Slides for Chapter 3: Networking and Internetworking

From Coulouris, Dollimore and Kindberg
Distributed Systems: Concepts and Design
Edition 4, © Pearson Education 2005

Networking Issues (1)
- Performance:
 - Latency (time between send and start to receive)
 - Data transfer rate (bits per second) [max]
 - Transmission time = latency + length / transfer rate
 - System bandwidth, throughput [actual]: total volume of traffic in a given amount of time
 - Using different channels concurrently can make bandwidth > data transfer rate
 - Traffic load can make bandwidth < data transfer rate
 - Network speed < memory speed (about 1000 times)
 - Access to local disk is usually faster than remote disk
 - Fast (expensive) remote disk + fast network
 - Can beat slow (cheap) local disks

Networking Issues (2)
- Scalability
- Reliability
 - Corruption is rare
 - Mechanisms in higher-layers to recover errors
 - Errors are usually timing failures, the receiver doesn’t have resources to handle the messages
- Security
 - Firewall on gateways (entry point to org’s intranet)
 - Encryption is usually in higher-layers
- Mobility
 - Communication is more challenging: locating, routing,
- Quality of service
- Real-time services
- Multicasting
- One-to-many communication

Types of Networks (1)
- Local Area Networks (LAN)
 - Floor/building-wide
 - Single communication medium
 - No routing, broadcast
 - Segments connected by switches or hubs
 - High bandwidth, low latency
 - Ethernet - 10Mbps, 100Mbps, 1Gbps
 - No latency guarantees (what could be the consequences?)
- Personal area networks (PAN) [ad-hoc networks]:
 - Blue tooth, infra-red for PDAs, cell phones, ...

Types of Networks (2)
- Metropolitan Area Networks (MAN)
 - City-wide, up to 50 km
 - Digital Subscriber Line (DSL): .25 - 8 Mbps, 5.5km from switch
 - BellSouth: .8 to 6 Mbps
 - Cable modem: 1.5 Mbps, longer range than DSL
 - Bright house w/ Road Runner: .5 to 10Mbps

Types of Networks (3)
- Wide Area Networks (WAN)
 - World-wide
 - Different organizations
 - Large distances
 - Routed, latency .1 - .5 seconds
 - 1-10 Mbps (upto 600 Mbps)
Types of Networks (4)

Wireless local area networks (WLAN)
- IEEE 802.11 (WiFi)
 - 10-100 Mbps, 1.5km
- 802.11 (1997): up to 2 Mbps, 2.4 GHz
- 802.11a (1999): up to 54 Mbps, 5 GHz, ~75 feet outdoor
- 802.11b (1999): up to 11 Mbps, 2.4 GHz, ~150 feet [most popular]
- 802.11g (2003): up to 54 Mbps, 2.4 GHz, ~150 feet [backward compatible with 802.11b, becoming more popular]

Wireless metropolitan area networks (WMAN)
- IEEE 802.16 (WiMax)
- 1.5-20 Mbps, 5-50km

Types of Networks (5)

Wireless wide area networks (WWAN)
- Worldwide
- GSM (Global System for Mobile communications)
 - 9.6 – 33 kbps
- 3G (‘third generation’): 128-384 kbps to 2Mbps

Types of Networks (6)

Internetworks
- Connecting different kinds of networks
- Routers, gateways

Network performance

<table>
<thead>
<tr>
<th>Example</th>
<th>Range</th>
<th>Bandwidth/Latency (Mbps/ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wired</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAN Ethernet</td>
<td>1.2 km</td>
<td>10-1000</td>
</tr>
<tr>
<td>MAN ATM</td>
<td>250 km</td>
<td>1.150</td>
</tr>
<tr>
<td>WAN IP routing</td>
<td>worldwide</td>
<td>0.5-600</td>
</tr>
<tr>
<td>Internetwork</td>
<td>worldwide</td>
<td>0.5-600</td>
</tr>
<tr>
<td>Wireless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPAN Bluetooth</td>
<td>10 - 30m</td>
<td>0.5-2</td>
</tr>
<tr>
<td>WLAN Wi-Fi (802.11)</td>
<td>0.15-1.5 km 2-54</td>
<td>5-20</td>
</tr>
<tr>
<td>WMAN WiMAX (802.16)</td>
<td>350 km</td>
<td>1.5-20</td>
</tr>
<tr>
<td>WWAN GSM, 3G phone nets</td>
<td>worldwide</td>
<td>0.01-2</td>
</tr>
</tbody>
</table>

Network principles (1)

