$

provided e is a new constant symbol

Chapter 9 5

Existential instantiation contd.

UI can be applied several times to add new sentences; the new KB is logically equivalent to the old

El can be applied once to **replace** the existential sentence; the new KB is **not** equivalent to the old, but is satisfiable iff the old KB was satisfiable

Reduction to propositional inference

Suppose the KB contains just the following:

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)

King(John)

Greedy(John)

Brother(Richard, John)
```

Instantiating the universal sentence in all possible ways, we have

```
King(John) \wedge Greedy(John) \Rightarrow Evil(John)

King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)

King(John)

Greedy(John)

Brother(Richard, John)
```

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard) etc.

Chapter 9 7

Reduction contd.

Claim: a ground sentence* is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms, e.g., Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a **finite** subset of the propositional KB

Idea: For n=0 to ∞ do create a propositional KB by instantiating with depth-n terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Chapter 9 6 Chapter 9 8

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences. E.g., from

$$\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$$

 $King(John)$
 $\forall y \ Greedy(y)$
 $Brother(Richard, John)$

it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are $p \cdot n^k$ instantiations

With function symbols, it gets much much worse!

Chapter 9 9

Unification

We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

$$\theta = \{x/John, y/John\}$$
 works

Unify
$$(\alpha, \beta) = \theta$$
 if $\alpha \theta = \beta \theta$

p	q	θ
	Knows(John, Jane)	
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John,x)	Knows(x, OJ)	

Unification

We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

$$\theta = \{x/John, y/John\}$$
 works

Unify
$$(\alpha, \beta) = \theta$$
 if $\alpha \theta = \beta \theta$

$$\begin{array}{c|cccc} p & q & \theta \\ \hline Knows(John,x) & Knows(John,Jane) & \{x/Jane\} \\ Knows(John,x) & Knows(y,OJ) & \\ Knows(John,x) & Knows(y,Mother(y)) \\ Knows(John,x) & Knows(x,OJ) & \\ \end{array}$$

Chapter 9 11

Unification

We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

$$\theta = \{x/John, y/John\}$$
 works

Unify
$$(\alpha, \beta) = \theta$$
 if $\alpha \theta = \beta \theta$

p	q	θ
Knows(John, x)		$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	
Knows(John,x)	Knows(x, OJ)	

Chapter 9 10 Chapter 9 12

Unification

We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

$$\theta = \{x/John, y/John\} \text{ works}$$

Unify(
$$\alpha, \beta$$
) = θ if $\alpha \theta = \beta \theta$

p	q	$\mid heta$
Knows(John, x)	Knows(John, Jane)	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
Knows(John, x)	Knows(x, OJ)	

Chapter 9 13

Unification

We can get the inference immediately if we can find a substitution θ such that Kinq(x) and Greedy(x) match Kinq(John) and Greedy(y)

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha\theta = \beta\theta$

$$\begin{array}{c|cccc} p & q & \theta \\ \hline Knows(John,x) & Knows(John,Jane) & \{x/Jane\} \\ Knows(John,x) & Knows(y,OJ) & \{x/OJ,y/John\} \\ Knows(John,x) & Knows(y,Mother(y)) & \{y/John,x/Mother(John)\} \\ Knows(John,x) & Knows(x,OJ) & fail \end{array}$$

Standardizing apart eliminates overlap of variables, e.g., $Knows(z_{17},OJ)$

Generalized Modus Ponens (GMP)

$$\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x) \\ King(John) \\ Greedy(y) \\ Brother(Richard, John)$$

$$\frac{p_1', \quad p_2', \ \dots, \ p_n', \quad (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{q\theta} \qquad \text{where } p_i'\theta = p_i\theta \text{ for all } i$$

$$p_1'$$
 is $King(John)$ p_1 is $King(x)$
 p_2' is $Greedy(y)$ p_2 is $Greedy(x)$
 θ is $\{x/John, y/John\}$ q is $Evil(x)$
 $q\theta$ is $Evil(John)$

GMP used with KB of definite clauses (exactly one positive literal) All variables assumed universally quantified

Chapter 9 15

Soundness of GMP

Need to show that

$$p_1', \ldots, p_n', (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models q\theta$$

provided that $p_i'\theta = p_i\theta$ for all i

Lemma: For any definite clause p, we have $p \models p\theta$ by UI

1.
$$(p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models (p_1 \wedge \ldots \wedge p_n \Rightarrow q)\theta = (p_1\theta \wedge \ldots \wedge p_n\theta \Rightarrow q\theta)$$

2.
$$p_1', \ldots, p_n' \models p_1' \land \ldots \land p_n' \models p_1'\theta \land \ldots \land p_n'\theta$$

3. From 1 and 2, $q\theta$ follows by ordinary Modus Ponens

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

Chapter 9 17

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$ Nono ... has some missiles

Chapter 9 19

Example knowledge base contd.

 $\label{eq:continuous} \begin{array}{l} \dots \text{ it is a crime for an American to sell weapons to hostile nations:} \\ American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x) \\ \text{Nono } \dots \text{ has some missiles, i.e., } \exists \ x \ Owns(Nono,x) \land Missile(x): \\ Owns(Nono,M_1) \text{ and } Missile(M_1) \\ \dots \text{ all of its missiles were sold to it by Colonel West} \end{array}$

Chapter 9 18 Chapter 9 20

Example knowledge base contd.

