Characterization of Distributed Systems

From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, © Pearson Education 2005

Networking and Parallel Computing

₭ Computer networking

- Hardware that connects computers
- Software that sends/receives messages from one computer to another, which might be on different networks (end to end delivery)
- \square Goal is to transmit messages reliably and efficiently

#Parallel Computing

- Multiple homogeneous processors in "one" computer
 Shared or distributed memory
- Goal is to execute a program faster by division of labor

Coulouris, Dollimore and Kindberg. Distributed Systems: Concepts and Design. Edu. 4 © Perman Education 2005

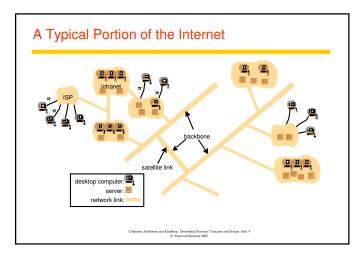
Distributed Computing

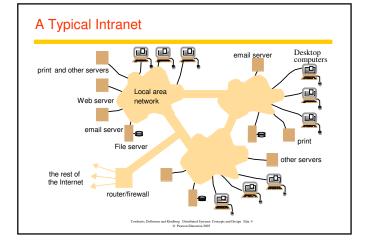
- Ketworked computers that could be far apart is rely on computer networking
- Communicate and coordinate by sending messages
- #Goal is to share (access/provide) distributed
 resources

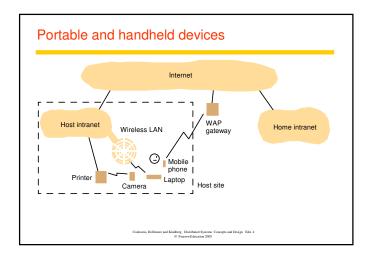
#Issues:

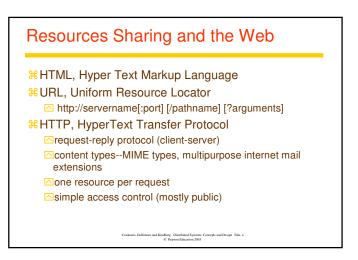
- Concurrent execution of processes
- ○No global clock for coordination
- More components, more independent failures

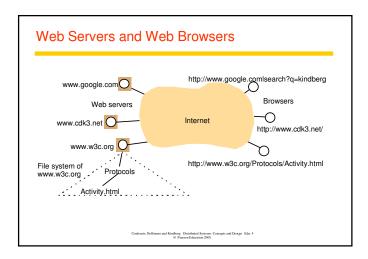
Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

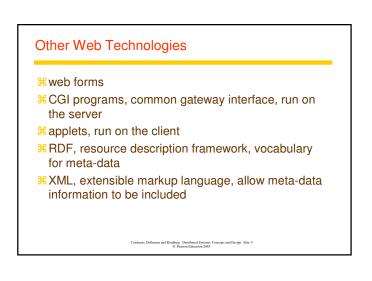

Examples of Distributed Systems

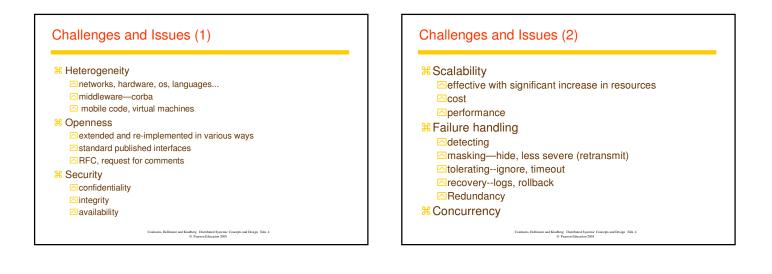

- ∺Global Internet
- Sectional Intranets--behind router/firewall
- **#**Mobile Computing -- computers move
- Hubiquitous Computing -- computers embedded everywhere


🔀 Issues:


- ⊡discovery of resources in different host environments
- dynamic reconfiguration
- Imited connectivity
- privacy and security guarantees to the user and the host environment


Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edu.





Date	Computers	Web servers
1979, Dec.	188	(
1989, July	130,000	(
1999, July	56,218,000	5,560,860
2003, Jan.	171,638,297	35,424,956

Date	Computers	Web servers	Percentage
1993, July	1,776,000	130	0.008
1995, July	6,642,000	23,500	0.4
1997, July	19,540,000	1,203,096	6
1999, July	56,218,000	6,598,697	12
2001, July	125,888,197	31,299,592	25
		42,298,371	

Challenges and Issues (3)

#Transparency

- Access transparency: enables local and remote resources to be accessed using identical operations.
- Location transparency: enables resources to be accessed without knowledge of their physical or network location (for example, which building or IP address).
- Concurrency transparency: enables several processes to operate concurrently using shared resources without interference between them.
- Replication transparency: enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers.

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005

Challenges and Issues (4)

#Transparency

- Failure transparency: enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components.
- Mobility transparency: allows the movement of resources and clients within a system without affecting the operation of users or programs.
- Performance transparency: allows the system to be reconfigured to improve performance as loads vary.
- Scaling transparency: allows the system and applications to expand in scale without change to the system structure or the application algorithms.

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edu. 4 © Pearson Education 2005