Packet transmission
- Message: logical unit of information
- Packet: transmission unit
- Restricted length: sufficient buffer storage, reduce hogging

Network principles (2)

Data Streaming
- Audio/video
 - Need 120 Mbps (1.5 Mbps compressed)
 - Play time: the time when a frame needs to be displayed
 - For example, 24 frames per second, frame 48 must be displayed after two seconds
 - IP protocol provides no guarantees
 - IPv6 (new) includes features for real-time streams, stream data are treated separately
 - Resource Reservation Protocol (RSVP), Real-time Transport Protocol (RTP)
Network principles (3)

- Switching schemes (transmission between arbitrary nodes)
 - Broadcast: ethernet, token ring, wireless
 - Circuit switching: wires are connected
 - Packet switching:
 - store-and-forward
 - different routes
 - “store-and-forward” needs to buffer the entire packet before forwarding
 - Frame relay
 - Small packets
 - Looks only at the first few bits
 - Don’t buffer/store the entire frame

Network principles (4)

- Protocols
 - Key components
 - Sequence of messages
 - Format of messages

Network principles (5)

- Protocol layers, why?

Network principles (6)

- Encapsulation in layered protocols

Network principles (7)

- ISO Open Systems Interconnection (OSI) model

Network principles (8)

- Internet layers
 - Application = application + presentation
 - Transport = transport + session

Underlying network
 - Network-specific packets
 - Internetwork packets
 - Internetwork protocols
Network principles (9)

- Packet assembly
 - header and data
 - maximum transfer unit (MTU): 1500 for Ethernet
 - 64K for IP (8K is common because of node storage)
- ports: destination abstraction
 (application/service protocol)
- addressing: transport address = network address + port
 - Well-known ports (below 1023)
 - Registered ports (1024 - 49151)
 - Private (up to 65535)

Network principles (10)

- Packet delivery (at the network layer)
 - Datagram packet
 - one-shot, no initial setup
 - different routes, out of order
 - Virtual circuit packet
 - initial setup for resources
 - virtual circuit # for addressing
 - ATM

Similar but different pairs of protocols at the transport layer (connection-oriented and connectionless)

Network principles (11)

- Routing
 - LAN?
 - Routing Algorithm
 - decide which outgoing link to forward the packet
 - for circuit switching, the route is determined during the circuit setup time
 - for packet switching, each packet is routed independently
 - update state of the outgoing links
 - Routing Table
 - a record for each destination
 - fields: outgoing link, cost (e.g. hop count)

Network principles (12)

- Router example

Network principles (13): Routing tables

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>local</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>local</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>local</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>local</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Network principles (14)

- Router information protocol (RIP)
 - "Bellman-Ford distance vector" algorithm
 - Sender: send table summary periodically (30s) or changes to neighbors
 - Receiver: Consider A receives a table from B, A updates
 - A -> B -> ... -> X: A updates - B has more up-to-date (authoritative) info
 - A -> not B -> ... -> X: Does routing via B have a lower cost?
 - B -> ... -> X: A does not know X
 - [B -> A -> ... -> X]: A doesn’t update - A has more up-to-date info
 - Faulty link, cost is infinity
 - RIP-1 (RFC 1058)
 - More recent algorithms
 - more information, not just neighbors
 - Link-state algorithms, each node responsible for finding the optimum routes
Network principles (15): Pseudocode for RIP routing algorithm

- \(T_l \) is the table local; \(T_r \) is the received remote table

Send: Each 5 seconds or when \(T_l \) changes, send \(T_l \) on each non-faulty outgoing link.

Receive: Whenever a routing table \(T_r \) is received on link \(n \):

- for all rows \(R_r \) in \(T_r \):
 - if \((R_r\.link = n) \) // destination not routed via the receiver
 - \(R_r\.cost = R_r\.cost + 1 \); \(R_r\.link = n \).
 - if \((R_r\.destination \) is not in \(T_l \)) add \(R_r \) to \(T_l \);
 - else for all rows \(R_l \) in \(T_l \):
 - if \((R_l\.destination = R_r\.destination) \) and \((R_r\.cost < R_l\.cost \) or \(R_l\.link = n) \) \(R_l = R_r \);
 - if \(R_r\.cost < R_l\.cost \) : remote node has better route
 - if \(R_l\.link = n \) : remote node is more authoritative

Network principles (16)

- Congestion control
 - high traffic load, packets dropped due to limited resources
 - reducing transmission rate: "choke packets" from sender to receiver

Networking principles (17)

