
1

Flow of Control

Chapter 3

Objectives

• learn about Java branching statements

• learn about loops

• learn about the type boolean

Flow of Control

• Flow of control is the order in which a

program performs actions.

– Up to this point, the order has been

sequential.

• A branching statement chooses between two

or more possible actions.

• A loop statement repeats an action until a

stopping condition occurs.

Branching Statements: Outline

• The if-else Statement

• Introduction to Boolean Expressions

• Nested Statements and Compound

Statements

• Multibranch if-else Statements

• The switch Statament

• (optional) The Conditional Operator

The if-else Statement

• A branching statement that chooses between

two possible actions.

• syntax
if (Boolean_Expression)

Statement_1

else

Statement_2

The if-else Statement,

cont.
• example

if (count < 3)

total = 0;

else

total = total + count;

2

The if-else Statement,

cont.
• class BankBalance

Compound Statements

• To include multiple statements in a branch,

enclose the statements in braces.
if (count < 3)

{

total = 0;

count = 0;

}

Omitting the else Part

• If the else part is omitted and the expression

after the if is false, no action occurs.

• syntax
if (Boolean_Expression)

Statement

• example
if (weight > ideal)

caloriesPerDay -= 500;

Introduction to Boolean

Expressions

• The value of a boolean expression is either

true or false.

• examples
time < limit

balance <= 0

Java Comparison Operators
Compound Boolean

Expressions
• Boolean expressions can be combined using

the “and” (&&) operator.

• example
if ((score > 0) && (score <= 100))

...

• not allowed
if (0 < score <= 100)

...

3

Compound Boolean

Expressions, cont.
• syntax

(Sub_Expression_1) && (Sub_Expression_2)

• Parentheses often are used to enhance

readability.

• The larger expression is true only when both

of the smaller expressions are true.

Compound Boolean

Expressions, cont.
• Boolean expressions can be combined using

the “or” (||) operator.

• example
if ((quantity > 5) || (cost < 10))

...

• syntax
(Sub_Expression_1) || (Sub_Expression_2)

Compound Boolean

Expressions, cont.
• The larger expression is true

– when either of the smaller expressions is
true

– when both of the smaller expressions are
true.

• “or” in Java is inclusive or

– either or both to be true.

• exclusive or

– one or the other, but not both to be true.

Negating a Boolean

Expression
• Boolean negation

– “not” (!) operator.

• syntax
!Boolean_Expression

• Example:
Boolean walk = false;

System.out.println(!walk);

Truth Tables
Primary Logical Operators

• Primary logical operators: and, or, not

• Any logical expression can be composed

• Example: exclusive or
(a || b) && !(a && b)

• Either work or play:
(work || play) && !(work && play)

• ^ is exclusive-or in Java

– work ^ play

– not a logical operator in most languages

4

Using ==
• == is appropriate for determining if two

integers or characters have the same value.
if (a == 3)

where a is an integer type

• == is not appropriate for determining if two

floating point values are equal.

– Use < and some appropriate tolerance instead.
if (Math.abs(b - c) < epsilon)

– b, c, and epsilon are of floating point type

[www.cs.fit.edu/~pkc/classes/cse1001/FloatEquality.java]

Using ==, cont.
• == is not appropriate for determining if two

objects have the same value.
– if (s1 == s2)

• determines only if s1 and s2 are at the same

memory location.

– If s1 and s2 refer to strings with identical

sequences of characters, but stored in

different memory locations

• (s1 == s2) is false.

Using ==, cont.

• To test the equality of objects of class String,

use method equals.
s1.equals(s2)

or
s2.equals(s1)

www.cs.fit.edu/~pkc/classes/cse1001/StringEqual.java

• To test for equality ignoring case, use method
equalsIgnoreCase.

(“Hello”.equalsIgnoreCase(“hello”))

equals and
equalsIgnoreCase

• syntax
String.equals(Other_String)

String.equalsIgnoreCase(Other_String)

Testing Strings for Equality

• class StringEqualityDemo

Lexicographic Order

• Lexicographic order is similar to alphabetical

order, but is it based on the order of the

characters in the ASCII (and Unicode)

character set.

– All the digits come before all the letters.

– All the uppercase letters come before all

the lower case letters.

