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Object Communication (1):

aDistributed objects
` state: values of its instances variables
` actions: accessed only by its own methods
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Object communication (2):

aLocal: within the same process
aRemote: difference processes (could be on different 

machines)
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Object communication (3): 

aRemote object reference
`accessing the remote object
`identifier throughout a distributed system
`can be passed as arguments
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Object communication (4):

aRemote interface
`specifying which methods can be invoked remotely 
`name, arguments, return type
`IDL 
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Object communication (5): CORBA IDL example

// In file Person.idl
struct Person {

string name; 
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};
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Object communication (6):

aActions
`Needs remote object reference
`Calling of methods of objects in another process/host
`Remote objects might have methods for instantiation 

(hence remote instantiation)
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Object communication (7):

aGarbage collection
`local garbage collector
`additional module to coordinate

aExceptions
`unexpected events or errors
`more and different exceptions from local methods
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RMI Design Issues (1): Invocation Semantics

aHandling errors
`retry request?
`duplicate filtering?
`retransmission of results?

aSemantics
`Maybe
`At least once
`At most once
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RMI Design Issues (2): Invocation semantics

Fault tolerance measures Invocation 
semantics

Retransmit request 
message

Duplicate 
filtering

Re-execute procedure 
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes
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At-least-once

Maybe
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RMI Design Issues (3): Transparency

a like a local call
`marshalling/unmarshalling
`locating remote objects
`accessing/syntax

a latency
amore likely to fail
aerrors/exceptions: failure of the network? server?  

hard to tell
aconsistency on the remote machine: 
`Argus: incomplete transactions, abort, restore states  [as if 

the call was never made]
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RMI Design Issues (4): Transparency

asyntax might need to be different to handle different 
local vs remote errors/exceptions (e.g. Argus)

aaffects IDL design
acurrent consensus
`syntax is transparent
`different interfaces (e.g., Java: implement Remote 

interface, RemoteExceptions)
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RMI Implementation (1):
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Requestproxy for B
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RMI Implementation (2):

aCommunication module
`request-reply: message type, requestID, remote object 

reference
`implements specific invocation semantics
`selects the dispatcher, passes on local reference from 

remote reference module, return request
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RMI Implementation (3):

aRemote reference module
`translating between local and remote object references
`remote object table

⌧remote objects held by the process (B on server)
⌧local proxy (B on client)

`remote object (first time): add to the table, create proxy

Instructor’s Guide for  Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design   Edn. 4   
© Pearson Education 2005 

RMI Implementation (4):

a RMI software
`Proxy: behaves like a local object, but represents the remote object
`Dispatcher: look at the methodID and call the corresponding method in 

the skeleton
`Skeleton: implements the method

aGeneration of proxies, dispatchers and skeletons
`IDL (RMI) compiler

a Dynamic invocation
`Proxies are static—interface complied into client code
`Dynamic—interface available during run time

⌧Generic invocation; more info in “Interface Repository” (COBRA)
⌧Dynamic loading of classes (Java RMI)
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RMI Implementation (5):

a Server initialization
`Server creates the first object for remote access
`Usually clients are not allowed to create servers

a Binder: locating service/object by name
`Table mapping for names and remote object references

a Server threads
`concurrency
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RMI Implementation (6):

aactivation of remote objects
`many server objects, all running?
`active and passive status

⌧active: available for invocation in a running process
⌧passive: not running, state is stored on disk

`Activation
⌧create an active object from a passive object
⌧register the new active object

`Java RMI—objects can be activatable
`similar to inetd
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RMI Implementation (7):

apersistent object stores
`stored in marshaled from on disk for retrieval 
`saved those that were modified
`persistent or not:

⌧persistent root: any descendent objects (reachable from the root) are 
persistent (eg. persistent Java, PerDiS)

⌧certain classes are declared persistent (eg. Arjuna system)
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RMI Implementation (8):

aObject location
`ip address, port #, …
`location service for migratable objects

⌧map remote object references to their probable current locations
(Clouds and Emerald systems)

⌧Cache/broadcast scheme (similar to ARP)
• Cache locations
• If not in cache, broadcast to find it

⌧Improvement: forwarding (similar to mobile IP)
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RMI Implementation (9): Distributed garbage collection

a Reference count
a Java's approach

` the server of an object (B) keeps track of proxies
` addRef(B) is called when a proxy is created for a remote object
` addRef(B) tells the server to add an entry
` when the local host's garbage collector removes the proxy
` removeRef(B) tells the server to remove the entry
` when no entries for object B, the object on server is deallocated

a Race condition
` removeRef(B) from client X
` addRef(B) from client Y

a Communication failures
` addRef() didn't return successfully
` removeRef() will be issued

a Client process failures
` leases from server
` renew before expiration
` entry removed if not renewed before expiration
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Remote Procedure Call (1):

aat-least-once or at-most-once semantics
aclient: "stub" instead of "proxy" (same function, 

different names)
`local call, marshal arguments, communicate the request

aserver: 
`dispatcher
`"stub": unmarshall arguments, communicate the results 

back
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Remote Procedure Call (2)

client 

Request

Reply

CommunicationCommunication
modulemodule dispatcher

service 

client stub server stub
procedure procedure

client process server process 

procedureprogram 
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Sun RPC (1):

a Client-server comm in the SUN NFS (network file system)
a Also called ONC (Open Network Computing) RPC
a In other unix OS as well
a UDP or TCP
a Interface Definition Language (IDL)