- Network connecting devices
 - Hubs: extending a segment of LAN (broadcast)
 - Switches: switching traffic at data-link level (different segments of a LAN), making temporary hardware connections between two ports (or store and forward) [switches do not exchange info with each other]
 - Routers: routing traffic at IP level
 - Bridges: linking networks of different types, could be routers as well

Networking principles (18)

- Tunneling
 - communicate through an "alien" protocol
 - "Hide" in the payload
 - IPv6 traffic using IPv4 protocols

Internet protocols (1)

- IP (Internet Protocol)
 - "network" layer protocol
 - IP addresses
- TCP (Transmission Control Protocol)
 - transport layer
 - connection-oriented
- UDP (User Datagram Protocol)
 - transport layer
 - connection-less

Internet protocols (2): TCP/IP layers

Layers
- Application
- Transport
- Internet
- Network interface
- Underlying network

Messages
- Messages (UDP) or Streams (TCP)
- UDP or TCP packets
- IP datagrams
- Network-specific frames
- Network-specific frames
Internet protocols (3): layer encapsulation

![Layer encapsulation diagram]

Internet protocols (4): Programmer’s view

![Programmer’s view diagram]

Internet protocols (5): Internet address structure

32-bit

- **Class A**: 0 Network ID 24 Host ID
- **Class B**: 1 Network ID 16 Host ID
- **Class C**: 1 1 Network ID 8 Host ID
- **Class D (multicast)**: 1 1 1 Multicast address
- **Class E (reserved)**: 1 1 1 0 unused

- **Internet protocols (6): Decimal representation**

163.118.131.9 (www.fit.edu)

- **Class A**: Network ID 1 to 127 0 to 255 Host ID 0 to 255
- **Class B**: 128 to 191 0 to 255 0 to 255 0 to 255
- **Class C**: 192 to 223 0 to 255 0 to 255 0 to 255
- **Class D (multicast)**: 224 to 239 0 to 255 0 to 255 0 to 255
- **Class E (reserved)**: 240 to 255 0 to 255 0 to 255 0 to 255

Internet protocols (7)

- **Classless interdomain routing (CIDR)**
 - shortage of Class B networks
 - add a mask field to indicate bits for network portion
 - 138.73.59.32/22 [subnet: first 22 bits; host: 10 bits]

Internet protocols (8)

- **IP address of source**
- **IP address of destination**
- **Data**
- **Header**
 - up to 64 kilobytes
Internet protocols (9): Network Address Translation

X Sharing one "global" IP address at home
X Routers with NAT
 o Router has a "global" IP address from ISP
 o Each machine has a "local" IP address via DHCP
 o Machine -> router
 o Router stores the local IP addr and source port #
 o Table entry indexed by a virtual port #
 o Router -> outside
 o Put the router IP addr and virtual port # in the packet
 o Outside -> router
 o Reply to the router IP addr and virtual port #
 o Router -> machine
 o Use the virtual port # to find table entry
 o Forward to the local IP address and port #
X What happens if we want the device to be a server, not a client?

Internet protocols (10)

Internet protocols (11)

X Server with NAT
 o Fixed internal addr and port #
 o Fixed entry in the table
 o All packets to the port on the router are forwarded to the internal addr and port # in the entry
 o What if more than one internal machines want to offer the same service (port)?

Internet protocols (12)

X IP Protocol
 o Unreliable or best-effort
 o Lost, duplicated, delayed, out of order
 o Header checksum, no data checksum
 o IP packet longer than MTU of the underlying network, break into fragments
 o Before sending and reassemble after receiving
 o Address resolution (on LANS)
 o Mapping IP address to lower level address
 o ARP: address resolution protocol
 o Ethernet: cache; not in cache, broadcast IP addr, receive Ethernet addr
 o IP spoofing: address can be stolen (not authenticated)

Internet protocols (13)

X RIP-1: discussed previously
X RIP-2: CIDR, better multicast routing, authentication of RIP packets
X Link-state algorithms: e.g., open shortest path first (OSPF)
X Observed: average latency of IP packets peaks at 30-seconds intervals [RIP updates are processed before IP]
 o because 30-second RIP update intervals, locked steps
 o Random interval between 15-45 seconds for RIP update
X Large table size
 o All destinations!
 o Map ip to geographical location
 o Default route: store a subset, default to a single link for unlisted destinations

