
1

Primitive Types, Strings,
and Console I/O

Chapter 2

Objectives

• become familiar with Java primitive types
(numbers, characters, etc.)

• learn about assignment statements and
expressions

• learn about strings
• become familiar with classes, methods, and

objects
• learn about simple keyboard input and screen

output

Outline

• Primitive Types and Expressions
• The Class String
• Keyboard and Screen I/O
• Documentation and Style

Variables and Values

• Variables store data such as numbers and
letters.
– Think of them as places to store data.
– They are implemented as memory locations.

• The data stored by a variable is called its
value.
– The value is stored in the memory location.

• Its value can be changed.

Variables and Values

• variables
numberOfBaskets
eggsPerBasket
totalEggs

• assigning values
eggsPerBasket = 6;
eggsPerBasket = eggsPerBasket - 2;

Naming and Declaring
Variables

• Choose names that are helpful such as count
or speed, but not c or s.

• When you declare a variable, you provide its
name and type.
int numberOfBaskets, eggsPerBasket;

• A variable’s type determines what kinds of
values it can hold (int, double, char, etc.).

• A variable must be declared before it is used.

2

Syntax and Examples

• syntax
type variable_1, variable_2, …;

• examples
int styleChoice, numberOfChecks;
double balance, interestRate;
char jointOrIndividual;

Types in Java

• A class type
– a class of objects and has both data and methods.
– “Think Whirled Peas” is a value of class type
String

• A primitive type
– simple, nondecomposable values such as an

individual number or individual character.
– int, double, and char are primitive types.

Naming Conventions

• Class types
– begin with an uppercase letter (e.g. String).

• Primitive types
– begin with a lowercase letter (e.g. int).

• Variables of both class and primitive types
– begin with a lowercase letters (e.g. myName,

myBalance).
– Multiword names are “punctuated” using

uppercase letters.

Where to Declare Variables

• Declare a variable
– just before it is used or
– at the beginning of the section of your program

that is enclosed in {}.
public static void main(String[] args)

{ /* declare variables here */

…

}

Java Identifiers

• An identifier
– a name, such as the name of a variable.

• Identifiers may contain only
– letters
– digits (0 through 9)
– the underscore character (_)
– and the dollar sign symbol ($) which has a special

meaning
– but the first character cannot be a digit.

Java Identifiers, cont.

• identifiers may not contain any spaces, dots
(.), asterisks (*), or other characters:

7-11 netscape.com util.* (not allowed)

• Identifiers can be arbitrarily long.
• Since Java is case sensitive, stuff, Stuff,

and STUFF are different identifiers.

3

Keywords or Reserved Words

• Words such as if are called keywords or
reserved words and have special, predefined
meanings.

• Keywords cannot be used as identifiers.
• See Appendix 1 for a complete list of Java

keywords.
• other keywords: int, public, class
• Appendix 1

Primitive Types

• four integer types (byte, short, int, and
long)
– int is most common

• two floating-point types (float and double)
– double is more common

• one character type (char)
• one boolean type (boolean)

Primitive Types, cont. Examples of Primitive Values

• integer types
0 -1 365 12000

• floating-point types
0.99 -22.8 3.14159 5.0

• character type
`a` `A` `#` ` `

• boolean type
true false

Assignment Statements

• An assignment statement is used to assign a
value to a variable.
answer = 42;

• The “equal sign” is called the assignment
operator.

• We say, “The variable named answer is
assigned a value of 42,” or more simply,
“answer is assigned 42.”

Assignment Statements, cont.

• Syntax
variable = expression ;

where expression can be
– another variable,
– a literal or constant (such as a number),
– or something more complicated which combines

variables and literals using operators (such as +
and -)

4

Assignment Examples
amount = 3.99;
firstInitial = ‘W’;
score = numberOfCards + handicap;
eggsPerBasket = eggsPerBasket - 2;

(last line looks weird in mathematics, why?)

Assignment Evaluation

• The expression on the right-hand side of the
assignment operator (=) is evaluated first.

