
1

Geography and CS

Philip Chan

Maps

 Problem 1
 Where am I?

 “Localization”

 Problem 2 
 How do I get there?

 “Navigation”

Localization

Problem 1

Localization--Where am I?

 Cell phone

 GPS—Global Positioning System

Localization--Where am I?

 Cell phone
 Reference points:

 GPS—Global Positioning System
 Reference points:

Localization--Where am I?

 Cell phone
 Reference points: cell towers

 GPS—Global Positioning System
 Reference points: satellites



2

Localization--Where am I?

 Cell phone
 Reference points: cell towers

 GPS—Global Positioning System
 Reference points: satellites

 How many reference points are needed to fix 
the location?

Localization--Where am I?

 Cell phone
 Reference points: cell towers

 Need 3 reference points

 GPS—Global Positioning System
 Reference points: satellites

 How many reference points are needed to fix 
the location?

Localization--Where am I?

 Cell phone
 Reference points: cell towers
 Need 3 reference points

 GPS—Global Positioning System
 Reference points: satellites
 Need 4 reference points, 
 but 3 are ok if I know that I’m not floating in 

space above the satellites

 How many reference points are needed to fix 
the location?

Localization [2D] 
(Problem Formulation)

 Given (input)
 Coordinates of the reference points

 Distances from the reference points

 Find (output)
 Coordinates of the location

Localization [2D] 
(Problem Formulation)

 Given (input)
 Coordinates of the reference points

 (x1, y1), (x2, y2), (x3, y3)

 Distances from the reference points
 d1, d2, d3

 Find (output)
 Coordinates of the location

 (x, y)

Algorithm

 What is the mathematical relationship among 
the variables?



3

Algorithm

 What is the mathematical relationship among 
the variables?

 Hint: given two points [two pairs of (x,y) 
coordinates], what is the distance between 
them?

Navigation

Problem 2

Navigation
[Problem understanding]
 Finding a route from the origin to the 

destination

 “Static” directions
 Mapquest, Google maps

 “Dynamic” on-board directions
 GPS navigation

 if the car deviates from the route, it finds a new 
route

Navigation
[Problem Formulation]

 Given (input)
 Map

 Address of the origin

 Address of the destination

 Find (output)
 Turn-by-turn directions

 Simplification
 In the same city, all two-way streets, all left and 

right turns are allowed, no overpass/tunnels…

Navigation
[Problem Formulation  Graph Problem]

 Given (input)
 Map  ?

 Address of the origin  ?

 Address of the destination  ?

 Find (output)
 Turn-by-turn directions  ?

 Simplification
 In the same city, all two-way streets, all left and 

right turns are allowed, no overpass/tunnels…

Navigation
[Problem Formulation  Graph Problem]

 Given (input)
 Map  edge=street, vertex=intersection, weight=length

 Address of the origin  vertex

 Address of the destination  vertex

 Find (output)
 Turn-by-turn directions  ?

 Simplification
 In the same city, all two-way streets, all left and 

right turns are allowed, no overpass/tunnels…



4

Navigation
[Problem Formulation  Graph Problem]

 Given (input)
 Map  edge=street, vertex=intersection, weight=length

 Address of the origin  vertex

 Address of the destination  vertex

 Find (output)
 Turn-by-turn directions  shortest path

 Simplification
 In the same city, all two-way streets, all left and 

right turns are allowed, no overpass/tunnels …

Map/Street Data (input)

 Need more thoughts:
 What do we need to know about the streets?

 How could they be represented?

Map/Street Data (input)

 Tessellation or Vector?
 Tessellation:

 Vector:

Map/Street Data (input)

 Tessellation or Vector?
 Tessellation: “image” of the streets

 Vector: “description” of the streets

Map/Street data (input)

 Vector
 Name

 Two end points in x,y coordinates

 Range of house numbers

 What if the street is curvy (not straight)?

Map/Street data (input)

 Vector
 Name

 Two end points in x,y coordinates

 Range of house numbers

 What if the street is curvy (not straight)?
 “Polyline”

 Additional intermediate x,y coordinates and 
house numbers

 Street name, (x1, y1, h1), (x2, y2, h3), …



5

Map/Street data (input)

 What if a straight street has multiple 
intersections?

Map/Street data (input)

 What if a straight street has multiple 
intersections?
 Polyline (like curvy street)

 Additional x,y coordinates and house numbers

Algorithm Overview

1. Preprocessing
 Convert the map, origin & destination into a 

graph

2. Main algorithm
 Dijkstra’s shortest path algorithm

3. Postprocessing
 Convert shortest path to turn-by-turn 

directions

Vertices in the graph

 What should be a vertex?
 Intersections

 How about intermediate points in the polyline 
of a curvy street?

