
1

Distributed objects and remote
invocation

From Coulouris, Dollimore and Kindberg
Distributed Systems:

Concepts and Design
Edition 4, © Addison-Wesley 2005

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Middleware layers

Applications

Middleware
layersRequest reply protocol

External data representation

Operating System

RMI, RPC and events

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Object Communication (1):

aDistributed objects
` state: values of its instances variables
` actions: accessed only by its own methods

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Object communication (2):

aLocal: within the same process
aRemote: difference processes (could be on different

machines)

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Object communication (3):

aRemote object reference
`accessing the remote object
`identifier throughout a distributed system
`can be passed as arguments

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Object communication (4):

aRemote interface
`specifying which methods can be invoked remotely
`name, arguments, return type
`IDL

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Object communication (5): CORBA IDL example

// In file Person.idl
struct Person {

string name;
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Object communication (6):

aActions
`Needs remote object reference
`Calling of methods of objects in another process/host
`Remote objects might have methods for instantiation

(hence remote instantiation)

C

NM

K
invocation
remote

invocation
remote

L

instantiate instantiate

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Object communication (7):

aGarbage collection
`local garbage collector
`additional module to coordinate

aExceptions
`unexpected events or errors
`more and different exceptions from local methods

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Design Issues (1): Invocation Semantics

aHandling errors
`retry request?
`duplicate filtering?
`retransmission of results?

aSemantics
`Maybe
`At least once
`At most once

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Design Issues (2): Invocation semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Design Issues (3): Transparency

a like a local call
`marshalling/unmarshalling
`locating remote objects
`accessing/syntax

a latency
amore likely to fail
aerrors/exceptions: failure of the network? server?

hard to tell
aconsistency on the remote machine:
`Argus: incomplete transactions, abort, restore states [as if

the call was never made]

3

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Design Issues (4): Transparency

asyntax might need to be different to handle different
local vs remote errors/exceptions (e.g. Argus)

aaffects IDL design
acurrent consensus
`syntax is transparent
`different interfaces (e.g., Java: implement Remote

interface, RemoteExceptions)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (1):

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remoteclient server

servant

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (2):

aCommunication module
`request-reply: message type, requestID, remote object

reference
`implements specific invocation semantics
`selects the dispatcher, passes on local reference from

remote reference module, return request

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (3):

aRemote reference module
`translating between local and remote object references
`remote object table

⌧remote objects held by the process (B on server)
⌧local proxy (B on client)

`remote object (first time): add to the table, create proxy

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (4):

a RMI software
`Proxy: behaves like a local object, but represents the remote object
`Dispatcher: look at the methodID and call the corresponding method in

the skeleton
`Skeleton: implements the method

aGeneration of proxies, dispatchers and skeletons
`IDL (RMI) compiler

a Dynamic invocation
`Proxies are static—interface complied into client code
`Dynamic—interface available during run time

⌧Generic invocation; more info in “Interface Repository” (COBRA)
⌧Dynamic loading of classes (Java RMI)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (5):

a Server initialization
`Server creates the first object for remote access
`Usually clients are not allowed to create servers

a Binder: locating service/object by name
`Table mapping for names and remote object references

a Server threads
`concurrency

4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (6):

aactivation of remote objects
`many server objects, all running?
`active and passive status

⌧active: available for invocation in a running process
⌧passive: not running, state is stored on disk

`Activation
⌧create an active object from a passive object
⌧register the new active object

`Java RMI—objects can be activatable
`similar to inetd

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (7):

apersistent object stores
`stored in marshaled from on disk for retrieval
`saved those that were modified
`persistent or not:

⌧persistent root: any descendent objects (reachable from the root) are
persistent (eg. persistent Java, PerDiS)

⌧certain classes are declared persistent (eg. Arjuna system)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (8):

aObject location
`ip address, port #, …
`location service for migratable objects

⌧map remote object references to their probable current locations
(Clouds and Emerald systems)

⌧Cache/broadcast scheme (similar to ARP)
• Cache locations
• If not in cache, broadcast to find it

⌧Improvement: forwarding (similar to mobile IP)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

RMI Implementation (9): Distributed garbage collection

a Reference count
a Java's approach

` the server of an object (B) keeps track of proxies
` addRef(B) is called when a proxy is created for a remote object
` addRef(B) tells the server to add an entry
` when the local host's garbage collector removes the proxy
` removeRef(B) tells the server to remove the entry
` when no entries for object B, the object on server is deallocated

a Race condition
` removeRef(B) from client X
` addRef(B) from client Y

a Communication failures
` addRef() didn't return successfully
` removeRef() will be issued

a Client process failures
` leases from server
` renew before expiration
` entry removed if not renewed before expiration

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Remote Procedure Call (1):

aat-least-once or at-most-once semantics
aclient: "stub" instead of "proxy" (same function,

different names)
`local call, marshal arguments, communicate the request

aserver:
`dispatcher
`"stub": unmarshall arguments, communicate the results

back

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Remote Procedure Call (2)

client

Request

Reply

CommunicationCommunication
modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

