Bucket-Sort and Radix-Sort
Bucket-Sort

Let be S be a sequence of n (key, element) items
- with keys in the range $[0, N - 1]$

keys as indices into an auxiliary array B of sequences (buckets)

Phase 1: Empty sequence S by moving each entry (k, o) into its bucket $B[k]$

Phase 2: For $i = 0, ..., N - 1$, move the entries of bucket $B[i]$ to the end of sequence S
Example

Key range [0, 9]

Phase 1

Phase 2
Bucket-Sort

Algorithm bucketSort(S):

Input: Sequence S of entries with integer keys in the range \([0, N - 1]\)

Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of N sequences, each of which is initially empty

for each entry e in S do // Phase 1
 k = the key of e
 remove e from S
 insert e at the end of bucket B[k]

for i = 0 to N−1 do // Phase 2
 for each entry e in B[i] do
 remove e from B[i]
 insert e at the end of S
Performance Analysis

- n items, N buckets

- Time Complexity
 - Phase 1 takes $O(n)$ time
 - Phase 2 takes $O(n + N)$ time

- $O(n + N)$ time

- Linear time, faster than $O(n \log n)$!
 - What is the catch?
Performance Analysis

n items, N buckets

Time Complexity
- Phase 1 takes $O(n)$ time
- Phase 2 takes $O(n + N)$ time

$O(n + N)$ time

Linear time, faster than $O(n \log n)$!
- What is the catch?
- $O(n + N)$ space, not $O(n)$ space
 - What if N buckets $>> n$ items?
Properties

Key-type Property
- The keys are used as indices into an array and cannot be arbitrary objects

Stable Sort Property
- The relative order of any two items with the same key is preserved (before and after sorting)
- Consider prices of a product and zip codes of the corresponding stores
 - Each zip code has multiple stores
 - Given a list of sorted prices
 - Sorting on zip codes doesn’t affect the order of prices
Extensions

Integer keys in the range $[a, b]$

- Put entry (k, o) into bucket $B[k - a]$
Extensions

- **Integer keys in the range** \([a, b]\)
 - Put entry \((k, o)\) into bucket \(B[k - a]\)

- **String keys from a set** \(D\) **of possible strings**, where \(D\) **has constant size** (e.g., names of the 50 U.S. states)
 - Sort \(D\) and compute the rank \(r(k)\) of each string \(k\) of \(D\) in the sorted sequence
 - Put entry \((k, o)\) into bucket \(B[r(k)]\)
Skipping the rest
Lexicographic Order

A d-tuple is a sequence of d keys (k_1, k_2, \ldots, k_d)
 - key k_i is said to be the i-th dimension of the tuple

Example:
 - The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively defined as follows

$$(x_1, x_2, \ldots, x_d) < (y_1, y_2, \ldots, y_d)$$

\[\iff \]

$$x_1 < y_1 \lor x_1 = y_1 \land (x_2, \ldots, x_d) < (y_2, \ldots, y_d)$$

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.
Lexicographic-Sort

- C_i
 - comparator that compares two tuples by their i-th dimension

- $stableSort(S, C)$
 - a stable sorting algorithm that uses comparator C

- executing d times
 - $stableSort$
 - once per dimension

- $O(dT(n))$ time
 - $T(n)$ is the running time of $stableSort$

Algorithm $lexicographicSort(S)$

Input sequence S of d-tuples
Output sequence S sorted in lexicographic order

for $i \leftarrow d$ downto 1
 $stableSort(S, C_i)$

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)
(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)
Radix-Sort

- specialization of lexicographic-sort
 - bucket-sort as the stable sorting algorithm

- keys in each dimension i are integers in the range $[0, N - 1]$

- Radix-sort runs in time $O(d(n + N))$

Algorithm $\text{radixSort}(S, N)$

Input sequence S of d-tuples such that $(0, \ldots, 0) \leq (x_1, \ldots, x_d)$ and $(x_1, \ldots, x_d) \leq (N - 1, \ldots, N - 1)$ for each tuple (x_1, \ldots, x_d) in S

Output sequence S sorted in lexicographic order

for $i \leftarrow d$ downto 1

$\text{bucketSort}(S, N)$
Radix-Sort for Binary Numbers

- \(n b \)-bit integers
 \[x = x_{b-1} \ldots x_1 x_0 \]
- radix-sort with \(N = 2 \)
- \(O(bn) \) time

For example, we can sort a sequence of 32-bit integers in linear time

Algorithm \(\text{binaryRadixSort}(S) \)

Input sequence \(S \) of \(b \)-bit integers
Output sequence \(S \) sorted
replace each element \(x \) of \(S \) with the item \((0, x)\)
\[\text{for } i \leftarrow 0 \text{ to } b - 1 \]
replace the key \(k \) of each item \((k, x)\) of \(S \) with bit \(x_i \) of \(x \)
\[\text{bucketSort}(S, 2) \]
Example

Sorting a sequence of 4-bit integers

1001
0010
1101
0001
1110

0010
1110
1001
0001

1001
1101
0010
1101

0001
1110
0010
1101

0001
1110
1110
1110

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 15