Geography and CS

Philip Chan

Maps

Problem 1
Where am 1?
“Localization”

Problem 2
How do | get there?
“Navigation”

Localization

Problem 1

Localization--Where am 1?

Cell phone

GPS—Global Positioning System

Localization--Where am 1?

Cell phone
Reference points:

GPS—Global Positioning System
Reference points:

Localization--Where am 1?

Cell phone
Reference points: cell towers

GPS—Global Positioning System
Reference points: satellites




Localization--Where am 1?

Cell phone
Reference points: cell towers

GPS—Global Positioning System
Reference points: satellites

How many reference points are needed to fix
the location?

Localization--Where am 1?

Cell phone
Reference points: cell towers
Need 3 reference points
GPS—Global Positioning System
Reference points: satellites

How many reference points are needed to fix
the location?

Localization--Where am 1?

Cell phone
Reference points: cell towers
Need 3 reference points
GPS—Global Positioning System
Reference points: satellites
Need 4 reference points,

but 3 are ok if | know that I'm not floating in
space above the satellites

How many reference points are needed to fix
the location?

Localization [2D]
(Problem Formulation)

Given (input)
Coordinates of the reference points

Distances from the reference points

Find (output)
Coordinates of the location

Localization [2D]
(Problem Formulation)

Given (input)
Coordinates of the reference points
(X1, Y1), (X2, Y2), (X3, ¥3)
Distances from the reference points
d;, d, dg
Find (output)
Coordinates of the location
xy)

Algorithm

What is the mathematical relationship among
the variables?




Algorithm

What is the mathematical relationship among
the variables?

Hint: given two points [two pairs of (x,y)
coordinates], what is the distance between
them?

Navigation

Problem 2

Navigation
[Problem understanding]

Finding a route from the origin to the
destination

“Static” directions
Mapquest, Google maps

“Dynamic” on-board directions
GPS navigation

if the car deviates from the route, it finds a new
route

Navigation
[Problem Formulation]

Given (input)
Map
Address of the origin
Address of the destination
Find (output)
Turn-by-turn directions

Simplification
In the same city, all two-way streets, all left and
right turns are allowed, no overpass/tunnels...

Navigation
[Problem Formulation - Graph Problem]

Given (input)
Map > ?
Address of the origin > ?
Address of the destination > ?
Find (output)
Turn-by-turn directions > ?

Simplification
In the same city, all two-way streets, all left and
right turns are allowed, no overpass/tunnels...

Navigation
[Problem Formulation - Graph Problem]

Given (input)
Map - edge=street, vertex=intersection, weight=length
Address of the origin - vertex
Address of the destination > vertex
Find (output)
Turn-by-turn directions > ?

Simplification
In the same city, all two-way streets, all left and
right turns are allowed, no overpass/tunnels...




Navigation
[Problem Formulation - Graph Problem]

Given (input)
Map > edge=street, vertex=intersection, weight=length
Address of the origin > vertex
Address of the destination - vertex
Find (output)
Turn-by-turn directions - shortest path

Simplification
In the same city, all two-way streets, all left and
right turns are allowed, no overpass/tunnels ...

Map/Street Data (input)

Need more thoughts:
What do we need to know about the streets?
How could they be represented?

Map/Street Data (input)

Tessellation or Vector?
Tessellation:
Vector:

Map/Street Data (input)

Tessellation or Vector?
Tessellation: “image” of the streets
Vector: “description” of the streets

Map/Street data (input)

Vector
Name
Two end points in X,y coordinates
Range of house humbers

What if the street is curvy (not straight)?

Map/Street data (input)

Vector
Name
Two end points in X,y coordinates
Range of house numbers

What if the street is curvy (not straight)?
“Polyline”
Additional intermediate x,y coordinates and
house numbers

Street name, (X, Y1, hy), (X5, ¥, hg), ...




Map/Street data (input)

What if a straight street has multiple
intersections?

Map/Street data (input)

What if a straight street has multiple
intersections?
Polyline (like curvy street)
Additional x,y coordinates and house numbers

Algorithm Overview

Preprocessing
Convert the map, origin & destination into a
graph
Main algorithm
Dijkstra’s shortest path algorithm
Postprocessing

Convert shortest path to turn-by-turn
directions

Vertices in the graph

What should be a vertex?
Intersections

How about intermediate points in the polyline
of a curvy street?

Vertices in the graph

What should be a vertex?
Intersections
How about intermediate points in the polyline
of a curvy street?

No, fewer vertices, but need to sum segment distances
(Yes, make program simpler)

Each vertex corresponds to a pair of x,y
coordinates

What is the weight of an edge?

Curvy streets vs intersections

An intermediate point of a polyline could be:
intersection > a vertex
part of a curvy street = not a vertex

Vector representation:
Street name, (X1, Y1, hy), (Xo, ¥, hg), ...

How could we tell the difference?