• The result is used to set the value of the
variable on the left-hand side of the
assignment operator.
score = numberOfCards + handicap;
eggsPerBasket = eggsPerBasket - 2;

Specialized Assignment
Operators

• Assignment operators can be combined with
arithmetic operators (including -, *, /, and %,
discussed later).
amount = amount + 5;

can be written as
amount += 5;

yielding the same results.

Simple Screen Output
System.out.println(“The count is “ + count);

• outputs the Sting literal “The count is “ followed
by the current value of the variable count.

• + means concatenation if one argument is a
string

(an example of which of the three properties of
OO languages?)

Simple Input

• Sometimes the data needed for a
computation are obtained from the user at run
time.

• Keyboard input requires
import java.util.*

at the beginning of the file.

Simple Input, cont.

• Data can be entered from the keyboard using
Scanner keyboard =

new Scanner(System.in);

followed, for example, by
eggsPerBasket = keyboard.nextInt();

which reads one int value from the keyboard
and assigns it to eggsPerBasket.

5

Simple Input, cont.
• class EggBasket2

Number Constants

• Literal expressions such as 2, 3.7, or ’y’ are
called constants.

• Integer constants can be preceded by a + or -
sign, but cannot contain commas.

• Floating-point constants can be written
– with digits after a decimal point or
– using e notation.

e Notation

• e notation is also called scientific notation or
floating-point notation.

• examples
– 865000000.0 can be written as 8.65e8
– 0.000483 can be written as 4.83e-4

• The number in front of the e does not need to
contain a decimal point, eg. 4e-4

Assignment Compatibilities

• Java is said to be strongly typed.
– You can’t, for example, assign a floating point

value to a variable declared to store an integer.
• Sometimes conversions between numbers

are possible.
doubleVariable = 7;

doubleVariable = intVariable ;

is possible even if doubleVariable is of type
double, for example.

Assignment Compatibilities,
cont.

• A value of one type can be assigned to a
variable of any type further to the right
byte --> short --> int --> long
--> float --> double

but not to a variable of any type further to the
left.

• You can assign a value of type char to a
variable of type int.

Type Casting

• A type cast creates a value in a new type
from the original type.

• For example,
double distance;
distance = 9.0;
int points;
points = (int)distance;

(illegal without (int))

6

Type Casting, cont.

• The value of (int)distance is 9, but the value
of distance, both before and after the cast, is
9.0.

• The type of distance does NOT change
and remains float.

• Any nonzero value to the right of the decimal
point is truncated, rather than rounded.

Characters as Integers

• Characters are actually stored as integers
according to a special code
– each printable character (letter, number,

punctuation mark, space, and tab) is assigned a
different integer code

– the codes are different for upper and lower case
– for example 97 may be the integer value for ‘a’

and 65 for ‘A’
• ASCII and Unicode are common character

codes

Unicode Character Set

• Most programming languages use the ASCII
character set.

• Java uses the Unicode character set which
includes the ASCII character set (Appendix 3)

• The Unicode character set includes
characters from many different alphabets
other than English (but you probably won’t
use them).

ASCII/Unicode

)(‘&%$#“!

41403938373635343332

z
122

aZA90
…97…90…65…57…48

Casting a char to an int

• Casting a char value to int produces the
ASCII/Unicode value

• For example, what would the following
display?
char answer = ’y’;
System.out.println(answer);
System.out.println((int)answer);

• >y
>121
>

Initializing Variables

• A variable that has been declared, but no yet
given a value is said to be uninitialized.

• Uninitialized class variables have the value
null.

• Uninitialized primitive variables may have a
default value.

• It’s good practice not to rely on a default
value, which could be arbitrary.

7

Initializing Variables, cont.

• To protect against an uninitialized variable
(and to keep the compiler happy), assign a
value at the time the variable is declared.

• Examples:
int count = 0;
char grade = ’A’; // default is an A

Initializing Variables, cont.