` initially XDR is for data representation, extended to be IDL 
` less modern than CORBA IDL and Java

⌧program numbers instead of interface names
⌧procedure numbers instead of procedure names
⌧single input parameter (structs)

a rpcgen: compiler for XDR
`client stub
`server main procedure, dispatcher, and server stub
`XDR marshalling, unmarshaling
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Sun RPC (2): Sun XDR

const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
version VERSION {

void WRITE(writeargs)=1; 1
Data READ(readargs)=2; 2

}=2;
} = 9999;
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Sun RPC (3):

abinding (registry)
`local binder--portmapper
`server registers its program/version/port numbers with 

portmapper
`client contacts the portmapper at a fixed port with 

program/version numbers to get the server port
`different instances of the same service can be run on 

different computers--different ports
aauthentication
`request and reply have additional fields
`unix style (uid, gid), shared key for signing, Kerberos
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Java RMI (1): Remote interface ShapeList

import java.rmi.*;
import java.util.Vector;
public interface Shape extends Remote {

int getVersion() throws RemoteException;
GraphicalObject getAllState() throws RemoteException; 1

}
public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2
Vector allShapes() throws RemoteException;
int getVersion() throws RemoteException;

}
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Java RMI (2): ShapeListServant implements 
interface ShapeList

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;
public class ShapeListServant extends UnicastRemoteObject implements ShapeList {

private Vector theList; // contains the list of Shapes    1
private int version;
public ShapeListServant()throws RemoteException{...}
public Shape newShape(GraphicalObject g) throws RemoteException { 2

version++; 
Shape s = new ShapeServant(g, version); 3
theList.addElement(s);                
return s;

}
public Vector allShapes()throws RemoteException{...}
public int getVersion() throws RemoteException { ... }

}
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Java RMI (3): Server main method

import java.rmi.*;
public class ShapeListServer{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
try{

ShapeList aShapeList = new ShapeListServant(); 1
Naming.rebind("Shape List", aShapeList ); 2
System.out.println("ShapeList server ready");

}catch(Exception e) {
System.out.println("ShapeList server main " + e.getMessage());}

}
}
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Java RMI (4): client of ShapeList

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;
public class ShapeListClient{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
ShapeList aShapeList = null;
try{

aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1
Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());
}catch(Exception e) {System.out.println("Client: " + e.getMessage());}
}

}
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Java RMI (5): Java RMIregistry (port 1099)

void rebind (String name, Remote obj)
This method is used by a server to register the identifier of a remote object by 
name, as shown in  Figure 15.13, line 3. 

void bind (String name, Remote obj)
This method can alternatively be used by a server to register a remote object 
by name, but if the name is already bound to a remote object reference an 
exception is thrown.

void unbind (String name, Remote obj)
This method removes a binding.

Remote lookup(String name)
This method is used by clients to look up a remote object by name, as shown 
in Figure 15.15  line 1. A remote object reference is returned.

String [] list()
This method returns an array of Strings containing the names bound in the 
registry.
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Java RMI (6):

aCallbacks
`server notifying the clients of events

⌧Initiated by server [opposite to initiated by client]

`why?
⌧polling from clients increases overhead on server
⌧not up-to-date for clients to inform users

`how 
⌧remote object (callback object) on client for server to call
⌧client tells the server about the callback object, server put the client on a 

list
⌧server call methods on the callback object when events occur

`client might forget to remove itself from the list
⌧lease--client expire
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Events and notifications (1):

a events of changes/updates...
a notifications of events to parties interested in the events
a publish events to send
a subscribe events to receive 
amain characteristics in distributed event-based systems:

`a way to standardize communication in heterogeneous systems (not
designed to communicate directly)

`asynchronous communication (no need for a publisher to wait for each 
subscriber--subscribers come and go)

a event types
`each type has attributes (information in it)
`subscription filtering: focus on certain values in the attributes (e.g. 

"buy" events, but only "buy car" events)
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Events and Notifications (2): [subscribers: dealers in 
stock exchange]

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer
Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer
Notification

Notification
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Events and notifications (3):

a Distributed event notification
`decouple publishers from subscribers via an event service (manager)

a Architecture:
`object of interest (usually changes in states, e.g. temperature, price)
`event
`notification
`subscriber
`observer object (proxy) [reduce work on the object of interest]

⌧forwarding
⌧filtering of events types and content/attributes
⌧patterns of events (occurrence of multiple events, not just one) [e.g. drop in 

temperature for more than five degrees three times in a row]
⌧mailboxes (notifications in batches, subscriber might not be ready)

`publisher (object of interest or observer object)
⌧generates event notifications
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Events and Notifications (4):

subscriberobserverobject of interest

Event service

object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

[3: observer checks for changes; object of interest is not part of the event service]
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Events and Notifications (5)

aJini
`event generators (publishers)
`remote event listeners (subscribers)
`remote events (events)
`third-party agents (observers)