5

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Sun RPC (1):

a Client-server comm in the SUN NFS (network file system)
a Also called ONC (Open Network Computing) RPC
a In other unix OS as well
a UDP or TCP
a Interface Definition Language (IDL)

` initially XDR is for data representation, extended to be IDL
` less modern than CORBA IDL and Java

⌧program numbers instead of interface names
⌧procedure numbers instead of procedure names
⌧single input parameter (structs)

a rpcgen: compiler for XDR
`client stub
`server main procedure, dispatcher, and server stub
`XDR marshalling, unmarshaling

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Sun RPC (2): Sun XDR

const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
version VERSION {

void WRITE(writeargs)=1; 1
Data READ(readargs)=2; 2

}=2;
} = 9999;

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Sun RPC (3):

abinding (registry)
`local binder--portmapper
`server registers its program/version/port numbers with

portmapper
`client contacts the portmapper at a fixed port with

program/version numbers to get the server port
`different instances of the same service can be run on

different computers--different ports
aauthentication
`request and reply have additional fields
`unix style (uid, gid), shared key for signing, Kerberos

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Java RMI (1): Remote interface ShapeList

import java.rmi.*;
import java.util.Vector;
public interface Shape extends Remote {

int getVersion() throws RemoteException;
GraphicalObject getAllState() throws RemoteException; 1

}
public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2
Vector allShapes() throws RemoteException;
int getVersion() throws RemoteException;

}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Java RMI (2): ShapeListServant implements
interface ShapeList

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;
public class ShapeListServant extends UnicastRemoteObject implements ShapeList {

private Vector theList; // contains the list of Shapes 1
private int version;
public ShapeListServant()throws RemoteException{...}
public Shape newShape(GraphicalObject g) throws RemoteException { 2

version++;
Shape s = new ShapeServant(g, version); 3
theList.addElement(s);
return s;

}
public Vector allShapes()throws RemoteException{...}
public int getVersion() throws RemoteException { ... }

}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Java RMI (3): Server main method

import java.rmi.*;
public class ShapeListServer{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
try{

ShapeList aShapeList = new ShapeListServant(); 1
Naming.rebind("Shape List", aShapeList); 2
System.out.println("ShapeList server ready");

}catch(Exception e) {
System.out.println("ShapeList server main " + e.getMessage());}

}
}

6

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Java RMI (4): client of ShapeList

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;
public class ShapeListClient{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
ShapeList aShapeList = null;
try{

aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1
Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());
}catch(Exception e) {System.out.println("Client: " + e.getMessage());}
}

}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Java RMI (5): Java RMIregistry (port 1099)

void rebind (String name, Remote obj)
This method is used by a server to register the identifier of a remote object by
name, as shown in Figure 15.13, line 3.

void bind (String name, Remote obj)
This method can alternatively be used by a server to register a remote object
by name, but if the name is already bound to a remote object reference an
exception is thrown.

void unbind (String name, Remote obj)
This method removes a binding.

Remote lookup(String name)
This method is used by clients to look up a remote object by name, as shown
in Figure 15.15 line 1. A remote object reference is returned.

String [] list()
This method returns an array of Strings containing the names bound in the
registry.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Java RMI (6):

aCallbacks
`server notifying the clients of events

⌧Initiated by server [opposite to initiated by client]

`why?
⌧polling from clients increases overhead on server
⌧not up-to-date for clients to inform users

`how
⌧remote object (callback object) on client for server to call
⌧client tells the server about the callback object, server put the client on a

list
⌧server call methods on the callback object when events occur

`client might forget to remove itself from the list
⌧lease--client expire

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Events and notifications (1):

a events of changes/updates...
a notifications of events to parties interested in the events
a publish events to send
a subscribe events to receive
amain characteristics in distributed event-based systems:

`a way to standardize communication in heterogeneous systems (not
designed to communicate directly)

`asynchronous communication (no need for a publisher to wait for each
subscriber--subscribers come and go)

a event types
`each type has attributes (information in it)
`subscription filtering: focus on certain values in the attributes (e.g.

"buy" events, but only "buy car" events)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Events and Notifications (2): [subscribers: dealers in
stock exchange]

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer
Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer
Notification

Notification

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Events and notifications (3):

a Distributed event notification
`decouple publishers from subscribers via an event service (manager)

a Architecture:
`object of interest (usually changes in states, e.g. temperature, price)
`event
`notification
`subscriber
`observer object (proxy) [reduce work on the object of interest]

⌧forwarding
⌧filtering of events types and content/attributes
⌧patterns of events (occurrence of multiple events, not just one) [e.g. drop in

temperature for more than five degrees three times in a row]
⌧mailboxes (notifications in batches, subscriber might not be ready)

`publisher (object of interest or observer object)
⌧generates event notifications

7

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Events and Notifications (4):

subscriberobserverobject of interest

Event service

object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

[3: observer checks for changes; object of interest is not part of the event service]

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Events and Notifications (5)

aJini
`event generators (publishers)
`remote event listeners (subscribers)
`remote events (events)
`third-party agents (observers)