• syntax
type variable_1 = expression_1, variable_2 =
expression_2, …;

Binary Representation

• Assume an 8-bit type
• 5 as an integer

– 00000101
• ‘5’ as a character

– 00110101 (53 decimal, ASCII)
• 5.0 as a floating point number

– How?
– What about 5.5?

Binary Real Numbers

• 5.5
– 101.1

• 5.25
– 101.01

• 5.125
– 101.001

• 5.75
– 101.11

…2-1.20212223…

8 bits only

• 5.5
– 101.1 -> 000101 10

• 5.25
– 101.01 -> 000101 01

• 5.125
– 101.001 -> ??

• With only 2 places after the point, the precision is .25
• What if the point is allowed to move around?

2-22-1202122232425

Floating-point Numbers
• Decimal

– 54.3
– 5.43 x 101 [scientific notation]

• Binary
– 101.001
– 10.1001 x 21 [more correctly: 10.1001 x 101]
– 1.01001 x 22 [more correctly: 1.01001 x 1010]

– What can we say about the most significant bit?

8

Floating-point Numbers
• General form: sign 1.mantissa x 2exponent

– the most significant digit is right before the dot
• Always 1 [no need to represent it]

– (more details are not discussed here: mantissa has
no sign, but sign is embedded in exponent…)

• 1.01001 x 22

– Sign: positive (0)
– Mantissa: 01001
– Exponent: 10 (decimal 2)

• [IEEE standard: “biased exponent”
– exponent + 2numBits-1 - 1
– Example: 2 + 22-1 – 1 = 3 => 11 in binary]

Java Floating-point Numbers

• Sign:
– 1 bit [0 is positive]

• Mantissa:
– 23 bits in float
– 52 bits in double

• Exponent:
– 8 bits in float
– 11 bits in double

mantissaexponentsign

Imprecision in Floating-Point
Numbers

• Floating-point numbers often are only
approximations since they are stored
with a finite number of bits.

• Hence 1.0/3.0 is slightly less than 1/3.
• 1.0/3.0 + 1.0/3.0 + 1.0/3.0 could be

less than 1.

• www.cs.fit.edu/~pkc/classes/cse1001/FloatEquality.java

Arithmetic Operations

• Arithmetic expressions can be formed using
the +, -, *, and / operators
– together with variables or numbers referred to as

operands.
– When both operands are of the same type

• the result is of that type.

– When one of the operands is a floating-point type
and the other is an integer

• the result is a floating point type.

Arithmetic Operations, cont.

• Example
If hoursWorked is an int to which the value 40
has been assigned, and payRate is a double to
which 8.25 has been assigned

hoursWorked * payRate

is a double with a value of 500.0.

Arithmetic Operations, cont.

• Expressions with two or more operators can
be viewed as a series of steps, each involving
only two operands.
– The result of one step produces one of the

operands to be used in the next step.
• example

balance + (balance * rate)

9

Operators with integer and
floating point numbers

• if at least one of the operands is a floating-
point type and the rest are integers
– the result will be a floating point type.

• The result is the rightmost type from the
following list that occurs in the expression.
byte --> short --> int --> long
--> float --> double

The Division Operator

• The division operator (/) behaves as
expected
– if one of the operands is a floating-point type.

• When both operands are integer types
– the result is truncated, not rounded.
– Hence, 99/100 has a value of 0.
– called integer division or integer divide

The mod Operator

• The mod (%) operator is used with operators of
integer type to obtain
– the remainder after integer division.

• 14 divided by 4 is 3 with a remainder of 2.
– Hence, 14 % 4 is equal to 2.

• The mod operator has many uses, including
– determining if an integer is odd or even
– determining if one integer is evenly divisible by

another integer.

Case Study:Vending Machine
Change

• requirements
– The user enters an amount between 1 cent and 99

cents.
– The program determines a combination of coins

equal to that amount.
– For example, 55 cents can be two quarters and

one nickel.

Case Study, cont.

• sample dialog
Enter a whole number from 1 to 99.

The machine will determine a combination of coins.
87
87 cents in coins:
3 quarters
1 dime
0 nickels
2 pennies

Case Study, cont.