Internet Protocols (14): IPv6

X IPv6 addresses: 128 bits (16 bytes)
X 3 x 10^23 addresses (7 x 10^23 addresses per square meter!)
X Routing speed
 o No data checksum as before
 o No fragmentation – need to know the smallest MTU in data-link layer
X Real-time and special services
 o Traffic class: priority, time-dependent (expired data are useless)
X Flow label: timing requirements for streams (reserving resources in advance)
X "Next" header field
 o Extension header types for IPv6
 o Routing information, authentication, encryption...
 o Anycast: at least one nodes gets it
 o Security
 o Currently handled above the IP layer
 o Extension header types
 o Migration from IPv4
 o Backward compatibility: IPv6 addresses include IPv4 addresses
 o Islands of IPv6 networks, traffic tunnels through other IPv4 networks
Internet protocols (15):

<table>
<thead>
<tr>
<th>Version (4 bits)</th>
<th>Traffic class (8 bits)</th>
<th>Flow label (20 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload length (16 bits)</td>
<td>Next header (8 bits)</td>
<td>Hop limit (8 bits)</td>
</tr>
</tbody>
</table>

Source address (128 bits)

Destination address (128 bits)

Internet Protocols (10): Mobile IP

- Dynamic Host Configuration Protocol (DHCP)
 - assign temporary IP address
 - provide addresses of local resources like DNS
- Routing to maintain continuous access
 - IP routing is subnet-based, fixed relative locations
 - Home agent (HA) and Foreign agent (FA)
 - MA - current location (IP addr) of the mobile host
 - FA - informs the mobile host when it moves
 - proxy for the host after it moves
 - inform local routers to remove cached records of the host
 - responds to ARP requests
 - FA - informs the host when it arrives
 - new temp IP addr
 - contacts HA what the new IP address is
 - HA - receives the new IP address and may tell the sender the new IP addr

Internet protocols (11): MobileIP routing mechanism

Internet protocols (12)

- Transport protocols: TCP and UDP
 - network protocol: host to host
 - transport protocol: process to process
 - Port #’s to indicate processes
- UDP
 - no guarantee of delivery
 - checksum is optional
 - max of 64 bytes, same as IP
 - no setup costs, no segments

Internet protocols (13)

- TCP
 - arbitrarily long sequence
 - connection-oriented
 - sequencing of segments
 - flow control: acknowledgement includes "window size" (amount of data) for sender to send before next ack
 - interactive service: higher frequency of buffer flush, send when deadline reached or buffer reaches MTU
 - retransmission of lost packets
 - buffering of incoming packets to preserve order and flow
 - checksum on header and data

Internet protocols (14)

- Domain names
- DNS
 - distributed data
 - each DNS server keeps track of part of the hierarchy
 - unresolved requests are sent to servers higher in the hierarchy
Internet protocols (15)

- Firewalls
 - monitor and filter communication
 - controlling what services are available to the outside
 - controlling the use of services
 - controlling internal users access to the outside
- Filtering at different protocol levels
 - IP packet filtering: addresses, ports...
 - TCP gateway: check for correctness in TCP connections
 - e.g., are they partially opened and never used (why?)
 - Application-level gateway: proxy for applications
 - no direct communication between the inside and outside
 - e.g., smtp proxy can check addresses, content...

Internet protocols (16)

- Bastion (tcp/ application filter)
- C): two router filters
 - Access to web/ftp server, but not LAN
 - Hide internal IP addresses
 - Bastion has the mapping
 - Second router is the second IP filter (invisible to the outside)

Internet protocols (17)

- Virtual Private Network (VPN)
 - extending a secured internal network to an external unsecured host
 - e.g. IP'Sec tunneling through IP

Network Case Studies (1): Ethernet and WiFi

<table>
<thead>
<tr>
<th>IEEE No.</th>
<th>Name</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.3</td>
<td>Ethernet</td>
<td>CSMA/CD Networks (Ethernet)</td>
<td>[IEEE 1985a]</td>
</tr>
<tr>
<td>802.4</td>
<td>Token Bus Networks</td>
<td></td>
<td>[IEEE 1985b]</td>
</tr>
<tr>
<td>802.5</td>
<td>Token Ring Networks</td>
<td></td>
<td>[IEEE 1985c]</td>
</tr>
<tr>
<td>802.6</td>
<td>Metropolitan Area Networks</td>
<td></td>
<td>[IEEE 1994]</td>
</tr>
<tr>
<td>802.11</td>
<td>WiFi</td>
<td>Wireless Local Area Networks</td>
<td>[IEEE 1999]</td>
</tr>
<tr>
<td>802.15.1</td>
<td>Bluetooth</td>
<td>Wireless Personal Area Networks</td>
<td>[IEEE 2002]</td>
</tr>
<tr>
<td>802.15.4</td>
<td>ZigBee</td>
<td>Wireless Sensor Networks</td>
<td>[IEEE 2003]</td>
</tr>
<tr>
<td>802.16</td>
<td>WiMAX</td>
<td>Wireless Metropolitan Area Network</td>
<td>[IEEE 2004a]</td>
</tr>
</tbody>
</table>