Curvy Streets vs Intersections

Additional info in vector representation

intersection: Pointer to the cross street s [assuming
only one cross street; a list otherwise]

curvy street: no pointer
Street name, (X4, Y1, hy S1), (X2, Y2, N3, S)), ...

Curvy Streets vs Intersections

Additional info in vector representation

intersection: Pointer to the cross street s [assuming
only one cross street; a list otherwise]

curvy street: no pointer
Street name, (X4, Y1, hy, Sy), (X2, ¥2, 3. S)), ...

No additional info in vector representation
Intersection: Two streets with the same vertex ID
A convenient vertex ID would be?

Curvy Streets vs Intersections

Additional info in vector representation

intersection: Pointer to the cross street s [assuming
only one cross street; a list otherwise]

curvy street: no pointer
Street name, (X, Y1, hy S1), (X, Y2, Ny, S)), ...

No additional info in vector representation
Intersection: Two streets with the same vertex ID
A convenient vertex ID would be?
(concatenation of) x, y coordinates

Time-space tradeoffs?

Converting Address to Vertex

For the origin and destination
Given street name and house number

Create:
One temporary vertex (unless at an intersection)
Two temporary edges, why?

Converting Address to Vertex

For the origin and destination
Given street name and house number

Create:
One temporary vertex (unless at an intersection)
Two temporary edges, why?

What are the x,y coordinates of the new
temporary vertex?

What are the weights of the two new
temporary edges?

Converting Address to Vertex

Tradeoffs between:
Replace original edge with temporary vertex
& edges [then reverse the process later]

Add temporary vertex & edges [then reverse the
process later]




Main Algorithm

If you do not know about Dijkstra’s algorithm

How would you solve the shortest path
problem?

Main Algorithm—Greedy Algorithm

Greedy algorithm
Pick the closest vertex (shortest edge)
Go to the vertex
Repeat until the destination vertex is reached

Does this always find the shortest path?

If not, what could be a counter example?

Main Algorithm-- Dijkstra’s shortest
path algorithm

What are the key ideas?

Main Algorithm-- Dijkstra’s shortest
path algorithm

What are the key ideas?
Similar to BFS:
pick a leaf and expand its children
Different in which leaf to pick, how?

Main Algorithm-- Dijkstra’s shortest
path algorithm

What are the key ideas?
Similar to BFS:
pick a leaf and expand its children
Different in which leaf to pick, how?
the shortest length so far
instead of the fewest # of levels in BFS

Main Algorithm-- Dijkstra’s shortest
path algorithm

What are the key ideas?
Similar to BFS:
pick a leaf and expand its children
Different in which leaf to pick, how?
the shortest length so far
instead of the fewest # of levels in BFS

BFS is a special case of Dijkstra’s, why?




Main Algorithm-- Dijkstra’s shortest
path algorithm

What are the key ideas?
Similar to BFS:
pick a leaf and expand its children
Different in which leaf to pick, how?
the shortest length so far
instead of the fewest # of levels in BFS
BFS is a special case of Dijkstra’s, why?
fewest # of levels = shortest length so far

if edges are not weighted or have the same
weight

Main Algorithm-- Dijkstra’s shortest
path algorithm

Why does it guarantee to find the shortest
path?

Main Algorithm-- Dijkstra’s shortest
path algorithm

Why does it guarantee to find the shortest
path?
The shortest path to vertex A is finalized
When?

Main Algorithm-- Dijkstra’s shortest
path algorithm

Why does it guarantee to find the shortest
path?
The shortest path to vertex A is finalized

when every path to the “non-finalized” vertices is
longer

Main Algorithm-- Dijkstra’s shortest
path algorithm

Why does it guarantee to find the shortest
path?
The shortest path to vertex X is finalized
when every path to the “non-finalized” vertices is
longer

no way to get to vertex X with a shorter path via “non-
finalized” vertices

Main Algorithm-- Dijkstra’s shortest
path algorithm

Can we potentially stop the algorithm early?




Main Algorithm-- Dijkstra’s shortest
path algorithm

Can we potentially stop the algorithm early?
Single source/origin—all destinations
Stop when our destination is reached

Works with directed graphs too, why?

Main Algorithm-- Dijkstra’s shortest
path algorithm

Can we potentially stop the algorithm early?
Single source/origin—all destinations
Stop when our destination is reached

Works with directed graphs too, why?

Interesting applet to demonstrate the alg:

hitp:/fwww.dgp.toronto. 1/270/9798s/Laffra/DijkstraApplet.html

Turn-by-turn directions (output)

“Turn LEFT onto COUNTRY CLUB RD.
0.2 mi”

Turn direction
Street name
Distance on the street

Turn-by-turn directions (output)

Given vertices on the shortest path and map,
find:
Turn direction
How do you decide you're making a turn or not?
If making a turn, which direction is the turn?

