
CSE 2010, HW6
Due Tue Apr 15 at the start of your lab section; Canvas:

HW6
Due Tue Apr 15 at the end of your lab section; Canvas:

HW6a

When a user searches for a person (“target”) on an online
social network, the user might want to be a friend of the tar-
get, but the user is not currently a friend of the target. For
example, a user would like Donald Trump to be his/her friend,
but the user is not a friend of Donald Trump. How would you
design a system to help the user?

HW6 explores graph algorithms that can help the user find
mutual friends or “intermediate” friends of the user and the
target. A mutual friend is someone who is both a friend of the
user and the target. For example, if areFriends(user, Jon) and
areFriends(Jon, target), Jon is a mutual friend. An interme-
diate friend is someone who is a friend of the user and is indi-
rectly connected to the target in the social network. For exam-
ple, if areFriends(user, Jon), areFriends(Jon, x), areFriends(x,
y), ..., and areFriends(z, target), Jon is an intermediate friend.
Naturally, we also desire the intermediate friend who is clos-
est to the target. The user can ask the mutual/intermediate
friend to introduce the user to the target. Moreover, users can
add friendships :-) and remove friendships :-(.

To find mutual or intermediate friends, we can use the
breadth-first search algorithm. The algorithm allows us to
find the shortest path from the user to the target. If the path
is of length 2, a mutual friend exists. If the path length is more
than 2, an intermediate friend exists. Note that multiple paths
of the same length might exist and a path might not exist at
all. If at least one shortest path exists, the system will report
the shortest path(s) and the mutual/intermediate friend(s).

Friends (adjacent vertices) are visited in alphabetical or-
der (to produce unique output for easier testing/debugging).
We will be evaluating your submission on code01.fit.edu;
we recommend you to ensure that your submission runs on
code01.fit.edu. To preserve invisible characters, we strongly
recommend you to download and save, NOT copy and paste,
input data files.

Extra Credit 1: (10 points) Separate submission via
HW6Extra1.java. Similar to regular credit, except if ties ex-
ist, multiple shortest paths are reported (in the order when
adjacent vertices are visited alphabetically).

Extra Credit 2: (10 points) Separate submission via
HW6Extra2.java. Not all friendships are equally close. Closer
friendships are more desirable in finding the target. To esti-
mate how close a friendship is, we can measure the frequency
of communication (e.g. texts, email, calls, ...) between two
users. Frequency of communication in HW6 is the average
number of days between two successive communications and
is an integer (for simplicity). Using Dijkstra’s shortest path al-
gorithm, we can find the mutual or intermediate friend on the
shortest path from the user to the target. Similar to regular
credit, report the first shortest path found—adjacent vertices
are visited alphabetically.

Extra Credit 3: (10 points) Separate submission via
HW6Extra3.java. Similar to Extra Credit 1, except if ties
exist, multiple shortest paths are reported (in the order when
adjacent vertices are visited alphabetically).

Input: Command-line argument for HW6.java [and Extra
Credit] is:

• filename of initial friendships—the first line has the num-
ber of users, each of the following lines has two users who
are friends (followed by frequency of communcation for
Extra Credits 2 and 3)

• filename of actions—possible actions (each on one line)
are:

– AddFriendship user1 user2 [frequency in Extra
Credits 2 and 3]

– RemoveFriendship user1 user2

– WantToBefriend user target

For simplicity, all the users are in the initial friendships and
the number of users does not change during the actions. As-
sume users are valid in the actions.

Output: Output goes to the standard output (screen):

1. AddFriendship user1 user2 (frequency in Extra Credit)
[ExistingFriendshipError]

2. RemoveFriendship user1 user2 [NoFriendshipError]

3. WantToBefriend user target [AlreadyAFriendError]
- Length of the shortest path: k
- Your mutual/intermediate friend is x.
- Path: user x y ... z target
or
- Sorry, none of your friends can help introduce you to
target.

Extra Credit 1: Only WantToBefriend is different with
possibly additional mutual/intermediate friends and paths.
The following 2 lines are repeated for each additional mu-
tual/intermediate friend:
- Your mutual/intermediate friend is x.
- Path: user x y ... z target

Extra Credits 2 and 3: Same as the corresponding output
for Regular Credit and Extra Credit 1.

Sample intput and output files are on the course website.

Submission: Submit HW6.java that has the main method
and other program files. Submissions for Individual and
GroupHelp have the same guidelines as HW1.

For Extra Credits, submit HW6Extra1.java,
HW6Extra2.java, and/or HW6Extra3.java that have the
main method and other program files. GroupHelp and late
submissions are not applicable.

Note the late penalty on the syllabus if you submit after the
due date and time as specified at the top of the assignment.

1


