
1

Slides for Chapter 12:

Coordination and Agreement

From Coulouris, Dollimore and Kindberg

Distributed Systems:

Concepts and Design

Edition 4, © Pearson Education 2005

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Failure Assumptions and Failure Detectors

� reliable communication channels

� process failures: crashes

� failure detector: object/code in a process that detects
failures of other processes

� unreliable failure detector
�unsuspected or suspected (evidence of possible failures)

�each process sends ``alive'' message to everyone else

�not receiving ``alive'' message after timeout

�most practical systems

� reliable failure detector
�unsuspected or failure

�synchronous system

�few practical systems

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Distributed Mutual Exclusion

�provide critical region in a distributed

environment

�message passing

�for example, locking files, lockd daemon in UNIX

(NFS is stateless, no file-locking at the NFS level)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Algorithms for mutual exclusion

�N processes

�processes don't fail

�message delivery is reliable

�critical region: enter(), resourceAccesses(),

exit()

�Properties:

�[ME1] safety: only one process at a time

�[ME2] liveness: eventually enter or exit

�[ME3] happened-before ordering: ordering of enter()
is the same as HB ordering

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Algorithms for mutual exclusion

�Performance evaluation:

�overhead and bandwidth consumption: # of
messages sent

�client delay incurred by a process at entry and exit

�throughput measured by synchronization delay:
delay between one's exit and next's entry

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A central server algorithm

�server keeps track of a token---permission to

enter critical region

�a process requests the server for the token

�the server grants the token if it has the token

�a process can enter if it gets the token,
otherwise waits

�when done, a process sends release and exits

2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Server managing a mutual exclusion token for a

set of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A central server algorithm

� Properties:

�safety, why?

�liveness, why?

�HB ordering not guaranteed, why? [VC in processes vs. server]

� Performance:

�enter overhead: two messages (request and grant)

�enter delay: time between request and grant

�exit overhead: one message (release)

�exit delay: none

�synchronization delay: between release and grant

�centralized server is the bottle neck

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A ring-based algorithm

� logical ring, could be unrelated to the physical

configuration

�pi sends messages to p(i+1) mod N

�when a process holds a token, it can enter,
otherwise waits

�when a process releases a token (exit), it sends
to its neighbor

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A ring of processes transferring a mutual exclusion

token

p
n

p
2

p
3

p
4

Token

p
1

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A ring-based algorithm

�properties:
�safety, why?

�liveness, why?

�HB ordering not guaranteed, why?

�Performance:
�bandwidth consumption: token keeps circulating

�enter overhead: 0 to N messages

�enter delay: delay for 0 to N messages

�exit overhead: one message

�exit delay: none

�synchronization delay: delay for 1 to N messages

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

An algorithm using multicast and logical clocks

� multicast a request message for the token

� enter only if all the other processes reply

� totally-ordered timestamps: <T, pi >

� each process keeps a state: RELEASED, HELD,
WANTED

� if all have state = RELEASED, all reply, a process can
hold the token and enter

� if a process has state = HELD, doesn't reply until it exits

� if more than one process has state = WANTED, process
with the lowest timestamp will get all N-1 replies first.

3

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Ricart and Agrawala’s algorithm

On initialization
state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Multicast synchronization

p
3

34

Reply

34

41

41

41

34

p
1

p
2

Reply
Reply

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

An algorithm using multicast and logical locks

�Properties

�safety, why?

�liveness, why?

