Presentation for use with the textbook Data Structures and
Algorithms in Java, 6t edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

N
N

Binary Search Trees

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees

N

Ordered Maps

N

#Keys are assumed to come from a total
order.

#Items are stored in order by their keys

#This allows us to support nearest
neighbor queries:
+ Item with largest key less than or equal to k

+ Item with smallest key greater than or equal
to k

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees 2

Ordered/Sorted Maps

#Sorted Array

s Insertion and deletion could move a lot of
entries

N

Skip Lists
= Keys could be duplicated in multiple levels

» Expected O(log n) time for search/get
» Not worst-case O(log n) time

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees

j Binary Search Trees

N

A binary search tree is a .
binary tree storing keys # An inorder traversal of a

(or key-value entries) at binary search trees
its internal nodes: visits the keys in

= Let u, v, and w be three increasing order
nodes such that

s U is in the left subtree of
v and

= W is in the right subtree

of v.

= We have
key(u) < key(v) < key(w)

External nodes do not
store items

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees 4

N

Search

© 2014 Goodrich, Tamassia, Goldwasser

To search for a key k, we
trace a downward path
starting at the root

The next node visited
depends on the comparison
of k with the key of the
current node

If we reach a leaf, the key
is not found
#® Example: get(4):
= Call TreeSearch(4,root)
The algorithms for nearest

neighbor queries are
similar

Algorithm TreeSearch(k, v)
if T.isExternal (v)
returnv
if k < key(v)
return TreeSearch(k, left(v))
else if k = key(v)
returnv
else { k > key(v) }

return TreeSearch(k, right(v))

Binary Search Trees

Insertion

To perform operation
put(k, 0), we search for key
k (using TreeSearch)

N

#® Assume k is not already in
the tree, and let w be the
leaf reached by the search

We insert k at node w and
expand w into an internal
node

#® Example: insert 5

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees 6

Deletion (one child is a leaf)

To perform operation
remove(k), we search for
key k

N

Assume key Kk is in the tree,

and let let v be the node
storing k

If node v has a leaf child w,
we remove v and w from the
tree with operation
removeExternal(w), which
removes w and its parent

Example: remove 4

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees 7

Deletion (both children are not
leaves)

N

find the internal node w
that follows v in an inorder
traversal

copy key(w) into node v

remove node w and its left
child z (which must be a
leaf) by means of

operation
removeExternal(z)

#® Example: remove 3

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees 8

Deletion (both children are not
leaves)

N

find the internal node w
that follows v in an inorder
traversal Why?

copy key(w) into node v

remove node w and its left
child z (which must be a
leaf) by means of

operation
removeExternal(z)

#® Example: remove 3

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees 9

Performance

Consider an ordered
map with n items

BST of height h

N

= methods get, put and

= the space used is O(n)

remove take O(h) time

The height h is O(n) in

the worst case and
O(log n) in the best
case

© 2014 Goodrich, Tamassia, Goldwasser

Binary Search Trees

10