• variables needed
int amount, quarters, dimes, nickels, pennies;

10

Case Study, cont.

• algorithm - first version
1. Read the amount.
2. Find the maximum number of quarters in the amount.
3. Subtract the value of the quarters from the amount.
4. Repeat the last two steps for dimes, nickels, and pennies.
5. Print the original amount and the quantities of each coin.

Case Study,cont.

• The algorithm doesn’t work properly, because
the original amount is changed by the
intermediate steps.
– The original value of amount is lost.

• Change the list of variables
int amount, originalAmount, quarters, dimes,
nickles, pennies;

• and update the algorithm.

Case Study, cont.

1. Read the amount.
2. Make a copy of the amount.
3. Find the maximum number of quarters in the

amount.
4. Subtract the value of the quarters from the

amount.
5. Repeat the last two steps for dimes, nickels, and

pennies.
6. Print the original amount and the quantities of

each coin.

Case Study, cont.

• Write Java code that implements the
algorithm written in pseudocode.

Case Study, cont.

• How do we determine the number of quarters
(or dimes, nickels, or pennies) in an amount?
– There are 2 quarters in 55 cents, but there are

also 2 quarters in 65 cents.
– That’s because

55 / 2 = 2 and 65 / 25 = 2.

Case Study, cont.

• How do we determine the remaining amount?
– using the mod operator

55 % 25 = 5 and 65 % 25 = 15

– similarly for dimes and nickels.
– Pennies are simply amount % 5.

11

Case Study, cont.
• class ChangeMaker

Case Study—testing the
implementation

• The program should be tested with several
different amounts.

• Test with values that give zero values for
each possible coin denomination.

• Test with amounts close to
– extreme values such as 0, 1, 98 and 99
– coin denominations such as 24, 25, and 26

• Boundary values.

Increment (and Decrement)
Operators

• used to increase (or decrease) the value of a
variable by 1

• easy to use, important to recognize
• the increment operator

count++ or ++count
• the decrement operator

count-- or --count

Increment (and Decrement)
Operators

• “mostly” equivalent operations
count++;
++count;
count = count + 1;

count--;
--count;
count = count - 1;

Increment (and Decrement)
Operators in Expressions

• after executing
int m = 4;
int result = 3 * (++m)

result has a value of 15 and m has a value of 5
• after executing

int m = 4;
int result = 3 * (m++)

result has a value of 12 and m has a value of 5

Increment and Decrement Operator
Examples

common code
int n = 3;
int m = 4;
int result;
What will be the value of m and result after each of

these executes?
(a) result = n * ++m; //preincrement m
(b) result = n * m++; //postincrement m
(c) result = n * --m; //predecrement m
(d) result = n * m--; //postdecrement m

12

Answers to Increment/Decrement
Operator Questions

(a) 1) m = m + 1; //m = 4 + 1 = 5
2) result = n * m; //result = 3 * 5 = 15

(b) 1) result = n * m; //result = 3 * 4 = 12
2) m = m + 1; //m = 4 + 1 = 5

(c) 1) m = m - 1; //m = 4 - 1 = 3
2) result = n * m; //result = 3 * 3 = 9

(b) 1) result = n * m; //result = 3 * 4 = 12
2) m = m - 1; //m = 4 - 1 = 3

Summary of Operators

• +, -, *, /
• %
• ++, --

Parentheses and Precedence

• Parentheses can communicate the order in
which arithmetic operations are performed

• examples:
(cost + tax) * discount
cost + (tax * discount)

• Without parentheses, an expression is
evaluated according to the rules of
precedence.

Precedence Rules

Precedence Rules—Binary
Operators

• The binary arithmetic operators *, /, and %
– have lower precedence than the unary operators

+, -, ++, --, and !
– but have higher precedence than the binary

arithmetic operators + and -. (Appendix 2)
• When binary operators have equal

precedence
– the operator on the left has higher precedence

than the operator(s) on the right.

