Let action A_t = leave for airport t minutes before flight
Will A_t get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (KCBS traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: “A_{25} will get me there on time”
or 2) leads to conclusions that are too weak for decision making:
 “A_{25} will get me there on time if there’s no accident on the bridge
 and it doesn’t rain and my tires remain intact etc etc.”

(A_{1440} might reasonably be said to get me there on time
but I’d have to stay overnight in the airport . . .)

Methods for handling uncertainty

Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A_{25} works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:
$A_{25} \rightarrow_{0.3} \text{AtAirportOnTime}$
$\text{Sprinkler} \rightarrow_{0.99} \text{WetGrass}$
$\text{WetGrass} \rightarrow_{0.7} \text{Rain}$

Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability
Given the available evidence,
A_{25} will get me there on time with probability 0.04

Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g.,
WetGrass is true to degree 0.2)
Probability

Probabilistic assertions **summarize** effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge
e.g., \(P(A_{25} | \text{no reported accidents}) = 0.06 \)
These are **not** claims of a “probabilistic tendency” in the current situation
(but might be learned from past experience of similar situations)
Probabilities of propositions change with new evidence:
e.g., \(P(A_{25} | \text{no reported accidents, 5 a.m.}) = 0.15 \)
(Analogous to logical entailment status \(KB \models \alpha \), not truth.)

Making decisions under uncertainty

Suppose I believe the following:
\[
\begin{align*}
P(A_{25} \text{ gets me there on time} | \ldots) &= 0.04 \\
P(A_{40} \text{ gets me there on time} | \ldots) &= 0.70 \\
P(A_{120} \text{ gets me there on time} | \ldots) &= 0.95 \\
P(A_{1440} \text{ gets me there on time} | \ldots) &= 0.9999 \\
\end{align*}
\]
Which action to choose?
Depends on my **preferences** for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

Probability basics

Begin with a set \(\Omega \)—the **sample space**
e.g., 6 possible rolls of a die.
\(\omega \in \Omega \) is a **sample point**/possible world/atomic event

A **probability space** or **probability model** is a sample space
with an assignment \(P(\omega) \) for every \(\omega \in \Omega \) s.t.
\[
0 \leq P(\omega) \leq 1 \\
\sum_{\omega} P(\omega) = 1 \\
\]
e.g., \(P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6 \).

An event \(A \) is any subset of \(\Omega \)
\[
P(A) = \sum_{\omega \in A} P(\omega)
\]
E.g., \(P(\text{die roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2 \)

Random variables

A **random variable** is a function from sample points to some range, e.g., the
reals or Booleans
e.g., \(\text{Odd}(1) = true \).

\(P \) induces a **probability distribution** for any r.v. \(X \):
\[
P(X = x_i) = \sum_{\omega : X = x_i} P(\omega)
\]
e.g., \(P(\text{Odd} = \text{true}) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2 \)
Propositions

Think of a proposition as the event (set of sample points) where the proposition is true.

Given Boolean random variables A and B:
- event a = set of sample points where $A(\omega) = true$
- event $\neg a$ = set of sample points where $A(\omega) = false$
- event $a \land b$ = points where $A(\omega) = true$ and $B(\omega) = true$

Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables.

With Boolean variables, sample point = propositional logic model
- e.g., $A = true$, $B = false$, or $a \land \neg b$.

Proposition = disjunction of atomic events in which it is true
- e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$

$P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Syntax for propositions

Propositional or Boolean random variables
- e.g., $Cavity$ (do I have a cavity?)
 - $Cavity = true$ is a proposition, also written $cavity$

Discrete random variables (finite or infinite)
- e.g., $Weather$ is one of \langle sunny, rain, cloudy, snow \rangle
 - $Weather = rain$ is a proposition
 - Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
- e.g., $Temp = 21.6$; also allow, e.g., $Temp < 22.0$.

Arbitrary Boolean combinations of basic propositions

Why use probability?

The definitions imply that certain logically related events must have related probabilities.

E.g., $P(a \lor b) = P(a) + P(b) - P(a \land b)$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Prior probability

Prior or unconditional probabilities of propositions
- e.g., $P(Cavity = true) = 0.1$ and $P(Weather = sunny) = 0.72$ correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
- $P(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
- $P(Weather, Cavity) = a 4 \times 2$ matrix of values:

```
Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08
```

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points.
Probability for continuous variables

Express distribution as a parameterized function of value:

\[P(X = x) = U[18, 26](x) = \text{uniform density between 18 and 26} \]

Here \(P \) is a density; integrates to 1.

\[P(X = 20.5) = 0.125 \text{ really means } \lim_{dx \to 0} P(20.5 \leq X \leq 20.5 + dx)/dx = 0.125 \]

Gaussian density

\[P(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} \]

Conditional probability

Conditional or posterior probabilities

e.g., \(P(\text{cavity}|\text{toothache}) = 0.8 \)

i.e., **given that toothache is all I know**

\(\text{NOT } "\text{if } \text{toothache} \text{ then 80% chance of cavity}" \)

