
1

Biology & CS

Philip Chan

Biology

� Different levels

� Evolution
� organisms over time

� Ecology
� interactions among organisms and environment

� Individual organisms
� Anatomy, Physiology

� Cell Biology
� cells

� Molecular Biology
� chemical molecules

Molecular Biology

� DNA

� Stands for?

Molecular Biology

� DNA

� Dioxyribonucleic Acid

� Double helix structure

� Watson and Crick, 1953

� Nobel Prize in Physiology or Medicine, 1962

Genome

� Chromosomes

� inside where?

Genome

� Chromosomes

� inside the cell nucleus

� ? pairs

2

Genome

� Chromosomes

� inside the cell nucleus

� 23 pairs (one determines what?)

Genome

� Chromosomes

� inside the cell nucleus

� 23 pairs (one determines gender)

Genome

� Chromosomes

� inside the cell nucleus

� 23 pairs (one determines gender)

� contains genetic information

� copied during cell division

� made of DNA

� Gene

� ?

Genome

� Chromosomes

� inside the cell nucleus

� 23 pairs (one determines gender)

� contains genetic information

� copied during cell division

� made of DNA

� Gene

� (roughly) segments of DNA that encode proteins

� Genome

� Human: ? genes

Genome

� Chromosomes

� inside the cell nucleus

� 23 pairs (one determines gender)

� contains genetic information

� copied during cell division

� made of DNA

� Genes

� (roughly) segments of DNA that encodes proteins

� Genome

� Human: 20,000-25,000 genes

DNA to Protein

� Transcription

� DNA -> RNA

� Translation

� RNA -> Protein

3

DNA Encoding for Proteins

� DNA

� Sequence of nucleotides
� 4 possible nucleotides:

� Adenine (A), Cytosine (C), Guanine (G), Thymine (T)

� [Thymine (T) becomes Uracil (U) in RNA]

� Protein

� Sequence of amino acids
� 20 possible amino acids

� How many nucleotides are needed to encode
one amino acid?

Sequencing Human Genome

� Human Genome Project

� International (governments/universities)

� Celera Corporation (US)

� Many short sequences

� Algorithms to merge them into longer
sequences

� Complete genome sequence in ~2003

Why Study the Genome?

� Understanding how genes, proteins, …
interact with each other

� Understanding diseases

� Mistakes in copying DNA

� Mutations cause changes in DNA

Comparing Genes

� After a gene is found

� Biologist might not know its function

� Find “similarities” with genes of known function

Cancer (1984)

� Cancer-causing gene is similar to a normal
growth gene

� Cancer might be caused by a normal growth

gene being switched on at the wrong time

� A good gene doing the right thing at the
wrong time

Cystic Fibrosis (1989)

� Cystic Fibrosis is a fatal disease associated
with abnormal secretions (clogs in lungs).

� A segment of the Cystic Fibrosis gene is

similar to the sequence for ATP binding
proteins.

� These proteins affect cell membrane and

secretions

4

Similarity/Distance of Sequences

� Position by position

� ACACAC

� CACACA

� Hamming Distance = 6

Similarity/Distance of Sequences

� Position by position

� ACACAC

� CACACA

� Hamming Distance = 6

� Shift the second sequence by one character

� ACACAC_

� _CACACA

� Distance = 2

Longest Common

Subsequence

Problem 1

Subsequence

� Subsequence

� Sequence of characters that might NOT be
consecutive

� ATTGCTA

� TTGC -> subsequence

� AGCA -> subsequence

� ATTA -> subsequence

� TGTT -> not a subsequence

� TCG -> not a subsequence

Common Subsequence

� Given two sequences

� ATCTGAT

� TGCATA

� Common subsequences ?