Precedence Rules—Unary
Operators

• When unary operators have equal
precedence
– the operator on the right has higher precedence

than the operation(s) on the left
• opposite order to binary operators

– if x is 10
• -++x is -11 and x is 11 afterwards
• same as –(++x)

– if x is 10
• -x++ is -10 and x is 11 afterwards
• same as –(x++)

13

Use Parentheses

• Even when parentheses are not
needed, they can be used to make the
code clearer.
balance + (interestRate * balance)

• [Spaces also make code clearer
balance + interestRate*balance

but spaces do not dictate precedence.]

Sample Expressions

The Class String

• We’ve used constants of type String already.
“Enter a whole number from 1 to 99.”

• A value of type String is a sequence of
characters treated as a single item.

Declaring and Printing Strings

• declaring
String greeting;
greeting = “Hello!”;

or
String greeting = “Hello!”;

or
String greeting = new String(“Hello!”);

• printing
System.out.println(greeting);

Concatenation of Strings

• Two strings are concatenated using the +
operator.
String greeting = “Hello”;
String sentence;
sentence = greeting + “ officer”;
System.out.println(sentence);

• Any number of strings can be concatenated
using the + operator.

Concatenating Strings and
Integers

String solution;

solution = “The temperature is “ + 72;

System.out.println (solution);

The temperature is 72

14

Classes

• A class is a type used to produce objects.
• An object is an entity that stores data and can

take actions defined by methods.
• An object of the String class stores data

consisting of a sequence of characters.
• The length() method returns the number of

characters in a particular String object.
int howMany = solution.length()

Objects, Methods, and Data

• Objects within a class
– have the same methods
– have the same kind(s) of data but the data can

have different values.
• Primitive types have values, but no methods.

String Methods The Method length()

• The method length() returns an int.

• You can use a call to method length()

anywhere an int can be used.
int count = solution.length();
System.out.println(solution.length());
spaces = solution.length() + 3;

Positions in a String

• positions start with 0, not 1.
– The ‘J’ in “Java is fun.” is in position 0

• A position is referred to an an index.
– The ‘f’ in “Java is fun.” is at index 9.

Positions in a String, cont.

15

Indexing Characters within a String

• charAt(position)method
– returns the char at the specified position

• substring(start, end) method
– returns the string from start upto excluding end

• For example:
String greeting = "Hi, there!";
greeting.charAt(0) returns H
greeting.charAt(2) returns ,
greeting.substring(4,7) returns the

H i , t h e r e !

0 1 2 3 4 5 6 7 8 9

Using the String Class
• class StringDemo

Escape Characters

• How would you print
“Java” refers to a language.?

• The compiler needs to be told that the
quotation marks (“) do not signal the start or
end of a string, but instead are to be printed.
System.out.println(
“\”Java\” refers to a language.”);

Escape Characters

• Each escape sequence is a single character
even though it is written with two symbols.

Examples

System.out.println(“abc\\def”);

abc\def
System.out.println(“new\nline”);
new
line
char singleQuote = ‘\’’;
System.out.println(singleQuote);
‘

The Unicode Character Set

• Most programming languages use the ASCII
character set.

• Java uses the Unicode character set which
includes the ASCII character set
– Backward compatible to ASCII

• The Unicode character set includes
characters from many different alphabets (but
you probably won’t use them).

16

Keyboard and Screen
I/O: Outline

• Screen Output
• Keyboard Input

Screen Output

• We’ve seen several examples of screen
output already.

• System.out is an object that is part of Java.
• println() is one of the methods available to

the System.out object.

Screen Output, cont.

• The concatenation operator (+) is useful when
everything does not fit on one line.
System.out.println(“When everything “ +
“does not fit on one line, use the” +
“ concatenation operator (\’+\’)”);

– Do not break the line except immediately before or
after the concatenation operator (+).

Screen Output, cont.

• Alternatively, use print()
System.out.print(“When everything “);
System.out.print(“does not fit on “);
System.out.print(“one line, use the “);
System.out.print(“\”print\” ”);
System.out.println(“statement”);

ending with a println().