5

Lexicographic Order, cont.

• Strings consisting of alphabetical characters

can be compared using method compareTo and

method toUpperCase or method toLowerCase.
String s1 = “Hello”;

String lowerS1 = s1.toLowerCase();

String s2 = “hello”;

if (lowerS1.compareTo(s2) == 0)

System.out.println(“Equal!”);

//or use s1.compareToIgnoreCase(s2)

Method compareTo

• syntax
String_1.compareTo(String_2)

• Method compareTo returns

– a negative number if String_1 precedes
String_2

– zero if the two strings are equal

– a positive number of String_2 precedes
String_1

– Tip: Think of compareTo is subtraction

Comparing Numbers vs.

Comparing Strings

compareTo()

[lexicographical

ordering]

>

<

>=

<=

equals()

equalsIgnoreCase()

==

!=

String objectsInteger and floating-

point values

Nested Statements

• An if-else statement can contain any sort of

statement within it.

• In particular, it can contain another if-else
statement.

– An if-else may be nested within the “if”
part.

– An if-else may be nested within the “else”
part.

– An if-else may be nested within both parts.

Nested Statements, cont.

• syntax
if (Boolean_Expression_1)

if (Boolean_Expression_2)

Statement_1

else

Statement_2

else

if (Boolean_Expression_3)

Statement_3

else

Statement_4

Nested if Example

if (temperature > 90) // int temperature

if (sunny) // boolean sunny

System.out.println(“Beach”);

else

System.out.println(“Movie”);

else

if (sunny)

System.out.println(“Tennis”);

else

System.out.println(“Volleyball”);

6

Nested Statements, cont.

• Each else is paired with the nearest
unmatched if.

• Indentation can communicate which if goes

with which else.

• Braces are used to group statements.

Nested Statements, cont.

• Different indentation

first form second form
if (a > b) if (a > b)

if (c > d) if (c > d)

e = f; e = f;

else else

g = h; g = h;

Same to the compiler!

Nested Statements, cont.

• Are these different?

first form second form
if (a > b) if (a > b)

{ if (c > d)

if (c > d) e = f;

e = f; else

} g =h;

else

g = h;

Nested Statements, cont.

• Proper indentation and nested if-else

statements

“else” with outer “if” “else” with inner “if”
if (a > b) if (a > b)

{ if (c > d)

if (c > d) e = f;

e = f; else

} g =h;

else

g = h;

Compound Statements

• When a list of statements is enclosed in

braces ({}), they form a single compound

statement.

• syntax
{

Statement_1;

Statement_2;

…

}

Compound Statements, cont.

• A compound statement can be used

wherever a statement can be used.

• example
if (total > 10)

{

sum = sum + total;

total = 0;

}

7

Multibranch if-else

Statements
• syntax

if (Boolean_Expression_1)

Statement_1

else if (Boolean_Expression_2)

Statement_2

else if (Boolean_Expression_3)

Statement_3

else if …

else

Default_Statement

Multibranch if-else

Statements, cont.
• class Grader

Multibranch if-else

Statements, cont.

• equivalent logically

if (score >= 90)

grade = ‘A’;

if ((score >= 80) && (score < 90))

grade = ‘B’;

if ((score >= 70) && (score < 80))

grade = ‘C’;

if ((score >= 60) && (score < 70))

grade = ‘D’;

if (score < 60)

grade = ‘F’;

switch Statement

• The switch statement is a multiway branch

that makes a decision based on an integral

(integer or character) expression.

• The switch statement begins with the keyword

switch followed by an integral expression in

parentheses and called the controlling

expression.

switch Statement, cont.

• A list of cases follows, enclosed in braces.

• Each case consists of the keyword case

followed by

– a constant called the case label

– a colon

– a list of statements.

• The list is searched for a case label matching

the controlling expression.

switch Statement, cont.

• The action associated with a matching
case label is executed.

• If no match is found, the case labeled
default is executed.
– The default case is optional, but

recommended, even if it simply prints a
message.

• Repeated case labels are not allowed.

8

switch Statement, cont.

• class MultipleBirths

switch Statement, cont.

• The action for each case typically ends with

the word break.

• The optional break statement prevents the

consideration of other cases.