```
\label{eq:continuous} \begin{array}{l} \dots \text{ it is a crime for an American to sell weapons to hostile nations:} \\ American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x) \\ \text{Nono} \dots \text{ has some missiles, i.e., } \exists \ x \ Owns(Nono,x) \land Missile(x) \text{:} \\ Owns(Nono,M_1) \text{ and } Missile(M_1) \\ \dots \text{ all of its missiles were sold to it by Colonel West} \\ \forall \ x \ Missile(x) \land Owns(Nono,x) \Rightarrow Sells(West,x,Nono) \\ \text{Missiles are weapons:} \end{array}
```

Chapter 9 21

Example knowledge base contd.

```
... it is a crime for an American to sell weapons to hostile nations: American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x) Nono ... has some missiles, i.e., \exists \ x \ Owns(Nono,x) \land Missile(x): Owns(Nono,M_1) \text{ and } Missile(M_1) ... all of its missiles were sold to it by Colonel West \forall \ x \ Missile(x) \land Owns(Nono,x) \Rightarrow Sells(West,x,Nono) Missiles are weapons: Missile(x) \Rightarrow Weapon(x) An enemy of America counts as "hostile":
```

Example knowledge base contd.

```
 \begin{array}{l} \dots \text{ it is a crime for an American to sell weapons to hostile nations:} \\ American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x) \\ \text{Nono } \dots \text{ has some missiles, i.e., } \exists \, x \,\, Owns(Nono,x) \land Missile(x): \\ Owns(Nono,M_1) \text{ and } Missile(M_1) \\ \dots \text{ all of its missiles were sold to it by Colonel West} \\ \forall \, x \,\, Missile(x) \land Owns(Nono,x) \Rightarrow Sells(West,x,Nono) \\ \text{Missiles are weapons:} \\ Missile(x) \Rightarrow Weapon(x) \\ \text{An enemy of America counts as "hostile":} \\ Enemy(x,America) \Rightarrow Hostile(x) \\ \text{West, who is American} \dots \\ American(West) \\ \text{The country Nono, an enemy of America} \dots \\ Enemy(Nono,America) \\ \end{array}
```

Chapter 9 23

Forward chaining algorithm

```
function FOL-FC-ASK(KB, \alpha) returns a substitution or false

repeat until new is empty

new \leftarrow \{\}

for each sentence r in KB do

(p_1 \land \ldots \land p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-APART}(r)

for each \theta such that (p_1 \land \ldots \land p_n)\theta = (p'_1 \land \ldots \land p'_n)\theta

for some p'_1, \ldots, p'_n in KB

q' \leftarrow \text{SUBST}(\theta, q)

if q' is not a renaming of a sentence already in KB or new then do add q' to new

\phi \leftarrow \text{UNIFY}(q', \alpha)

if \phi is not fail then return \phi

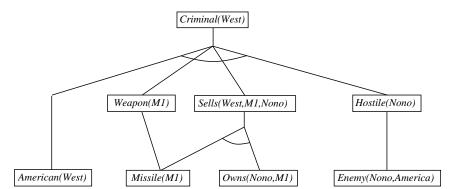
add new to KB

return false
```

Chapter 9 22 Chapter 9 24

Forward chaining proof

Forward chaining proof



Chapter 9 25

Forward chaining proof

Properties of forward chaining

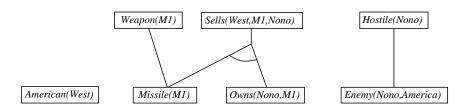
Chapter 9 27

Sound and complete for first-order definite clauses (proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB) FC terminates for Datalog in poly iterations: at most $p \cdot n^k$ literals

May not terminate in general if $\boldsymbol{\alpha}$ is not entailed

This is unavoidable: entailment with definite clauses is semidecidable



Chapter 9 26 Chapter 9 28

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k if a premise wasn't added on iteration k-1

 \Rightarrow match each rule whose premise contains a newly added literal

Matching itself can be expensive

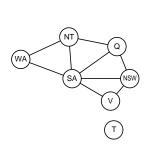
Database indexing allows O(1) retrieval of known facts e.g., query Missile(x) retrieves $Missile(M_1)$

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases

Chapter 9 29

Hard matching example



```
Diff(wa, nt) \land Diff(wa, sa) \land
Diff(nt, q)Diff(nt, sa) \land
Diff(q, nsw) \land Diff(q, sa) \land
Diff(nsw, v) \land Diff(nsw, sa) \land
Diff(v, sa) \Rightarrow Colorable()
Diff(Red, Blue) \quad Diff(Red, Green)
Diff(Green, Red) \quad Diff(Green, Blue)
Diff(Blue, Red) \quad Diff(Blue, Green)
```

Colorable() is inferred iff the CSP has a solution CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

