
Binary Search Trees 1

Binary Search Trees

6

9 2

4 1 8

<

>

=

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Binary Search Trees 2

Ordered Maps

Keys are assumed to come from a total

order.

Items are stored in order by their keys

This allows us to support nearest

neighbor queries:

Item with largest key less than or equal to k

Item with smallest key greater than or equal

to k

© 2014 Goodrich, Tamassia, Goldwasser

Ordered/Sorted Maps

Sorted Array

 Insertion and deletion could move a lot of
entries

Skip Lists

 Keys could be duplicated in multiple levels

 Expected O(log n) time for search/get

 Not worst-case O(log n) time

© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees 3

Binary Search Trees 4

Binary Search Trees
A binary search tree is a
binary tree storing keys
(or key-value entries) at
its internal nodes:
 Let u, v, and w be three

nodes such that

 u is in the left subtree of
v and

 w is in the right subtree
of v.

 We have
key(u)  key(v)  key(w)

External nodes do not
store items

An inorder traversal of a
binary search trees
visits the keys in
increasing order

6

9 2

4 1 8

© 2014 Goodrich, Tamassia, Goldwasser

Binary Search Trees 5

Search

To search for a key k, we

trace a downward path
starting at the root

The next node visited
depends on the comparison
of k with the key of the

current node

If we reach a leaf, the key
is not found

Example: get(4):

 Call TreeSearch(4,root)

The algorithms for nearest
neighbor queries are
similar

Algorithm TreeSearch(k, v)

 if T.isExternal (v)

 return v

if k < key(v)

 return TreeSearch(k, left(v))

else if k = key(v)

 return v

else { k > key(v) }

 return TreeSearch(k, right(v))

6

9 2

4 1 8

<

>

=

© 2014 Goodrich, Tamassia, Goldwasser

Binary Search Trees 6

Insertion

To perform operation
put(k, o), we search for key
k (using TreeSearch)

Assume k is not already in
the tree, and let w be the
leaf reached by the search

We insert k at node w and
expand w into an internal
node

Example: insert 5

6

9 2

4 1 8

6

9 2

4 1 8

5

<

>

>

w

w

© 2014 Goodrich, Tamassia, Goldwasser

Binary Search Trees 7

Deletion (one child is a leaf)

To perform operation
remove(k), we search for
key k

Assume key k is in the tree,
and let let v be the node
storing k

If node v has a leaf child w,
we remove v and w from the

tree with operation
removeExternal(w), which
removes w and its parent

Example: remove 4

6

9 2

4 1 8

5

v

w

6

9 2

5 1 8

<

>

© 2014 Goodrich, Tamassia, Goldwasser

Binary Search Trees 8

Deletion (both children are not
leaves)

find the internal node w

that follows v in an inorder

traversal

copy key(w) into node v

remove node w and its left
child z (which must be a

leaf) by means of
operation
removeExternal(z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

© 2014 Goodrich, Tamassia, Goldwasser

Binary Search Trees 9

Deletion (both children are not
leaves)

find the internal node w

that follows v in an inorder

traversal

copy key(w) into node v

remove node w and its left
child z (which must be a

leaf) by means of
operation
removeExternal(z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

© 2014 Goodrich, Tamassia, Goldwasser

Why?

Binary Search Trees 10

Performance
Consider an ordered
map with n items

BST of height h

 the space used is O(n)

 methods get, put and
remove take O(h) time

The height h is O(n) in

the worst case and
O(log n) in the best

case

© 2014 Goodrich, Tamassia, Goldwasser