Vertices in the graph

 What should be a vertex?
 Intersections

 How about intermediate points in the polyline 
of a curvy street? 
 No, fewer vertices, but need to sum segment distances

 (Yes, make program simpler)

 Each vertex corresponds to a pair of x,y 
coordinates

 What is the weight of an edge?

Curvy streets vs intersections

 An intermediate point of a polyline could be:
 intersection  a vertex 

 part of a curvy street  not a vertex

 Vector representation:
 Street name, (x1, y1, h1), (x2, y2, h3), …

 How could we tell the difference?



6

Curvy Streets vs Intersections

 Additional info in vector representation
 intersection: Pointer to the cross street s [assuming 

only one cross street; a list otherwise]

 curvy street: no pointer

 Street name, (x1, y1, h1, s1), (x2, y2, h2, s2), …

Curvy Streets vs Intersections

 Additional info in vector representation
 intersection: Pointer to the cross street s [assuming 

only one cross street; a list otherwise]

 curvy street: no pointer

 Street name, (x1, y1, h1, s1), (x2, y2, h2, s2), …

 No additional info in vector representation
 Intersection: Two streets with the same vertex ID

 A convenient vertex ID would be?

Curvy Streets vs Intersections

 Additional info in vector representation
 intersection: Pointer to the cross street s [assuming 

only one cross street; a list otherwise]

 curvy street: no pointer

 Street name, (x1, y1, h1, s1), (x2, y2, h2, s2), …

 No additional info in vector representation
 Intersection: Two streets with the same vertex ID

 A convenient vertex ID would be?

 (concatenation of) x, y coordinates

 Time-space tradeoffs?

Converting Address to Vertex

 For the origin and destination

 Given street name and house number
 Create:

 One temporary vertex (unless at an intersection)

 Two temporary edges, why?

Converting Address to Vertex

 For the origin and destination
 Given street name and house number

 Create:
 One temporary vertex (unless at an intersection)
 Two temporary edges, why?

 What are the x,y coordinates of the new 
temporary vertex?

 What are the weights of the two new 
temporary edges?

 Tradeoffs between:
1. Replace original edge with temporary vertex 

& edges [then reverse the process later]

2. Add temporary vertex & edges [then reverse the 
process later]

Converting Address to Vertex



7

Main Algorithm

 If you do not know about Dijkstra’s algorithm

 How would you solve the shortest path 
problem?

Main Algorithm—Greedy Algorithm

 Greedy algorithm
1. Pick the closest vertex (shortest edge)

2. Go to the vertex

3. Repeat until the destination vertex is reached

 Does this always find the shortest path?

 If not, what could be a counter example?

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 What are the key ideas?

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 What are the key ideas?
 Similar to BFS:

 pick a leaf and expand its children

 Different in which leaf to pick, how?

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 What are the key ideas?
 Similar to BFS:

 pick a leaf and expand its children

 Different in which leaf to pick, how?
 the shortest length so far

 instead of the fewest # of levels in BFS 

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 What are the key ideas?
 Similar to BFS:

 pick a leaf and expand its children

 Different in which leaf to pick, how?
 the shortest length so far

 instead of the fewest # of levels in BFS 

 BFS is a special case of Dijkstra’s, why?



8

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 What are the key ideas?
 Similar to BFS:

 pick a leaf and expand its children

 Different in which leaf to pick, how?
 the shortest length so far

 instead of the fewest # of levels in BFS 

 BFS is a special case of Dijkstra’s, why?
 fewest # of levels = shortest length so far

 if edges are not weighted or have the same 
weight

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 Why does it guarantee to find the shortest 
path?

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 Why does it guarantee to find the shortest 
path?
 The shortest path to vertex A is finalized

 When?

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 Why does it guarantee to find the shortest 
path?
 The shortest path to vertex A is finalized

 when every path to the “non-finalized” vertices is 
longer

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 Why does it guarantee to find the shortest 
path?
 The shortest path to vertex X is finalized

 when every path to the “non-finalized” vertices is 
longer
 no way to get to vertex X with a shorter path via “non-

finalized” vertices

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 Can we potentially stop the algorithm early?



9

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 Can we potentially stop the algorithm early?
 Single source/origin—all destinations

 Stop when our destination is reached

 Works with directed graphs too, why?

Main Algorithm-- Dijkstra’s shortest 
path algorithm

 Can we potentially stop the algorithm early?
 Single source/origin—all destinations

 Stop when our destination is reached

 Works with directed graphs too, why?

