Slides for Chapter 12:
Coordination and Agreement

From Coulouris, Dollimore and Kindberg
Distributed Systems:

Concepts and Design
Edition 4, © Pearson Education 2005

Failure Assumptions and Failure Detectors

reliable communication channels
process failures: crashes
failure detector: object/code in a process that detects
failures of other processes
unreliable failure detector
unsuspected or suspected (evidence of possible failures)
each process sends “alive” message to everyone else
not receiving “alive" message after timeout
most practical systems
reliable failure detector
unsuspected or failure
synchronous system
few practical systems

© Pearson Edcation 2005

Distributed Mutual Exclusion

provide critical region in a distributed

environment

message passing

for example, locking files, lockd daemon in UNIX
(NFS is stateless, no file-locking at the NFS level)

Algorithms for mutual exclusion

N processes
processes don't fail
message delivery is reliable
critical region: enter(), resourceAccesses(),
exit()
Properties:
[ME1] safety: only one process at a time
[MEZ2] liveness: eventually enter or exit

[MES] happened-before ordering: ordering of enter()
is the same as HB ordering

s " s
© Pearson Edocation 2005

Algorithms for mutual exclusion

Performance evaluation:
overhead and bandwidth consumption: # of
messages sent
client delay incurred by a process at entry and exit

throughput measured by synchronization delay:
delay between one's exit and next's entry

© Pearson Edcation 2005

A central server algorithm

server keeps track of a token---permission to
enter critical region

a process requests the server for the token
the server grants the token if it has the token

a process can enter if it gets the token,
otherwise waits

when done, a process sends release and exits

Server managing a mutual exclusion token for a
set of processes

Server

Queue of
requests

1. Request
token 2. Release p
p1 token 4
[Ps

© Pearson Education 2005

A central server algorithm

Properties:
safety, why?
liveness, why?
HB ordering not guaranteed, why? [VC in processes vs. server]
Performance:
enter overhead: two messages (request and grant)
enter delay: time between request and grant
exit overhead: one message (release)
exit delay: none
synchronization delay: between release and grant
centralized server is the bottle neck

© Pearson Edcation 2005

A ring-based algorithm

logical ring, could be unrelated to the physical
configuration

p; sends messages t0 p ;. 1) moa v

when a process holds a token, it can enter,
otherwise waits

when a process releases a token (exit), it sends
to its neighbor

© Pearson Edcation 2005

A ring of processes transferring a mutual exclusion
token

P
4

AN //

Token
~ ‘J

'~

© Pearson Edocation 2005

A ring-based algorithm

properties:

safety, why?

liveness, why?

HB ordering not guaranteed, why?
Performance:

bandwidth consumption: token keeps circulating

enter overhead: 0 to N messages

enter delay: delay for 0 to N messages

exit overhead: one message

exit delay: none

synchronization delay: delay for 1 to N messages

Eand

An algorithm using multicast and logical clocks

multicast a request message for the token
enter only if all the other processes reply
totally-ordered timestamps: <7, p; >

each process keeps a state: RELEASED, HELD,
WANTED

if all have state = RELEASED, all reply, a process can
hold the token and enter

if a process has state = HELD, doesn't reply until it exits

if more than one process has state = WANTED, process
with the lowest timestamp will get all N-1 replies first.

Ricart and Agrawala’s algorithm

On initialization
state .= RELEASED;
To enter the section
state == WANTED;
Multicast request to all processes; j request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N — 1));
state := HELD;

On receipt of a request <T,, p;> at p; (i #j)
if (state = HELD or (state = WANTED and (T, p) <(T;, p))
then
queue request from p; without replying;
else
reply immediately to p;;
end if
To exit the critical section
state := RELEASED;
reply to any queued requests;

" Eand
© Pearson Education 2005

Multicast synchronization

/)41

Reply
eply

Reply

34

O

© Pearson Edcation 2005

An algorithm using multicast and logical locks

Properties
safety, why?
liveness, why?
HB ordering, why?