Common Subsequence

� Given two sequences

� ATCTGAT

� TGCATA

� Common subsequences

� TCTA

� TA

5

Longest Common Subsequence (LCS)

� Many different common subsequences

� Want to find the longest

� Length of LCS helps determine similarity of

two sequences/genes

Problem Formulation

� Given (input)

� Two sequences v, w

� Find (output)

� Longest common substring of v and w (simpler
problem)

Algorithm

� Any ideas?

Algorithm 1

� Find common subsequence of length 1

� Find common subsequence of length 2

� …

Algorithm 1

� Find common substring of length 1

� Find common substring of length 2

� …

� What is the time complexity?

Algorithm 1

� Find common substring of length 1

� Find common substring of length 2

� …

� What is the time complexity?

� Are we repeating unnecessary work?

6

Algorithm 2

� Observation:

� If common substring of length L+1 exists

� Common substring of length L must also exists

� Idea?

Algorithm 2

� Observation:

� If common substring of length L+1 exists

� Common substring of length L must also exists

� Idea

� Use common substring of length L to find

common substring of length L+1

Algorithm 2

� Observation:

� If common substring of length L+1 exists

� Common substring of length L must also exists

� Idea

� Use common substring of length L to find

common substring of length L+1

� Time complexity?

Algorithm ?

� Tree Search

� What would be the nodes and branches?

� Could recursion help?

� Time complexity?

Algorithm 3

� Consider

� String v, indexed by i

� String w, indexed by j

� LCS(i, j) returns the length of LCS ending at
i,j

Algorithm 3

� Consider

� String v, indexed by i

� String w, indexed by j

� LCS(i, j) returns the length of LCS ending at
i,j

� LCS(i, j) =

� LCS(i - 1, j - 1) + 1 if v[i] = w[j]

� 0 otherwise

7

Algorithm 3

� Consider

� String v, indexed by i

� String w, indexed by j

� LCS(i, j) returns the length of LCS ending at
i,j

� LCS(i, j) =

� LCS(i - 1, j - 1) + 1 if v[i] = w[j]

� 0 otherwise

� Different initial i,j pairs

Algorithm 3

� Consider

� String v, indexed by i

� String w, indexed by j

� LCS(i, j) returns the length of LCS ending at
i,j

� LCS(i, j) =

� LCS(i - 1, j - 1) + 1 if v[i] = w[j]

� 0 otherwise

� Different initial i,j pairs

� Any redundant work?

Algorithm 3

� Dynamic programming

� Eliminate redundant work

� By storing partial answers

� LCS[] is a table

� LCS[i, j] is the length of LCS ending at i, j

� LCS[i, j] =

� LCS[i - 1, j - 1] + 1 if v[i] = w[j]

� 0 otherwise

Algorithm 3

A B A B

0 0 0 0 0

B 0

A 0

B 0

A 0

Algorithm 3

A B A B

0 0 0 0 0

B 0 0 1 0 1

A 0

B 0

A 0

Algorithm 3

A B A B

0 0 0 0 0

B 0 0 1 0 1

A 0 1 0 2 0

B 0

A 0

8

Algorithm 3

A B A B

0 0 0 0 0

B 0 0 1 0 1

A 0 1 0 2 0

B 0 0 2 0 3

A 0 1 0 3 0

Algorithm 3

A B A B

0 0 0 0 0

B 0 0 1 0 1

A 0 1 0 2 0

B 0 0 2 0 3

A 0 1 0 3 0

Problem Formulation

� Given (input)

� Two sequences v, w

� Find (output)

� Longest common subsequence of v and w

� Skipping character(s) is allowed

Problem

� String editing

� Transform one string to another by
keeping/adding/deleting characters

� Can also be viewed as aligning two strings

� Any ideas?