Screen Output, cont.

• syntax
System.out.println(output_1 + output_2 + ...+
output_n);

• example
System.out.println (1967 + “ “ + “Oldsmobile”
+ “ “ + 442);

1967 Oldsmobile 442

printf (or format) Method for
Output Formatting

• Heavily influenced by C
• outputStream.printf(formatString, args…)

– System.out.printf(…)
– smileyOutStream.printf(…)

• formatString specifies how to format args
• System.out.printf(“%s %d %f%n”, name, id, gpa);

– System.out.println(name + “ “ + id + “ “ +
gpa);

• Useful for “right justified” numbers
• Numbers in println and print are “left justified”

17

Formatting String

• % width conversion
• width specifies how many slots are available for output
• If width > number of characters, spaces are printed first

before the characters—“right justified”
• printf(“%5d”, count)

– Count
•32901:
•2004:
•22:

•6747280: all digits are printed, width is ignored

10923

4002

22

Conversion Characters

Character (unicode)characterc

New linen

% (%% to output %)%

Octal integerintegero

Stringgeneral (String, Boolean, …)s

Decimal scientific notationfloating pointe

Hexadecimal integerintegerx

Decimal floatfloating pointf

Decimal integerintegerd

DescriptionArgumentConversion

Floating-point Precision
• width.precision conversion
• printf(“%5.2f”, PI)

• printf(“%7.4f”, PI)

41.3

5141.3

Left Justified

• Spaces are added (padded) on the right
• Minus (-) sign before the width
• …printf(“%-7s %-4d”, name, age)

• Why are there 4 spaces after “John” instead of 3?

02nhoJ

Example

• http://www.cs.fit.edu/~pkc/classes/cse1001/
Printf.java

Keyboard Input

• Starting from Java 5.0
– Java has reasonable facilities for handling

keyboard input.
• Scanner class in the java.util package

– A package is a library of classes.

18

Using the Scanner Class

• Near the beginning of your program, insert
import java.util.*

• Create an object of the Scanner class
Scanner keyboard =

new Scanner(System.in)

• Read data (an int or a double, for example)
int n1 = keyboard.nextInt();
double d1 = keyboard.nextDouble();

Some Scanner Class
Methods

• syntax
Int_Variable = Object_Name.nextInt();
Double_Variable = Object_Name.nextDouble();
Float_Variable = Object_Name.nextFloat();

String_Variable = Object_Name.next();
String_Variable = Object_Name.nextLine();

Boolean_Variable = Object_Name.nextBoolean();

nextByte(), nextShort(), nextLong()

Some Scanner Class
Methods, cont.

• examples
int count = keyboard.nextInt();
double distance = keyboard.nextDouble();
String word = keyboard.next();
String wholeLine = keyboard.nextLine();

• Remember to prompt the user for input, e.g.
System.out.print(“Enter an integer: “);

Keyboard Input Demonstration
• class ScannerDemo

nextLine()Method Caution

• The nextLine() method reads the remainder of
the current line, even if it is empty.

nextLine()Method Caution,
cont.

• example
int n;
String s1, s2;
n = keyboard.nextInt();
s1 = keyboard.nextLine();
s2 = keyboard.nextLine();
5440
or bust

n is set to 5440

but s1 is set to the empty string.

19

The Empty String

• String with zero characters

String s3 = “”;

• Good for String initialization

Other Input Delimiters

• Characters for separating “words”
– Default is “whitespace”: space, tab, newline

• Change the delimiter to “##”

keyboard2.useDelimiter(“##”);

– whitespace will no longer be a delimiter for
keyboard2 input

Other Input Delimiters, cont.
• class DelimitersDemo

Documentation and Style:
Outline

• Meaningful Names
• Self-Documentation and Comments
• Indentation
• Named Constants
• www.cs.fit.edu/~pkc/classes/cse1001/FirstProgramOneLine.java

• Grading
– 10% on documentation and comments
– 10% on style (variable naming, indentation)

Documentation and Style

• Most programs are modified over time to
respond to new requirements.

