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Ordered Maps 

Keys are assumed to come from a total 

order. 

Items are stored in order by their keys 

This allows us to support nearest 

neighbor queries: 

Item with largest key less than or equal to k 

Item with smallest key greater than or equal 

to k 
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Ordered/Sorted Maps 

Sorted Array 

 Insertion and deletion could move a lot of 
entries 

 

Skip Lists 

 Keys could be duplicated in multiple levels 

 Expected O(log n) time for search/get 

 Not worst-case O(log n) time 
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Binary Search Trees 
A binary search tree is a 
binary tree storing keys 
(or key-value entries) at 
its internal nodes: 
 Let u, v, and w be three 

nodes such that  

 u is in the left subtree of 
v and  

 w is in the right subtree 
of v.  

 We have  
key(u)  key(v)  key(w) 

External nodes do not 
store items 

An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order 
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Search 

To search for a key k, we 

trace a downward path 
starting at the root 

The next node visited 
depends on the comparison 
of k with the key of the 

current node 

If we reach a leaf, the key 
is not found 

Example: get(4): 

 Call TreeSearch(4,root) 

The algorithms for nearest 
neighbor queries are 
similar 

Algorithm TreeSearch(k, v)  

 if T.isExternal (v) 

 return v 

if k < key(v) 

 return TreeSearch(k, left(v)) 

else if k = key(v) 

 return v 

else { k > key(v) } 

 return TreeSearch(k, right(v)) 
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Insertion 

To perform operation 
put(k, o), we search for key 
k (using TreeSearch) 

Assume k is not already in 
the tree, and let w be the 
leaf reached by the search 

We insert k at node w and 
expand w into an internal 
node 

Example: insert 5 
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Deletion (one child is a leaf) 

To perform operation 
remove(k), we search for 
key k 

Assume key k is in the tree, 
and let let v be the node 
storing k 

If node v has a leaf child w, 
we remove v and w from the 

tree with operation 
removeExternal(w), which 
removes w and its parent 

Example: remove 4 
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Deletion (both children are not 
leaves) 

find the internal node w 

that follows v in an inorder 

traversal 

copy key(w) into node v 

remove node w and its left 
child z (which must be a 

leaf) by means of 
operation 
removeExternal(z) 

Example: remove 3 

 

3 

1 

8 

6 9 

5 

v 

w 

z 

2 

5 

1 

8 

6 9 

v 

2 

© 2014 Goodrich, Tamassia, Goldwasser 



Binary Search Trees 9 

Deletion (both children are not 
leaves) 

find the internal node w 

that follows v in an inorder 

traversal 

copy key(w) into node v 

remove node w and its left 
child z (which must be a 

leaf) by means of 
operation 
removeExternal(z) 

Example: remove 3 
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Performance 
Consider an ordered 
map with n items 

BST of height h 

 the space used is O(n) 

 methods get, put and 
remove take O(h) time 

The height h is O(n) in 

the worst case and 
O(log n) in the best 

case 

© 2014 Goodrich, Tamassia, Goldwasser 