-- T G C A T -- A -- C

A T -- C -- T G A T C

LCS: Example

-- T G C T

G

A

T

C

A T -- C T

--

A

--

C

elements of v

elements of w

A

--

2

1

1

0

2

2

3

3

3

4

4

5

5

5

6

6

7

6

8

7

j coords:

i coords:

Matches shown in red
positions in v:

positions in w:

1 < 3 < 5 < 6 < 7

2 < 3 < 4 < 6 < 8

Every common subsequence is a path in 2-D grid

0

0

(0,0)�(0,1)�(1,2)�(2,2)�(3,3)�(4,3)�(5,4)�(5,5)�(6,6)�(6,7)�(7,8)

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

9

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a

common
subsequence.

Every diagonal
edge adds an

extra element to

common
subsequence

LCS Problem:

Find a path with
maximum

number of

diagonal edges

Computing LCS

si,j = MAX
si-1,j + 0

si,j -1 + 0
si-1,j -1 + 1, if vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

Computing LCS

The length of LCS(vi,wj) is computed by:

si, j = max
si-1, j

si, j-1

si-1, j-1 + 1 if vi = wj

Dynamic Programming Example

Initialize 1st row and
1st column to be all

zeroes.

Or, to be more
precise, initialize 0th

row and 0th column to
be all zeroes.

Dynamic Programming Example

Si,j = Si-1, j-1

max Si-1, j

Si, j-1

�value from NW +1, if vi = wj

� value from North (top)

� value from West (left)

10

Dynamic Programming: Backtracing

Arrows show where the score
originated from.

if from the top

if from the left

if vi = wj

Dynamic Programming Example

Find a match in row and column 2.

i=2, j=2,5 is a match (T).

j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1

Dynamic Programming Example

Continuing with the
dynamic programming

algorithm gives this
result.

Now What?

� LCS(v,w) created the
alignment grid

� Now we need a way to
read the best
alignment of v and w

� Follow the arrows
backwards from sink

LCS Algorithm

1.1.1.1. LCS(v,w)LCS(v,w)LCS(v,w)LCS(v,w)

2. forforforfor i 1 to n

3. si,0 0

4. forforforfor j 1 to m

5. s0,j 0

6. forforforfor i 1 to n

7. forforforfor j 1 to m

8. si-1,j
9. si,j max si,j-1
10. si-1,j-1 + 1, if vi = wj
11. “ “ ifififif si,j = si-1,j
� bi,j “ “ ifififif si,j = si,j-1
� “ “ ifififif si,j = si-1,j-1 + 1

� returnreturnreturnreturn (sn,m, bbbb)

Printing LCS: Backtracing

1.1.1.1. PrintLCSPrintLCSPrintLCSPrintLCS(b,vb,vb,vb,v,i,j)

2. ifififif i = 0 or j = 0

3. returnreturnreturnreturn

4. ifififif bi,j = “ “

5. PrintLCSPrintLCSPrintLCSPrintLCS(bbbb,v,v,v,v,i-1,j-1)

6. printprintprintprint vi
7. elseelseelseelse

8. ifififif bi,j = “ “

9. PrintLCSPrintLCSPrintLCSPrintLCS(bbbb,v,v,v,v,i-1,j)

10. elseelseelseelse

11. PrintLCSPrintLCSPrintLCSPrintLCS(bbbb,v,v,v,v,i,j-1)

11

LCS Time Complexity

� It takes O(nm) time to fill in the nxm dynamic
programming matrix.

� Why O(nm)? The pseudocode consists of a

nested “for” loop inside of another “for” loop
to set up a nxm matrix.

Global Sequence

Alignment

Problem 2

LCS

� simplest form of sequence alignment

� Calculating sequence similarity

� allows only insertions and deletions (no
mismatches).

� score 1 for matches and 0 for indels
(insertions/deletions)

Mismatch and Indel

� Indel: insertion/deletion

� Allowing substitution/mismatch

A C C T G A G A C C T G A G A C C T G A G A C C T G A G –––– A G A G A G A G
A C G T G A C G T G A C G T G A C G T G –––– G C A GG C A GG C A GG C A G

mismatch
indel

� What do we do with mismatches and indels?