�HB ordering, why?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

An algorithm using multicast and logical locks

�performance:

�bandwidth consumption: no token keeps circulating

�entry overhead: 2(N-1), why? [with multicast support:
1 + (N -1) = N]

�entry delay: delay between request and getting all
replies

�exit overhead: 0 to N-1 messages

�exit delay: none

�synchronization delay: delay for 1 message (one last
reply from the previous holder)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Maekawa’s Voting Algorithm – Main Idea

�We actually don’t need all N – 1 replies

�Consider processes A, B, X

�A needs replies from “A” and X

�B needs replies from “B” and X

�If X can only reply to (vote) *one process at a time*
⌧A and B cannot have a reply from X at the same time

⌧Mutex between A and B--hinges on X

�Processes in overlapping groups

�members in the overlap “control” mutex

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Mutual exclusion for all processes

�A group for every process

�A pair of groups for A and B overlaps

�=> mutex(A, B)

�Every possible pair of groups overlaps

�=> mutex(all possible pairs of processes)

�=> mutex(all processes)

4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Groups and members

�A group for each process

�N processes

�N groups

�Each group has K members

�numbers of processes to request for permission

�Each process is in M groups (M > 1)

�Allows overlapping => mutex
⌧If the groups are disjoint, M = 1, no overlapping, no mutex

�number of processes to grant permission

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Parameters and group membership

� N = number of processes

� K = voting group size

� M = number of voting groups each process is in

� Optimal (smallest K, why?)

�K = M ~= sqrt(N)

�Non-trivial to construct the groups

� Approximation

�K = 2 * sqrt(N) - 1

⌧Put process id’s in a sqrt(N) by sqrt(N) table

⌧Union the rows and columns where pi is

�N groups

�M = 2 * sqrt(N) - 1

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Group membership

IHG

FED

CBA

•Group for A: {A, B, C, D, G}
•Group for B: {A, B, C, E, H}
•…
•Group for I: {G, H, I, C, F}
•Every pair of groups overlap

•N groups
•Each group has K = 2 * sqrt(N) – 1 members
• M = 2 * sqrt(N) – 1 [# of groups each process are in]

IHG

FED

CBA

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Group membership (alternative?)

IHG

FED

CBA

•Groups for A, B, C: {A, B, C, D, G}
•Groups for D, E, F: {D, E, F, B, H}
•Groups for G, H, I: {G, H, I, C, F}
•Every pair of groups overlap

•N groups [Sqrt(N) unique groups]
•Each group has K = 2 * sqrt(N) – 1 members
•M = 3 [sqrt(N)] for A, E, I, but M = 6 [2*sqrt(N)] for the rest

•Undesirable, why?

IHG

FED

CBA

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Sketch of the Voting Algorithm

�A group of processes Vi for each process pi

�Each pair of groups overlap
⌧X in groups: [A,X] and [B,X]

�=> the groups for any pair of processes overlap

�To enter the critical region, pi

�Sends REQUEST’s to all processes in Vi

�Waits for REPLY’s (VOTE’s) from all processes in Vi

�To exit the critical region, pi

�Sends RELEASE’s to all processes in Vi

�Three types of messages, not two as in the
multicast alg.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 12.6

Maekawa’s voting algorithm

On initialization

state := RELEASED;

voted := FALSE;

For pi to enter the critical section

state := WANTED;

Multicast request to all processes in Vi;

Wait until (number of replies received = K);

state := HELD;

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)

then

queue request from pi without replying;

else

send reply to pi;

voted := TRUE;

end if

For pi to exit the critical section

state := RELEASED;

Multicast release to all processes in Vi;

On receipt of a release from pi at pj

if (queue of requests is non-empty)

then

remove head of queue – from pk, say;

send reply to pk;

voted := TRUE;

else

voted := FALSE;

end if

5

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Deadlock?

�Processes: A, B, C

�Group A: A, B

�Group B: B, C

�Group C: C, A

�Deadlock

�A has A’s reply, waiting for B’s reply

�B has B’s reply, waiting for C’s reply

�C has C’s reply, waiting for A’s reply

�Timestamp the requests in HB ordering

� holding according to the timestamp

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Properties

�Safety: No process can reply/vote more than

once at any time.