• The controlling expression can be anything

that evaluates to an integral type (integer or

character).

The switch Statement, cont.

• syntax
switch (Controlling_Expression)

{

case Case_Label:

Statement(s);

break;

case Case_Label:

…

default:

…

}

Switch with char Type

char grade = 'A';

switch(grade)

{

case 'A':

case 'B':

case 'C':

case 'D':

System.out.println("Pass");

break;

case 'W':

System.out.println("Withdraw");

break;

case 'I':

System.out.println("Incomplete");

break;

default:

System.out.println("Fail");

}

Conditional Operator
if (n1 > n2)

max = n1;

else

max = n2;

can be written as

max = (n1 > n2) ? n1 : n2;

• The ? and : together is called the conditional

operator (a ternary operator).

• Note (n1 > n2) ? n1 : n2 is an expression that

has a value unlike the “normal” if statement

Conditional Operator, cont.

• The conditional operator can be useful with

print statements.
System.out.print(“You worked “ + hours + “ “ +

((hours > 1) ? “hours” : “hour”));

9

Summary of branching

• if statement (1 or 2 branches)

• Multi-branch if-else-if statement (3

or more branches)

• Multi-branch switch statement

• Conditional operator ? :

Loop Statements

• A portion of a program that repeats a

statement or a group of statements is called a

loop.

• The statement or group of statements to be

repeated is called the body of the loop.

• A loop could be used to compute grades for

each student in a class.

• There must be a means of exiting the loop.

Loop Structure

1. Control of loop: ICU

1. Initialization

2. Condition for termination (continuing)

3. Updating the condition

2. Body of loop

Loop Statements

• the while Statement

• the do-while Statement

• the for Statement

while Statement

• also called a while loop

• a controlling boolean expression
– True -> repeats the statements in the loop body

– False -> stops the loop

– Initially false (the very first time)
• loop body will not even execute once

while Statement, cont.

• syntax
while (Boolean_Expression)

Body_Statement

or

while (Boolean_Expression)

{

First_Statement

Second_Statement

…

}

10

while Statement, cont. while Statement, cont.

• class WhileDemo

do-while Statement

• also called a do-while loop (repeat-until loop)

• similar to a while statement

– except that the loop body is executed at least
once

• syntax
do

Body_Statement

while (Boolean_Expression);

– don’t forget the semicolon at the end!

do-while Statement, cont.

• First, the loop body is executed.

• Then the boolean expression is checked.

– As long as it is true, the loop is executed
again.

– If it is false, the loop exits.

• equivalent while statement
Statement(s)_S1

while (Boolean_Condition)

Statement(s)_S1

do-while Statement, cont. do-while Statement, cont.

• class DoWhileDemo

11

Programming Example:

Bug Infestation
• given

– volume of a roach: 0.0002 cubic feet

– starting roach population

– rate of increase: 95%/week

– volume of a house

• find

– number of weeks to exceed the capacity of
the house

– number and volume of roaches

Programming Example: Bug

Infestation, cont.
• class BugTrouble

Infinite Loops

• A loop which repeats without ever ending

• the controlling boolean expression (condition

to continue)

– never becomes false

• A negative growth rate in the preceding

problem causes totalBugVolume always to be

less than houseVolume

– the loop never ends.

for Statement

• A for statement executes the body of a loop a

fixed number of times.

• example
for (count = 1; count < 3; count++)

System.out.println(count);

System.out.println(“Done”);

for Statement, cont.

• syntax
for (Initialization; Condition; Update)

Body_Statement

– Body_Statement

• a simple statement or

• a compound statement in {}.

• corresponding while statement
Initialization

while (Condition)

Body_Statement_Including_Update

for Statement, cont.

12

for Statement, cont.
• class ForDemo

Multiple Initialization, etc.

• example
for (n = 1, p = 1; n < 10; n++)

p = p * n

• Only one boolean expression is allowed, but

it can consist of &&s, ||s, and !s.

• Multiple update actions are allowed, too.
for (n = 1, p = 100; n < p; n++, p -= n)

• rarely used

Choosing a Loop Statement

• If you know how many times the loop will be

iterated, use a for loop.