From LCS to Alignment

� penalizing indels and mismatches with negative scores

� Simplest scoring schema:
+1 : match premium
-µ : mismatch penalty
-σ : indel penalty

� the resulting score is:

#matches – µ(#mismatches) – σ (#indels)

Global Alignment

� Given (input)

� Two sequences: v, w

� Penalty for mismatches and indels

� Find (ouput)

� Alignment with the maximum score

12

The Global Alignment Problem

↑→ = -б

= 1 if match

= -µ if mismatch

si-1,j-1 +1 if vi = wj

si,j = max s i-1,j-1 -µ if vi ≠ wj

s i-1,j - σ
s i,j-1 - σ

µ : mismatch penalty
σ : indel penalty

Scoring Matrices

To generalize scoring, consider a (4+1) x(4+1) scoring
matrix δ.

In the case of an amino acid sequence alignment, the
scoring matrix would be a (20+1)x(20+1) size. The
addition of 1 is to include the score for comparison of
a gap character “-”.

This will simplify the algorithm as follows:

si-1,j-1 + δ (vi, wj)

si,j = max s i-1,j + δ (vi, -)

s i,j-1 + δ (-, wj)

Local Alignment

Problem 3

Local Alignments: Why?

� Two genes in different species

� similar over short conserved regions and

� dissimilar over remaining regions.

� Example:

� Homeobox genes have a short region
called the homeodomain that is highly
conserved between species.

� A global alignment would not find the
homeodomain because it would try to
align the ENTIRE sequence

Local vs. Global Alignment

• The Global Alignment Problem tries to find
the longest path between vertices (0,0) and

(n,m) in the edit graph.

• The Local Alignment Problem tries to find the
longest path among paths between arbitrary
vertices (i,j) and (i’, j’) in the edit graph.

Local vs. Global Alignment (cont’d)

� Global Alignment

� Local Alignment—better alignment to find
conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

13

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”
Global Alignment to
get Local

The Local Alignment Problem

� Given (input)

� strings v, w

� scoring matrix δ

� Find (output)

� alignment of substrings of v and w whose
alignment score is maximum among all
possible alignment of all possible substrings

Algorithm

� Any ideas?

Algorithm

� For each possible starting point

� Call global alignment

� (every ending point is considered)

� Time complexity?

Algorithm

� For each possible starting point

� Call global alignment

� (every ending point is considered)

� Time complexity?

� O(n2) pairs of start and end points

� Each alignment takes O(n2)

� Total O(n4)

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”
Global Alignment to
get Local

14

Local Alignment: Running Time

� Long run time O(n4):

- In the grid of size n x n
there are ~n2 vertices (i,j)
that may serve as a source.

- For each such vertex
computing alignments from
(i,j) to (i’,j’) takes O(n2) time.

� This can be remedied by
giving free rides

Local Alignment: Free Rides

Vertex (0,0)

The dashed edges represent the free rides from
(0,0) to every other node. ie, skipping multiple
characters in one step.

Yeah, a free ride!

The Local Alignment Recurrence

� The largest value of si,j over the whole edit graph is
the score of the best local alignment.

� The recurrence:

0

si,j = max si-1,j-1 + δ (vi, wj)

s i-1,j + δ (vi, -)

s i,j-1 + δ (-, wj)

Notice there is only

this change from the

original recurrence of

a Global Alignment

The Local Alignment Recurrence

� The largest value of si,j over the whole edit graph is
the score of the best local alignment.

� The recurrence:

0

si,j = max si-1,j-1 + δ (vi, wj)

s i-1,j + δ (vi, -)

s i,j-1 + δ (-, wj)

Power of ZERO: there is

only this change from the

original recurrence of a

Global Alignment - since

there is only one “free ride”

edge entering into every

vertex

Summary

1. Longest Common Subsequence

� No penalty on mismatches and indels

2. Global Alignment

� Penalize mismatches and indels

3. Local Alignment

� Short highly similarly subsequences