© Pearson Edcation 2005

An algorithm using multicast and logical locks

performance:
bandwidth consumption: no token keeps circulating
entry overhead: 2(N-1), why? [with multicast support:

1+ (N-1)=N]
entry delay: delay between request and getting all
replies

exit overhead: 0 to N-1 messages
exit delay: none

synchronization delay: delay for 1 message (one last
reply from the previous holder)

© Pearson Edocation 2005

Maekawa’s Voting Algorithm — Main Idea

We actually don’'t need all N — 1 replies

Consider processes A, B, X
A needs replies from “A” and X
B needs replies from “B” and X

If X can only reply to (vote) *one process at a time
A and B cannot have a reply from X at the same time
Mutex between A and B--hinges on X

Processes in overlapping groups
members in the overlap “control” mutex

*

© Pearson Edcation 2005

Mutual exclusion for all processes

A group for every process

A pair of groups for A and B overlaps
=> mutex(A, B)

Every possible pair of groups overlaps
=> mutex(all possible pairs of processes)
=> mutex(all processes)

© Pesrson Edcation 2005

Groups and members

A group for each process

N processes

N groups
Each group has K members

numbers of processes to request for permission
Each process is in M groups (M > 1)

Allows overlapping => mutex
If the groups are disjoint, M = 1, no overlapping, no mutex

number of processes to grant permission

© Pearson Education 2005

Parameters and group membership

N = number of processes
K = voting group size
M = number of voting groups each process is in
Optimal (smallest K, why?)
K =M ~=sqrt(N)
Non-trivial to construct the groups
Approximation
K=2"sqrt(N) - 1

Put process id’s in a sqrt(N) by sqrt(N) table
Union the rows and columns where p; is

N groups
M=2*sqrt(N) - 1

© Pearson Edcation 2005

Group membership

A |B |C A |B |C
D |E |F D F
G |H |I G |H |I
*Group for A: {A, B, C, D, G}
*Group for B: {A, B, C, E, H}

*Group for I: {G, H, I, C, F}
*Every pair of groups overlap

N groups
*Each group has K'= 2 * sqrt(N) — 1 members
* M=2*sqrt(N) — 1 [# of groups each process are in]

e " s
© Pearson Edcation 2005

Group membership (alternative?)

A B |C A |B |C
D |E |F D |E |F
G |H |I G |H |I

*Groups for A, B, C: {A, B, C, D, G}
*Groups for D, E, F: {D, E, F, B, H}
*Groups for G, H, I: {G, H, |, C, F}
*Every pair of groups overlap

*N groups [Sqgrt(N) unique groups]

*Each group has K'= 2 * sqrt(N) — 1 members

*M =3 [sart(N)] for A, E, I, but M = 6 [2*sqrt(N)] for the rest
*Undesirable, why?

s " s
© Pearson Edocation 2005

Sketch of the Voting Algorithm

A group of processes V, for each process p;

Each pair of groups overlap

Xin groups: [A,X] and [B,X]

=> the groups for any pair of processes overlap
To enter the critical region, p;

Sends REQUEST's to all processes in V;

Waits for REPLY’s (VOTE's) from all processes in V;
To exit the critical region, p;

Sends RELEASE's to all processes in V;
Three types of messages, not two as in the
multicast alg.

Figure 12.6
Maekawa’s voting algorithm
On initialization For p; to exit the critical section
state := RELEASED; state := RELEASED;
voted := FALSE; Multicast release to all processes in V;;
For p; to enter the critical section On receipt of a release from p; atp;
state :== WANTED; if (queue of requests is non-empty)
Multicast request to all processes in V; then
Wait until (number of replies received = K); remove head of queue — from p,, say;
state := HELD; send reply to p;;
On receipt of a request from p; at p; voted := TRUE;
if (state = HELD or voted = TRUE) else
then voted := FALSE;
queue request from p; without replying; end if

else
send reply to p;;
voted := TRUE;
end if

© Pesrson Edcation 2005

Deadlock?

Processes: A, B, C
Group A: A, B
Group B: B, C
Group C: C, A
Deadlock
A has A’s reply, waiting for B’s reply
B has B’s reply, waiting for C’s reply
C has C’s reply, waiting for A’s reply
Timestamp the requests in HB ordering
holding according to the timestamp

© Pearson Education 2005

Properties

Safety: No process can reply/vote more than
once at any time.