 Interesting applet to demonstrate the alg:

 http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html

Turn-by-turn directions (output)

 “Turn LEFT onto COUNTRY CLUB RD. 
0.2 mi”
 Turn direction

 Street name

 Distance on the street

Turn-by-turn directions (output)

 Given vertices on the shortest path and map, 
find:
 Turn direction

 How do you decide you’re making a turn or not?

 If making a turn, which direction is the turn?

Turn-by-turn directions (output)

 Given vertices on the shortest path and map, 
find:
 Turn direction

 How do you decide you’re making a turn or not?
 If making a turn, which direction is the turn?

 Street name
 Lookup

 Distance
 Lookup/calculate (and possibly addition, why?)

Summary of Algorithm

1. Preprocessing (converting input)
 Input the map--street names, end points, house 

numbers

 Create the graph—vertices/intersections, 
edges/distances

 Convert origin/destination addresses to vertices

2. Main Algorithm
 Dijkstra’s shortest path

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance



10

Implementation

 Again to pick data structures for 
efficiency/speed

 We analyze ? of the ?

Implementation

 Again to pick data structures for 
efficiency/speed

 We analyze key operations of the algorithm

 These key operations could be time 
consuming for large amounts of data

Implementation—Where are the bulk 
of data stored?
1. Preprocessing (converting input)

 Input the map--street names, end points, house 
numbers

 Create the graph—vertices/intersections, 
edges/distances

 Convert origin/destination addresses to vertices

2. Main Algorithm
 Dijkstra’s shortest path

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance

Implementation—Where are the bulk 
of data stored?
1. Preprocessing (converting input)

 Input the map--street names, end points, house 
numbers

 Create the graph—vertices/intersections, 
edges/distances

 Convert origin/destination addresses to vertices

2. Main Algorithm
 Dijkstra’s shortest path

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance

Implementation—What are the key 
operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house 
numbers

 Create the graph—vertices/intersections, 
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices Main 
Algorithm

 Dijkstra’s shortest path

2. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance

Implementation—What are the key
operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house 
numbers

 Create the graph—vertices/intersections, 
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices -> 
address to x,y

2. Main Algorithm
 Dijkstra’s shortest path

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance



11

Implementation—What are the key
operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house 
numbers

 Create the graph—vertices/intersections, 
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices -> 
address to x,y

2. Main Algorithm
 Dijkstra’s shortest path -> children; pick a leaf

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance

Implementation—What are the key
operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house 
numbers

 Create the graph—vertices/intersections, 
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices -> 
address to x,y

2. Main Algorithm
 Dijkstra’s shortest path -> children, pick a leaf

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance -> vertex to street name

Implementation—How to prioritize the 
key operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house 
numbers

 Create the graph—vertices/intersections, 
edges/distances -> neighboring intersections

 Convert origin/destination addresses to vertices -> 
address to x,y

2. Main Algorithm
 Dijkstra’s shortest path -> children, pick a leaf

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance -> vertex to street name

Implementation—How to prioritize the 
key operations?
1. Preprocessing (converting input)

 Input the map--street names, end points, house 
numbers

 Create the graph—vertices/intersections, 
edges/distances -> neighboring intersections #4 or 1.5?

 Convert origin/destination addresses to vertices -> 
address to x,y #3

2. Main Algorithm
 Dijkstra’s shortest path -> children, pick a leaf #1

3. Postprocessing (converting output)
 Turn by turn directions—turn direction, street name, 

distance -> vertex to street name #2

Implementation—Selecting data 
structures
 Need to find neighbors (to become “children”) 

quickly [in Dijkstra’s]
 Which graph is sparser: friends or streets?

 Graph (input):
 Adjacency Matrix?
 Adjacency List?

 Time
 Space

Implementation—Selecting data 
structures
 Need to find neighboring vertices quickly [in 

converting Map to Graph]
1. intersections (& points on a curvy street) -> vertices

2. neighboring vertices -> edges

 Map (input)
 Street name, (x1, y1, h1), (x2, y2, h3), …

 Graph (output)
 Adjacency list

 Time

 Space



12

Summary

 Problem 1: Where am I?
 Localization

 Geometry

 Problem 2: How do I get there?
 Navigation

 Preprocessing to create the graph

 Dijkstra’s Shortest Path algorithm

 Postprocessing to give turn by turn directions

Reading Assignment

 Handout on the advertising portion in 
“Prepping the Google Rocket”
 Ken Auletta

 Googled—The End of the World as We Know 
It

 Penguin Press, 2009


