(2,4) Trees
Multi-Way Search Tree

A multi-way search tree is an ordered tree such that

- Each internal node has at least two children and stores $d - 1$ key-element items (k_i, o_i), where d is the number of children.
- For a node with children $v_1 v_2 \ldots v_d$ storing keys $k_1 k_2 \ldots k_{d-1}$
 - keys in the subtree of v_1 are less than k_1
 - keys in the subtree of v_i are between k_{i-1} and k_i ($i = 2, \ldots, d - 1$)
 - keys in the subtree of v_d are greater than k_{d-1}
- The leaves store no items and serve as placeholders.
Multi-Way Inorder Traversal

- Extend traversal from binary trees
- Visit entry \((k_i, o_i)\) of node \(v\)
 - Between the recursive traversals of the subtrees of \(v\) rooted at children \(v_i\) (“left”) and \(v_{i+1}\) (“right”)
- Consequently, visit the keys in increasing order
Multi-Way Searching

- Similar to search in a binary search tree
- A each internal node with children \(v_1, v_2, \ldots, v_d \) and keys \(k_1, k_2, \ldots, k_{d-1} \)
 - \(k = k_i \) (\(i = 1, \ldots, d - 1 \)): the search terminates successfully
 - \(k < k_1 \): we continue the search in child \(v_1 \)
 - \(k_{i-1} < k < k_i \) (\(i = 2, \ldots, d - 1 \)): we continue the search in child \(v_i \)
 - \(k > k_{d-1} \): we continue the search in child \(v_d \)
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30
(2,4) Trees

A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties:

- **Node-Size Property**: every internal node has at most four children
- **Depth Property**: all the external nodes have the same depth

Depending on the number of children:
- an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

```
  10  15  24
 /     /
2 8    12
 |     /
|     18
|     /
27    32
```
Height of a (2,4) Tree

Theorem: A (2,4) tree storing \(n \) items has height \(O(\log n) \)

Proof (worst case is complete binary tree, heap):

- Let \(h \) be the height of a (2,4) tree with \(n \) items
- Since there are at least \(2^i \) items at depth \(i = 0, \ldots, h - 1 \) and no items at depth \(h \), we have
 \[
 n \geq 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1
 \]
- Thus, \(h \leq \log (n + 1) \)

Searching in a (2,4) tree with \(n \) items takes \(O(\log n) \) time
Insertion

We insert a new item \((k, o)\) at the parent \(v\) of the leaf reached by searching for \(k\)

- We preserve the depth property but
- We may cause an overflow (i.e., node \(v\) may become a 5-node)

Example: inserting key 30 causes an overflow
Overflow and Split

We handle an overflow at a 5-node v with a split operation:

- let $v_1 \ldots v_5$ be the children of v and $k_1 \ldots k_4$ be the keys of v
- node v is replaced nodes v' and v''
 - v' is a 3-node with keys $k_1 k_2$ and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
- key k_3 is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees
Pseudocode of Insertion

Algorithm put(k, o)
1. We search for key k to locate the insertion node v
2. We add the new entry (k, o) at node v
3. while overflow(v)
 if isRoot(v)
 create a new empty root above v
 $v \leftarrow split(v)$
Analysis of Insertion

Algorithm $\text{put}(k, o)$
1. We search for key k to locate the insertion node v
2. We add the new entry (k, o) at node v
3. while $\text{overflow}(v)$
 - if $\text{isRoot}(v)$
 - create a new empty root above v
 $v \leftarrow \text{split}(v)$

Let T be a (2,4) tree with n items
- Tree T has $O(\log n)$ height
- Step 1 takes $O(\log n)$ time because we visit $O(\log n)$ nodes
- Step 2 takes $O(1)$ time
- Step 3 takes $O(\log n)$ time because each split takes $O(1)$ time and we perform $O(\log n)$ splits

Thus, an insertion in a (2,4) tree takes $O(\log n)$ time
Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children.
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry.
- Example: to delete key 24, we replace it with 27 (inorder successor).

![Diagram of a (2,4) tree showing deletion of key 24 and replacement with key 27.](image.png)
Underflow and Fusion

Deleting an entry from a node \(v \) may cause an underflow
- Node \(v \) becomes a 1-node with one child and no keys

To handle an underflow at node \(v \) with parent \(u \), we consider two cases
- Case 1: the adjacent siblings of \(v \) are 2-nodes
 - Fusion operation: we merge \(v \) with an adjacent sibling \(w \) and move an entry from \(u \) to the merged node \(v' \)
 - After a fusion, the underflow may propagate to the parent \(u \)
Underflow and Transfer

To handle an underflow at node v with parent u, we consider two cases

Case 2: an adjacent sibling w of v is a 3-node or a 4-node

- Transfer operation:
 1. we move a child of w to v
 2. we move an item from u to v
 3. we move an item from w to u

- After a transfer, no underflow occurs
Analysis of Deletion

Let T be a (2,4) tree with n items

- Tree T has $O(\log n)$ height

In a deletion operation

- We visit $O(\log n)$ nodes to locate the node from which to delete the entry
- We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
- Each fusion and transfer takes $O(1)$ time

Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time
Comparison of Map Implementations

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>no ordered map methods, simple to implement</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>ordered map methods, simple to implement</td>
</tr>
<tr>
<td>Skip List</td>
<td>$\log n$ high prob.</td>
<td>$\log n$ high prob.</td>
<td>$\log n$ high prob.</td>
<td>ordered map methods, randomized insertion, simple to implement</td>
</tr>
<tr>
<td>AVL and (2,4) Tree</td>
<td>$\log n$ worst-case</td>
<td>$\log n$ worst-case</td>
<td>$\log n$ worst-case</td>
<td>ordered map methods, complex to implement</td>
</tr>
</tbody>
</table>