Liveness: timestamp (HB ordering)
HB ordering: above

© Pearson Edcation 2005

Performance

Entry overhead [assuming k = sqrt(N)]
Sqart(N) requests + Sqrt(N) replies

2* Sqrt(N)
<2(N-1)[N> 4]

Exit overhead
Sqrt(N) releases

© Pearson Edcation 2005

Elections

choosing a unique process for a particular role
for example, server in dist. mutex
each process can call only one election

multiple concurrent elections can be called by
different processes

participant: engages in an election
process with the largest id wins

each process p; has variable elected, = ? (don't
know) initially

s " s
© Pearson Edocation 2005

Elections

Properties:

[E1] elected, of a " participant” process must be P,
(elected process---largest id) or ?

[E2] liveness: all processes participate and

eventually set elected, |= 7 (or crash)
Performance:

overhead (bandwidth consumption): # of messages

turnaround time: # of messages to complete an
election

© Pearson Edcation 2005

A ring-based algorithm

logical ring, could be unrelated to the physical
configuration

p; sends messages 10 p;, 1) moa v

no failures

elect the coordinator with the largest id
initially, every process is a non-participant

any process can call an election:
marks itself as participant
places its id in an election message
sends the message to its neighbor

© Pesrson Edcation 2005

Ring-based algorithm

receiving an election message:
if id > myid, forward the msg, mark participant
if id < myid
non-participant: replace id with myid: forward the msg, mark
participant
participant: stop forwarding (why? Later, multiple elections)

if id = myid, coordinator found, mark non-participant,

elected, = id, send elected message with myid
receiving an elected message:

id = myid, mark non-participant, elected; := id

forward the msg

if id = myid, stop forwarding

© Pearson Education 2005

A ring-based election in progress

Note: The election was started by process 17.
The highest process identifier encountered so far is 24.
Participant processes are shown darkened

" Eand
© Pearson Edcation 2005

Ring-based algorithm

Properties:
safety: only the process with the largest id can send
an elected message
liveness: every process in the ring eventually
participates in the election; extra elections are
stopped

© Pearson Edcation 2005

Ring-based algorithm

Performance:

one election, best case, when?
N election messages
N elected messages
turnaround: 2N messages

one election, worst case, when?
2N - 1 election messages
N elected messages
turnaround: 3N - 1 messages

can't tolerate failures, not very practical

© Pearson Edocation 2005

The bully algorithm

processes can crash and can be detected by
other processes

timeout T=2 Ttransmitting + Tpmcessr’ng

each process knows all the other processes and
can communicate with them

Messages: election, answer, coordinator

© Pearson Edcation 2005

The bully algorithm

start an election
detects the coordinator has failed
sends an election message to all processes with
higher id's and waits for answers (except the failed
coordinator/process)
if no answers in time T,
it is the coordinator
sends coordinator message (with its id) to all processes with lower
id's
else
waits for a coordinator message
starts an election if timeout

" Eand
© Pesrson Edcation 2005

The bully algorithm

The election of coordinator p,, election
after the failure of p, and then p, Slection c
Stage 1 ><
answer
" M ’,
answer
election
election > " election & C
Stage 2 ><
answer
Pt pz\—/pg P,

timeout

Stage 3 ><

%

p‘ pZ p(!
Eventually.
coordinator
~
X X
P, P, P, P,

The bully algorithm

receiving an election message
sends an answer message back

starts an election if it hasn't started one—send election
messages to all higher-id processes (including the “failed”
coordinator—the coordinator might be up by now)

receiving a coordinator message

set elected; to the new coordinator
to be a coordinator, it has to start an election
when a crashed process is replaced

the new process starts an election and

can replace the current coordinator (hence *“bully")

The bully algorithm

properties:

safety:
a lower-id process always yields to a higher-id process
However, during an election, if a failed process is replaced
the low-id processes might have two different coordinators: the
newly elected coordinator and the new process, why?
failure detection might be unreliable

liveness: all processes participate and know the
coordinator at the end

© Pearson Edcation 2005

The bully algorithm

Performance

best case: when?
overhead: N-2 coordinator messages
turnaround delay: no election/answer messages
worst case: when?
overhead:
1+ 2 + .+ (N-2) + (N-2)= (N-1)(N-2)/2 + (N-2) election messages,
1+...+ (N-2) answer messages,
N-2 coordinator messages,
total: (N-1)(N-2) + 2(N-2) = (N+1)(N-2) = O(AR)
turnaround delay: delay of election and answer
messages