Turn-by-turn directions (output)

Given vertices on the shortest path and map,
find:
Turn direction
How do you decide you're making a turn or not?
If making a turn, which direction is the turn?

Street name
Lookup
Distance
Lookup/calculate (and possibly addition, why?)

Summary of Algorithm

Preprocessing (converting input)

Input the map--street names, end points, house
numbers

Create the graph—vertices/intersections,
edges/distances

Convert origin/destination addresses to vertices
Main Algorithm

Dijkstra’s shortest path
Postprocessing (converting output)

Turn by turn directions—turn direction, street name,
distance




Implementation

Again to pick data structures for
efficiency/speed

We analyze ? of the ?

Implementation

Again to pick data structures for
efficiency/speed

We analyze key operations of the algorithm

These key operations could be time
consuming for large amounts of data

Implementation—Where are the bulk
of data stored?

Implementation—Where are the bulk
of data stored?

Preprocessing (converting input)
Input the map--street names, end points, house
numbers
Create the graph—uvertices/intersections,
edges/distances
Convert origin/destination addresses to vertices
Main Algorithm
Dijkstra’s shortest path
Postprocessing (converting output)
Turn by turn directions—turn direction, street name,
distance

Preprocessing (converting input)
Input the map--street names, end points, house
numbers
Create the graph—vertices/intersections,
edges/distances
Convert origin/destination addresses to vertices
Main Algorithm
Dijkstra’s shortest path
Postprocessing (converting output)
Turn by turn directions—turn direction, street name,
distance

Implementation—What are the key
operations?

Implementation—What are the key
operations?

Preprocessing (converting input)
Input the map--street names, end points, house
numbers
Create the graph—uvertices/intersections,
edges/distances -> neighboring intersections
Convert origin/destination addresses to vertices Main
Algorithm
Dijkstra’s shortest path

Postprocessing (converting output)
Turn by turn directions—turn direction, street name,
distance

Preprocessing (converting input)
Input the map--street names, end points, house
numbers
Create the graph—vertices/intersections,
edges/distances -> neighboring intersections
Convert origin/destination addresses to vertices ->
address to x,y

Main Algorithm
Dijkstra’s shortest path

Postprocessing (converting output)

Turn by turn directions—turn direction, street name,

distance

10



Implementation—What are the key
operations?

Preprocessing (converting input)
Input the map--street names, end points, house
numbers
Create the graph—uvertices/intersections,
edges/distances -> neighboring intersections
Convert origin/destination addresses to vertices ->
address to X,y
Main Algorithm
Dijkstra’s shortest path -> children; pick a leaf
Postprocessing (converting output)
Turn by turn directions—turn direction, street name,
distance

Implementation—What are the key
operations?

Preprocessing (converting input)
Input the map--street names, end points, house
numbers
Create the graph—vertices/intersections,
edges/distances -> neighboring intersections
Convert origin/destination addresses to vertices ->
address to x,y
Main Algorithm
Dijkstra’s shortest path -> children, pick a leaf
Postprocessing (converting output)
Turn by turn directions—turn direction, street name,
distance -> vertex to street name

Implementation—How to prioritize the
key operations?

Preprocessing (converting input)
Input the map--street names, end points, house
numbers

Create the graph—uvertices/intersections,
edges/distances -> neighboring intersections

Convert origin/destination addresses to vertices ->
address to x,y
Main Algorithm
Dijkstra’s shortest path -> children, pick a leaf
Postprocessing (converting output)
Turn by turn directions—turn direction, street name,
distance -> vertex to street name

Implementation—How to prioritize the
key operations?

Preprocessing (converting input)
Input the map--street names, end points, house
numbers
Create the graph—vertices/intersections,
edges/distances -> neighboring intersections #4 or 1.5?

Convert origin/destination addresses to vertices ->
address to x,y #3
Main Algorithm
Dijkstra’s shortest path -> children, pick a leaf #1
Postprocessing (converting output)

Turn by turn directions—turn direction, street name,
distance -> vertex to street name #2

Implementation—Selecting data
structures

Need to find neighbors (to become “children”)
quickly [in Dijkstra’s]
Which graph is sparser: friends or streets?

Graph (input):
Adjacency Matrix?
Adjacency List?

Time
Space

Implementation—Selecting data
structures

Need to find neighboring vertices quickly [in
converting Map to Graph]
intersections (& points on a curvy street) -> vertices
neighboring vertices -> edges
Map (input)
Street name, (X4, Y1, hy), (X2, Y2, D), ...
Graph (output)
Adjacency list
Time
Space

11



Summary

Problem 1: Where am |?
Localization
Geometry

Problem 2: How do | get there?
Navigation
Preprocessing to create the graph
Dijkstra’s Shortest Path algorithm
Postprocessing to give turn by turn directions

Reading Assignment

Handout on the advertising portion in
“Prepping the Google Rocket”
Ken Auletta

Googled—The End of the World as We Know
It

Penguin Press, 2009

12