• If you don’t know how many times the loop

will be iterated, but

– it could be zero, use a while loop

– it will be at least once, use a do-while loop.

• Generally, a while loop is a safe choice.

Summary of loop statements

• while loop

• do-while loop

• for loop

break Statement in Loops:

NOT recommended
• A break statement can be used to end a loop

immediately.

• The break statement ends only the innermost loop

that contains the break statement.

• break statements make loops more difficult to

understand:

– Loop could end at different places (multiple
possible exit points), harder to know where.

• Always try to end a loop at only one place--makes
debugging easier (only one possible exit point)

Misuse of break Statements in

loops (p. 177)

• “Because of the complications they introduce,
break statements in loops should be avoided.

• Some authorities contend that a break statement

should never be used to end a loop,

• but virtually all programming authorities agree

that they should be used at most sparingly.”

13

exit Method

• Sometimes a situation arises that makes

continuing the program pointless.

• A program can be terminated normally by
System.exit(0).

• example
if (numberOfWinners == 0)

{

System.out.println(“/ by 0”);

System.exit(0);

}

Programming with Loops:

Outline
• The Loop Body

• Initializing Statements

• Ending a Loop

• Loop Bugs

• Tracing Variables

Loop Body

• To design the loop body, write out the actions

the code must accomplish.

• Then look for a repeated pattern.

– The pattern need not start with the first

action.

– The repeated pattern will form the body of

the loop.

– Some actions may need to be done after

the pattern stops repeating.

Initializing Statements

• Some variables need to have a value before

the loop begins.

– Sometimes this is determined by what is

supposed to happen after one loop

iteration.

– Often variables have an initial value of zero

or one, but not always.

• Other variables get values only while the loop

is iterating.

Ending a Loop

• If the number of iterations is known before the

loop starts, the loop is called a count-

controlled loop.

– use a for loop.

• Asking the user before each iteration if it is

time to end the loop is called the ask-before-

iterating technique.

– appropriate for a small number of iterations

– Use a while loop or a do-while loop.

Ending a Loop, cont.

• For large input lists, a sentinel value can be

used to signal the end of the list.

– The sentinel value must be different from
all the other possible inputs.

– A negative number following a long list of
nonnegative exam scores could be
suitable.

90

0

10

-1

14

Ending a Loop, cont.

• example - reading a list of scores followed by

a sentinel value
int next = keyboard.nextInt();

while (next >= 0)

{

Process_The_Score

next = keyboard.nextInt();

}

Ending a Loop, cont.

• class ExamAverager

Nested Loops

• The body of a loop can contain any kind of

statements, including another loop.

• In the previous example

– the average score was computed using a

while loop.

– This while loop was placed inside a do-while

loop so the process could be repeated for

other sets of exam scores.

Nested Loops
• The body of a loop can have any kind of statements,

including another loop.

• Each time the outer loop body is executed, the inner loop
body will execute 5 times.

• 20 times total

for (line = 0; line < 4; line++)

{

for (star = 0; star < 5; star++)

System.out.print('*');

System.out.println();

}

body of

inner loop

body of
outer loop

Output:

Declaring Variables Outside

Loop Bodies
• Declaration of variables

inside a loop body is

repeated with each

execution of the loop

body--can be inefficient

• Declaration of variables

can generally be moved

outside the loop body.

while (…)

{

int x;

…

}

Loop Bugs

• common loop bugs

– unintended infinite loops

– off-by-one errors

– testing equality of floating-point numbers

• subtle infinite loops

– The loop may terminate for some input
values, but not for others.

– For example, you can’t get out of debt
when the monthly penalty exceeds the
monthly payment.

15

Off-by-One Errors

• The loop body is repeated one too many

times or one too few times.

• examples

– < is used when <= should be used or <= is
used when < should be used

– using the index of the last character of a
string instead of the length of the string (or
vice versa)

• easy to overlook

Off by One

int i = 0;

while (i <= 10)

{

System.out.println(i);

i++;

}

Subtle Infinite Loops

• Verify that the monthly payment exceeds the

penalty, for example, before entering a loop

to determine the number of payments

needed to get out of debt.
if (payment <= penalty)

System.out.println(“payment is too

small”);

else

{

...