(Notation for conditional distributions:

\[P(\text{Cavity}|\text{Toothache}) = 2\text{-element vector of 2-element vectors} \]

If we know more, e.g., \(\text{cavity} \) is also given, then we have

\[P(\text{cavity}|\text{toothache}, \text{cavity}) = 1 \]

Note: the less specific belief remains valid after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,

\[P(\text{cavity}|\text{toothache}, \text{49ersWin}) = P(\text{cavity}|\text{toothache}) = 0.8 \]

This kind of inference, sanctioned by domain knowledge, is crucial

Definition of conditional probability:

\[P(a|b) = \frac{P(a \land b)}{P(b)} \text{ if } P(b) \neq 0 \]

Product rule gives an alternative formulation:

\[P(a \land b) = P(a|b)P(b) = P(b|a)P(a) \]

A general version holds for whole distributions, e.g.,

\[P(\text{Weather}, \text{Cavity}) = P(\text{Weather}|\text{Cavity})P(\text{Cavity}) \]

Chain rule is derived by successive application of product rule:

\[P(X_1, \ldots, X_n) = P(X_1, \ldots, X_{n-1})P(X_n|X_1, \ldots, X_{n-1}) = P(X_1, \ldots, X_{n-2})P(X_{n-1}|X_1, \ldots, X_{n-2})P(X_n|X_1, \ldots, X_{n-1}) = \cdots = \prod_{i=1}^n P(X_i|X_1, \ldots, X_{i-1}) \]
Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>cavity</td>
<td>.072</td>
<td>.016</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.064</td>
<td>.144</td>
</tr>
</tbody>
</table>

For any proposition \(\phi \), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega | \omega \models \phi} P(\omega)
\]

For any proposition \(\phi \), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega | \omega \models \phi} P(\omega)
\]

\[
P(\text{cavity} \lor \text{toothache}) = 0.108 + 0.012 + 0.072 + 0.016 + 0.016 + 0.064 = 0.28
\]

Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>cavity</td>
<td>.072</td>
<td>.016</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.064</td>
<td>.144</td>
</tr>
</tbody>
</table>

For any proposition \(\phi \), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega | \omega \models \phi} P(\omega)
\]

\[
P(\text{cavity} \lor \text{toothache}) = 0.108 + 0.012 + 0.072 + 0.016 + 0.016 + 0.064 = 0.28
\]

Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>cavity</td>
<td>.072</td>
<td>.016</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.064</td>
<td>.144</td>
</tr>
</tbody>
</table>

For any proposition \(\phi \), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega | \omega \models \phi} P(\omega)
\]

\[
P(\neg \text{cavity} | \text{toothache}) = \frac{P(\neg \text{cavity} \land \text{toothache})}{P(\text{toothache})} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
\]
Normalization

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.072</td>
<td>.008</td>
</tr>
<tr>
<td>cavity</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.144</td>
<td>.576</td>
</tr>
</tbody>
</table>

Denominator can be viewed as a normalization constant \(\alpha \)

\[
P(Cavity | toothache) = \alpha P(Cavity, toothache) = \alpha \left[P(Cavity, toothache, catch) + P(Cavity, toothache, ¬catch) \right] = \alpha \left[(0.108, 0.016) + (0.012, 0.064) \right] = \alpha (0.12, 0.08) = (0.6, 0.4)
\]

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Independence

\(A \) and \(B \) are independent iff

\[
P(A | B) = P(A) \quad \text{or} \quad P(B | A) = P(B) \quad \text{or} \quad P(A, B) = P(A)P(B)
\]

\[
P(\text{Toothache, Catch, Cavity, Weather}) = P(\text{Toothache, Catch, Cavity})P(\text{Weather})
\]

32 entries reduced to 12 (\(\text{Weather} \) has 4 values); for \(n \) independent biased coins, \(2^n \rightarrow n \)

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

\(P(\text{Toothache, Cavity, Catch}) \) has \(2^3 - 1 = 7 \) independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend on whether I have a toothache:

\[
(1) \quad P(\text{catch} | \text{toothache, cavity}) = P(\text{catch} | \text{cavity})
\]

The same independence holds if I haven’t got a cavity:

\[
(2) \quad P(\text{catch} | \text{toothache, ¬cavity}) = P(\text{catch} | ¬\text{cavity})
\]

Catch is conditionally independent of Toothache given Cavity:

\[
P(\text{Catch} | \text{Toothache, Cavity}) = P(\text{Catch} | \text{Cavity})
\]

Equivalent statements:

\[
P(\text{Toothache} | \text{Catch, Cavity}) = P(\text{Toothache} | \text{Cavity})
P(\text{Toothache, Catch} | \text{Cavity}) = P(\text{Toothache} | \text{Cavity})P(\text{Catch} | \text{Cavity})
\]
Conditional independence contd.