• Programs which are easy to read and
understand are easy to modify.

• Even if it will be used only once, you have to
read it in order to debug it .

Meaningful Names for
Variables

• A variable’s name should suggest its use.
• Observe conventions in choosing names for

variables.
– Use only letters and digits.
– Use more than one character.
– “Punctuate” using uppercase letters at word

boundaries (e.g. taxRate).
– Start variables with lowercase letters.
– Start class names with uppercase letters.

20

Documentation and
Comments

• The best programs are self-documenting.
– clean style
– well-chosen names

• Comments are written into a program as
needed explain the program.
– They are useful to the programmer, but they are

ignored by the compiler.

When to Use Comments

• Begin each program file with an explanatory
comment
– what the program does
– the name of the author
– contact information for the author
– date of the last modification.

• Provide only those comments which the
expected reader of the program file will need
in order to understand it.

Comments Example
• class CircleCalculation

Template for CSE 1001
/**
Name: <name>
E-mail address: <email>
Course: cse1001
Section: <?>
Assignment: <HW?>
Date: <date>

Description: <description>

*/

import java.util.*;

public class <SameClassAndFileNames>
{

public static void main(String[] args)
{

// input from the keyboard
Scanner keyboard = new Scanner(System.in);

}
}

Comments

• A program can usually be broken into
segments/blocks based on the algorithm, e.g. in
HW2:
– Prompt the user for input
– Input from the keyboard
– Calculation
– Output to the screen

• Blank line between two segments
• A description (comment) before each segment

Pseudocode and Comments
• Solving a problem

1. Devise an algorithm (steps to solve the problem)
2. Write the algorithm in pseudocode (semi English, semi Java)
3. English part of pseudocode becomes comments in your program

• Tip:
1. type the English part of pesudocode as comments into your

program first
2. write the detailed Java instructions to satisfy/implement the

pesudocode
• Advantages:

1. Each line of pseudocode helps you focus on a small task
2. Pseudocode tells you what steps you want to achieve
3. No need to add comments later on

21

Comments

• A comment can begin with //.
– Everything after these symbols and to the end of

the line is treated as a comment and is ignored by
the compiler.
double radius; //in centimeters

Comments, cont.

• A comment can begin with /* and end with */
– Everything between these symbols is treated as a

comment and is ignored by the compiler.
/* the simplex method is used to
calculate the answer*/

Comments, cont.

• A javadoc comment, begins with /** and ends
with */.
– It can be extracted automatically from Java

software.
/** method change requires the number of coins
to be nonnegative */

Indentation

• Indentation should communicate nesting
clearly.

• A good choice is four spaces for each level of
indentation.

• Indentation should be consistent.
• Indentation should be used for second and

subsequent lines of statements which do not
fit on a single line.

Indentation, cont.

• Indentation does not change the behavior of
the program.

• Improper indentation can miscommunicate
the behavior of the program.

Named Constants

• To avoid confusion, always name constants
(and variables).
circumference = PI * radius;

is clearer than
circumference = 3.14159 * 6.023;

• Place constants near the beginning of the
program.

22

Named Constants, cont.

• The value of a constant cannot be changed
once it is initialized

public static final double INTEREST_RATE = 6.65;

• Consider the interest rate is used many times in the
program:
– What if you type 6.65 in some places, but 6.56 in others?
– What if the interested rate has changed to 7.3?
– Is balance * INTEREST_RATE easier to read than

balance * 6.65 ?

Declaring Constants

• syntax
public static final Type Name = Constant;

• examples
public static final double PI = 3.14159;
public static final String MOTTO = “The
customer is always right.”;

– By convention, uppercase letters are used for
constants.

Named Constants
• class CircleCalculation2

Summary

• You have become familiar with Java primitive
types (numbers, characters, etc.).

• You have learned about assignment
statements and expressions.

• You have learned about stings.
• You have become familiar with the basics of

classes, methods, and objects.
• You have learned about simple keyboard

input and screen output.

