Binary Search Trees
Ordered Maps

- Keys are assumed to come from a total order.
- Items are stored in order by their keys.
- This allows us to support nearest neighbor queries:
 - Item with largest key less than or equal to k
 - Item with smallest key greater than or equal to k
Ordered/Sorted Maps

Sorted Array
- Insertion and deletion could move a lot of entries

Skip Lists
- Keys could be duplicated in multiple levels
- Expected $O(\log n)$ time for search/get
 - Not worst-case $O(\log n)$ time
A binary search tree is a binary tree storing keys (or key-value entries) at its internal nodes:

- Let u, v, and w be three nodes such that
- u is in the left subtree of v and
- w is in the right subtree of v.
- We have $\text{key}(u) \leq \text{key}(v) \leq \text{key}(w)$

An inorder traversal of a binary search tree visits the keys in increasing order.

External nodes do not store items.
Search

- To search for a key k, we trace a downward path starting at the root.
- The next node visited depends on the comparison of k with the key of the current node.
- If we reach a leaf, the key is not found.
- Example: get(4):
 - Call TreeSearch(4, root)
- The algorithms for nearest neighbor queries are similar.

Algorithm $TreeSearch(k, v)$

```python
if T.isExternal(v):
    return v
if k < key(v):
    return TreeSearch(k, left(v))
else if k = key(v):
    return v
else:
    k > key(v) -> return TreeSearch(k, right(v))
```

© 2014 Goodrich, Tamassia, Goldwasser
Insertion

To perform operation put\((k, o)\), we search for key \(k\) (using TreeSearch)

Assume \(k\) is not already in the tree, and let \(w\) be the leaf reached by the search

We insert \(k\) at node \(w\) and expand \(w\) into an internal node

Example: insert 5
Deletion (one child is a leaf)

- To perform operation \(\text{remove}(k) \), we search for key \(k \).
- Assume key \(k \) is in the tree, and let \(v \) be the node storing \(k \).
- If node \(v \) has a leaf child \(w \), we remove \(v \) and \(w \) from the tree with operation \(\text{removeExternal}(w) \), which removes \(w \) and its parent.
- Example: remove 4
Deletion (both children are not leaves)

- find the internal node \(w \) that follows \(v \) in an inorder traversal
- copy \(\text{key}(w) \) into node \(v \)
- remove node \(w \) and its left child \(z \) (which must be a leaf) by means of operation \(\text{removeExternal}(z) \)
- Example: remove 3
Deletion (both children are not leaves)

- find the internal node w that follows v in an inorder traversal
- copy $\text{key}(w)$ into node v
- remove node w and its left child z (which must be a leaf) by means of operation $\text{removeExternal}(z)$
- Example: remove 3
Performance

- Consider an ordered map with n items
- BST of height h
 - The space used is $O(n)$
 - Methods `get`, `put` and `remove` take $O(h)$ time
- The height h is $O(n)$ in the worst case and $O(\log n)$ in the best case