Write out full joint distribution using chain rule:
\[
P(\text{Toothache}, \text{Catch}, \text{Cavity}) = P(\text{Toothache}|\text{Catch}, \text{Cavity})P(\text{Catch}, \text{Cavity})
\]
\[
= P(\text{Toothache}|\text{Catch}, \text{Cavity})P(\text{Catch}|\text{Cavity})P(\text{Cavity})
\]
\[
= P(\text{Toothache}|\text{Cavity})P(\text{Catch}|\text{Cavity})P(\text{Cavity})
\]

I.e., \(2 + 2 + 1 = 5\) independent entries (\(P\ 1\) and \(2\) remove \(2\))

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in \(n\) to linear in \(n\).

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Independence and Conditional Independence

\(A\) and \(B\) are independent:
\[
P(A|B) = P(A)
\]
\[
P(B|A) = P(B)
\]
\[
P(A, B) = P(A)P(B)
\]

\(A\) and \(B\) are conditionally independent given \(C\):
\[
P(A|B, C) = P(A|C)
\]
\[
P(B|A, C) = P(B|C)
\]
\[
P(A, B|C) = P(A|C)P(B|C)
\]

\(\) (Absolute) independence is a stronger assertion than conditional independence.

\(\) Conditional independence happens and is used more often.

Bayes’ Rule

Product rule \(P(a \land b) = P(a|b)P(b) = P(b|a)P(a)\)

\[\Rightarrow \text{Bayes’ rule } P(a|b) = \frac{P(b|a)P(a)}{P(b)}\]

or in distribution form
\[
\begin{align*}
P(Y|X) &= \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y) \\
P(Y|X) &= \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)
\end{align*}
\]

Useful for assessing diagnostic probability from causal probability:
\[
P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}
\]

E.g., let \(M\) be meningitis, \(S\) be stiff neck:
\[
P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008
\]

Note: posterior probability of meningitis still very small!

Bayes’ Rule and conditional independence

\[
P(\text{Cavity}|\text{toothache} \land \text{catch})
\]
\[
= \alpha P(\text{toothache} \land \text{catch}|\text{Cavity})P(\text{Cavity})
\]
\[
= \alpha P(\text{toothache}|\text{Cavity})P(\text{catch}|\text{Cavity})P(\text{Cavity})
\]

This is an example of a naive Bayes model:
\[
P(\text{Cause}|\text{Effect}_1, \ldots, \text{Effect}_n) = \alpha P(\text{Cause})\prod_i P(\text{Effect}_i|\text{Cause})
\]
\[
P(\text{Cause}, \text{Effect}_1, \ldots, \text{Effect}_n) = P(\text{Cause})\prod_i P(\text{Effect}_i|\text{Cause})
\]

Total number of parameters is linear in \(n\)
Wumpus World

<table>
<thead>
<tr>
<th>1,1</th>
<th>2,1</th>
<th>3,1</th>
<th>4,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>2,2</td>
<td>3,2</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P_{ij} = \text{true}$ iff $[i, j]$ contains a pit

$B_{ij} = \text{true}$ iff $[i, j]$ is breezy

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Observations and query

We know the following facts:

$b = \neg b_{1,1} \land b_{1,2} \land b_{2,1}$

$\text{known} = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

Query is $P(P_{1,3}|\text{known}, b)$

Define $\text{Unknown} = P_{ij}$s other than $P_{1,3}$ and Known

For inference by enumeration, we have

$P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b)$

Grows exponentially with number of squares!

Specifying the probability model

The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \ldots, P_{4,4})P(P_{1,1}, \ldots, P_{4,4})$

(Do it this way to get $P(\text{Effect}|\text{Cause})$.)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$P(P_{1,1}, \ldots, P_{4,4}) = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n}$

for n pits.

Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define $\text{Unknown} = \text{Fringe} \cup \text{Other}$

$P(b|P_{1,3}, \text{Known}, \text{Unknown}) = P(b|P_{1,3}, \text{Known}, \text{Fringe})$

Manipulate query into a form where we can use this!
Using conditional independence contd.

\[P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \]
\[= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown}) P(P_{1,3}, \text{known}, \text{unknown}) \]
\[= \alpha \sum_{\text{fringe, other}} P(b|\text{known}, P_{1,3}, \text{fringe, other}) P(P_{1,3}, \text{known, fringe, other}) \]
\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}, \text{known, fringe, other}) \]
\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}) P(\text{known}) P(\text{fringe}) P(\text{other}) \]
\[= \alpha P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) P(\text{fringe}) \sum_{\text{other}} P(\text{other}) \]
\[= \alpha' P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) P(\text{fringe}) \]

\[P(P_{1,3}|\text{known}, b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \rangle \]
\[\approx \langle 0.31, 0.69 \rangle \]

\[P(P_{2,2}|\text{known}, b) \approx \langle 0.86, 0.14 \rangle \]