```
function FOL-BC-Ask(KB, goals, \theta) returns a set of substitutions inputs: KB, a knowledge base goals, a list of conjuncts forming a query (\theta already applied) \theta, the current substitution, initially the empty substitution {} } local variables: answers, a set of substitutions, initially empty if goals is empty then return {\theta} q' \leftarrow \text{SUBST}(\theta, \text{FIRST}(goals)) for each sentence r in KB where STANDARDIZE-APART(r) = (p_1 \land \ldots \land p_n \Rightarrow q) and \theta' \leftarrow \text{UNIFY}(q, q') succeeds new\_goals \leftarrow [p_1, \ldots, p_n| \text{REST}(goals)] answers \leftarrow \text{FOL-BC-Ask}(KB, new\_goals, \text{COMPOSE}(\theta', \theta)) \cup answers return answers
```

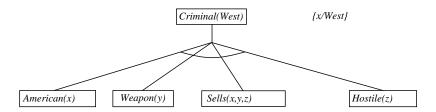
Chapter 9 31

Backward chaining example

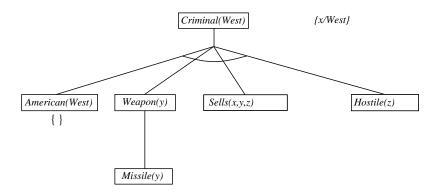
Criminal(West)

Chapter 9 30 Chapter 9 32

Backward chaining example

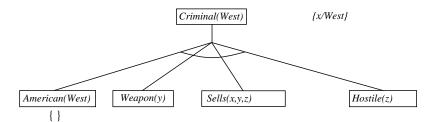


Backward chaining example

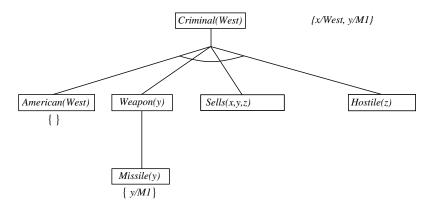


Chapter 9 33 Chapter 9 37

Backward chaining example

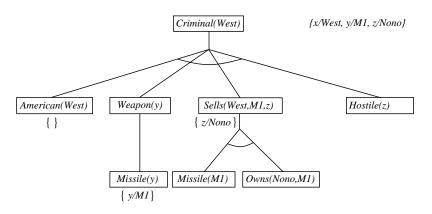


Backward chaining example



Chapter 9 34 Chapter 9 36

Backward chaining example



Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops

⇒ fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)

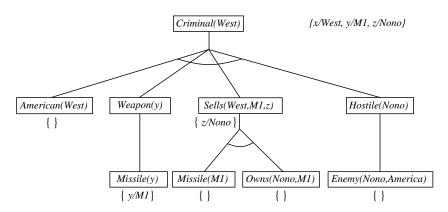
⇒ fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Chapter 9 37

Chapter 9 39

Backward chaining example



Logic programming

Sound bite: computation as inference on logical KBs

Logic programming

1. Identify problem

2. Assemble information

3. Tea break

4. Encode information in KB

Ordinary programming
Identify problem

Assemble information

Figure out solution

Program solution

 $5. \ \ \, \text{Encode problem instance as facts} \ \, \text{Encode problem instance as data}$

6. Ask queries Apply program to data7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewYork, US) than x := x + 2!

Chapter 9 38 Chapter 9 40

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles Widely used in Europe, Japan (basis of 5th Generation project) Compilation techniques \Rightarrow approaching a billion LIPS

```
Program = set of clauses = head :- literal<sub>1</sub>, ... literal<sub>n</sub>.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
```

Efficient unification by open coding

Efficient retrieval of matching clauses by direct linking

Depth-first, left-to-right backward chaining

Built-in predicates for arithmetic etc., e.g., X is Y*Z+3

Closed-world assumption ("negation as failure")

```
e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead(joe) fails
```

Chapter 9 41

Prolog examples

Depth-first search from a start state X:

```
dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).
```

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

Resolution: brief summary

Full first-order version:

$$\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{(\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n)\theta}$$
 where
$$\mathrm{UNIFY}(\ell_i, \neg m_j) = \theta.$$

For example,

$$\frac{\neg Rich(x) \lor Unhappy(x)}{Rich(Ken)} \\ \hline Unhappy(Ken)$$

with $\theta = \{x/Ken\}$

Apply resolution steps to $CNF(KB \land \neg \alpha)$; complete for FOL

Chapter 9 43

Conversion to CNF

Everyone who loves all animals is loved by someone:

$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

1. Eliminate biconditionals and implications

$$\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x,y)] \lor [\exists y \ Loves(y,x)]$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \neg \exists x, p \equiv \forall x \neg p$:

$$\begin{array}{l} \forall x \ [\exists y \ \neg (\neg Animal(y) \lor Loves(x,y))] \lor [\exists y \ Loves(y,x)] \\ \forall x \ [\exists y \ \neg \neg Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)] \\ \forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)] \end{array}$$

Chapter 9 42 Chapter 9 44

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

$$\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$$

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

$$\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

5. Drop universal quantifiers:

$$[Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

6. Distribute ∧ over ∨:

$$[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$$

Chapter 9 45

Resolution proof: definite clauses