�Liveness: timestamp (HB ordering)

�HB ordering: above

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Performance

�Entry overhead [assuming k = sqrt(N)]

� Sqrt(N) requests + Sqrt(N) replies

� 2* Sqrt(N)
⌧< 2(N - 1) [N > 4]

�Exit overhead

� Sqrt(N) releases

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Elections

�choosing a unique process for a particular role

�for example, server in dist. mutex

�each process can call only one election

�multiple concurrent elections can be called by

different processes

�participant: engages in an election

�process with the largest id wins

�each process pi has variable electedi = ? (don't
know) initially

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Elections

�Properties:

�[E1] electedi of a ``participant'' process must be Pmax

(elected process---largest id) or ?

�[E2] liveness: all processes participate and
eventually set electedi != ? (or crash)

�Performance:

�overhead (bandwidth consumption): # of messages

�turnaround time: # of messages to complete an
election

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A ring-based algorithm

� logical ring, could be unrelated to the physical
configuration

�pi sends messages to p(i+1) mod N

�no failures

�elect the coordinator with the largest id

� initially, every process is a non-participant

�any process can call an election:
�marks itself as participant

�places its id in an election message

�sends the message to its neighbor

6

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Ring-based algorithm

�receiving an election message:
�if id > myid, forward the msg, mark participant

�if id < myid
⌧non-participant: replace id with myid: forward the msg, mark

participant

⌧participant: stop forwarding (why? Later, multiple elections)

�if id = myid, coordinator found, mark non-participant,
electedi := id, send elected message with myid

�receiving an elected message:
�id != myid, mark non-participant, electedi := id

forward the msg

�if id = myid, stop forwarding

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

A ring-based election in progress

24

15

9

4

3

28

17

24

1

Note: The election was started by process 17.

The highest process identifier encountered so far is 24.
Participant processes are shown darkened

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Ring-based algorithm

�Properties:

�safety: only the process with the largest id can send
an elected message

�liveness: every process in the ring eventually
participates in the election; extra elections are
stopped

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Ring-based algorithm

�Performance:

�one election, best case, when?
⌧N election messages

⌧N elected messages

⌧turnaround: 2N messages

�one election, worst case, when?
⌧2N - 1 election messages

⌧N elected messages

⌧turnaround: 3N - 1 messages

�can't tolerate failures, not very practical

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The bully algorithm

�processes can crash and can be detected by

other processes

�timeout T = 2Ttransmitting + Tprocessing

�each process knows all the other processes and
can communicate with them

�Messages: election, answer, coordinator

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The bully algorithm

�start an election

�detects the coordinator has failed

�sends an election message to all processes with
higher id's and waits for answers (except the failed
coordinator/process)

�if no answers in time T,
⌧it is the coordinator

⌧sends coordinator message (with its id) to all processes with lower

id's

�else
⌧waits for a coordinator message

⌧starts an election if timeout

7

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C

coordinator

Stage 4

C

election

election

Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3

p
4

election

answer

The election of coordinator p2,
after the failure of p4 and then p3

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The bully algorithm

� receiving an election message

�sends an answer message back

�starts an election if it hasn't started one—send election

messages to all higher-id processes (including the “failed”

coordinator—the coordinator might be up by now)

� receiving a coordinator message

�set electedi to the new coordinator

� to be a coordinator, it has to start an election

� when a crashed process is replaced

�the new process starts an election and

�can replace the current coordinator (hence ``bully'')

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The bully algorithm

�properties:

�safety:
⌧a lower-id process always yields to a higher-id process

⌧However, during an election, if a failed process is replaced

• the low-id processes might have two different coordinators: the

newly elected coordinator and the new process, why?

⌧failure detection might be unreliable

�liveness: all processes participate and know the
coordinator at the end

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

The bully algorithm

�Performance

�best case: when?
⌧overhead: N-2 coordinator messages

⌧turnaround delay: no election/answer messages

�worst case: when?
⌧overhead:

⌧1+ 2 + ...+ (N-2) + (N-2)= (N-1)(N-2)/2 + (N-2) election messages,

⌧1+...+ (N-2) answer messages,

⌧N-2 coordinator messages,

⌧total: (N-1)(N-2) + 2(N-2) = (N+1)(N-2) = O(N2)

� turnaround delay: delay of election and answer
messages