Empty for Statement

• What is printed by
int product = 1, number;

for (number = 1; number <= 10; number++);

product = product * number;

System.out.println(product);

• The last semicolon in
for (number = 1; number <= 10; number++);

produces an empty for statement.

Empty while Statement

int product = 1, number = 1;

while (number <= 10);

{

product = product * number;

number++;

}

System.out.println(product);

• The last semicolon in
while (number <= 10);

produces an empty while loop body.

Testing Equality of Floating-

point Numbers
• == works satisfactorily for integers and

characters.

• == is not reliable for floating-point numbers

(which are approximate quantities).

– Can cause infinite loops

– Use <= or >= rather than == or !=.
• www.cs.fit.edu/~pkc/classes/cse1001/FloatEquality.java

16

Tracing Variables

• Tracing variables means watching the

variables change while the program is

running.

– Simply insert temporary output statements

in your program to print of the values of

variables of interest

– or, learn to use the debugging facility that

may be provided by your system.

Tracing Variables, cont.

float creditCardBalance = 9000.0;

while (creditCardBalance > 0)

{

… // input payment

creditCardBalance -= payment;

… // calculate penalty

creditCardBalance += penalty;

system.out.println(creditCardBalance);

}

Type boolean

• Boolean Expressions and Variables

• Truth Tables and Precedence Rules

• Input and Output of Boolean Values

Type boolean, cont.

• The type boolean is a primitive type with only

two values: true and false.

• Boolean variables can make programs more

readable.
if (systemsAreOK)

instead of
if((temperature <= 100) && (thrust >= 12000)

&& (cabinPressure > 30) && …)

Boolean Expressions and

Variables
• Variables, constants, and expressions of type

boolean all evaluate to either true or false.

• A boolean variable can be given the value of

a boolean expression by using an assignment

operator.
boolean isPositive = (number > 0);

...

if (isPositive) ...

Naming Boolean Variables

• Choose names such as isPositive or
systemsAreOk.

• Avoid names such as numberSign or
systemStatus.

17

Precedence Rules

• Parentheses should be used to indicate the

order of operations.

• When parentheses are omitted, the order of

operation is determined by precedence rules.

Precedence Rules, cont.

• Operations with higher precedence are

performed before operations with lower

precedence.

• Operations with equal precedence are done

left-to-right (except for unary operations

which are done right-to-left).

Precedence Rules, cont.

Comparison operators:
<, >, <=, >=
==, !=

Logical operators:
&
|
&&
||

Precedence Rules, cont.

• In what order are the operations

performed?

score < min/2 - 10 || score > 90

score < (min/2) - 10 || score > 90

score < ((min/2) - 10) || score > 90

(score < ((min/2) - 10)) || score > 90

(score < ((min/2) - 10)) || (score > 90)

Short-circuit Evaluation

• Sometimes only part of a boolean expression

needs to be evaluated to determine the value

of the entire expression.

– If the first operand of || is true

• entire expression is true

– If the first operand of && is false

• entire expression is false

• This is called short-circuit or lazy evaluation.

Short-circuit Evaluation, cont.

• Short-circuit evaluation is not only efficient,

sometimes it is essential!

• A run-time error can result, for example, from

an attempt to divide by zero.
if ((number != 0) && (sum/number > 5))

• Complete evaluation can be achieved by

substituting & for && or | for ||.

18

Short-circuit Evaluation

int count = 1;

…

if (… && (++count < 10))

{

…

}

System.out.println(count);

Input and Output of Boolean

Values
• example

boolean boo = false;

System.out.println(boo);

System.out.print(“Enter a boolean value: “);

Scanner keyboard = new Scanner (System.in);

boo = keyboard.nextBoolean();

System.out.println(boo);

Input and Output of Boolean

Values, cont.
• dialog

false

Enter a boolean value: true

true

Using a Boolean Variable to

End a Loop
• example

boolean numbersLeftToRead = true;

while (numbersLeftToRead)

{

next = keyboard.nextInt();

if (next < 0)

numbersLeftToRead = false;

else

Process_Next_Number

}

Using a Boolean Variable to

End a Loop, cont

• class BooleanDemo

Summary

• You have learned about Java branching

statements.

• You have learned about loops.

• You have learned about the type boolean.