Network Case Studies (2): Ethernet

- Ethernet, CSMA/CD, IEEE 802.3
 - Xerox Palo Alto Research Center (PARC), 1973, 3Mbps
 - 10,100,1000 Mbps
 - extending a segment: hubs and repeaters
 - connecting segments: switches and bridges
 - Contention bus
 - Packet/frame format
 - preamble (7 bytes): hardware timing
 - start frame delimiter (1)
 - dest addr (6)
 - src addr (6)
 - length (2)
 - data: 46 - 1500 bytes: min total becomes 64 bytes, max total is 1518
 - checksum (4): dropped if incorrect

Network Case Studies (3)

- Carrier Sensing Multiple Access / Collision Detection (CSMA/CD)
 - CS: listen before transmitting, transmit only when no traffic
 - MA: more than one can transmit
 - CD: collision detected when signals transmitted are not the same as those received (listen to its own transmission)
 - After detection of a collision
 - send jamming signal
 - wait for a random period before retransmitting
 - T (Tau): time to reach the farthest station
 - When is the collision detected?
 - A and B send at the same time
 - A sends, B sends within T seconds
 - A sends, B sends between T and 2T seconds
 - A sends, B sends after 2T seconds
 - Minimum length of packet for collision detection:
 - packet length > 2T, between T and 2T, and < T?
Network Case Studies (4)

- Physical implementation:
 - \(R \times B \times L \)
 - \(R \): data rate in Mbps
 - \(B \): medium signaling type: baseband [one channel] or broadband [multiple channels]
 - \(L \): max segment length in 100meters or T (twisted pair cable, hierarchy of hubs)

Network Case Studies (5): Ranges and speeds

<table>
<thead>
<tr>
<th></th>
<th>10Base5</th>
<th>10BaseT</th>
<th>100BaseT</th>
<th>1000BaseT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate</td>
<td>10 Mbps</td>
<td>10 Mbps</td>
<td>100 Mbps</td>
<td>1000 Mbps</td>
</tr>
<tr>
<td>Max. segment lengths:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twisted wire (UTP)</td>
<td>100 m</td>
<td>100 m</td>
<td>100 m</td>
<td>25 m</td>
</tr>
<tr>
<td>Coaxial cable (STP)</td>
<td>500 m</td>
<td>500 m</td>
<td>500 m</td>
<td>25 m</td>
</tr>
<tr>
<td>Multi-mode fibre</td>
<td>2000 m</td>
<td>2000 m</td>
<td>500 m</td>
<td>500 m</td>
</tr>
<tr>
<td>Mono-mode fibre</td>
<td>25000 m</td>
<td>25000 m</td>
<td>20000 m</td>
<td>2000 m</td>
</tr>
</tbody>
</table>

Network Case Studies (6): WiFi

- IEEE 802.11 wireless LAN
 - up to 150m and 54Mbps
 - access point (base station) to land wires
 - Ad hoc network—no specific access points, "on the fly" network among machines in the neighborhood
 - Radio Frequency (2.4, 5GHz band) or infra-red

Network Case Studies (7): Problems with wireless CSMA/CD

- Hidden station: not able to detect another station is transmitting
 - A can't see D, or vice versa
- Fading: signals weaken, out of range
 - A and C are out of range from each other
- Collision masking: stronger signals could hide others
 - A and C are out of range from each other, both transmit, collide, can't detect collision, Access point gets garbage

Network Case Studies (8)

- Carrier sensing multiple access with collision avoidance (CSMA/CA)
 - reserving slots to transmit
 - if no carrier signal
 - medium is available,
 - out-of-range station requesting a slot, or
 - out-of-range station using a slot

Network Case Studies (9)

- Steps
 1. Request to send (RTS) from sender to receiver, specify duration
 2. Clear to send (CTS) in reply
 3. in-range stations see the RTS and/or CTS and its duration
 4. in-range stations stop transmitting
 5. acknowledgement from the receiver
- Hidden station & Fading: CTS, need permission to transmit
- RTS and CTS are short, don't usually collide; random back off if collision detected
- Should have no collisions, send only when a slot is reserved