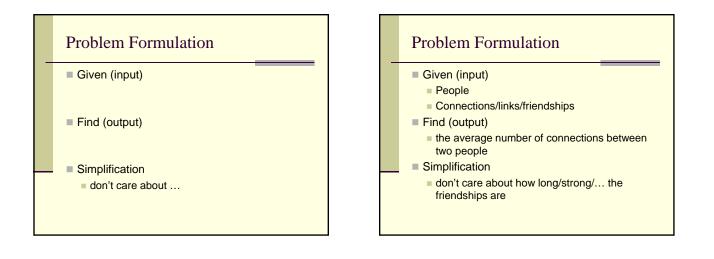
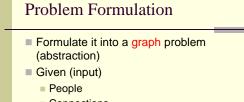


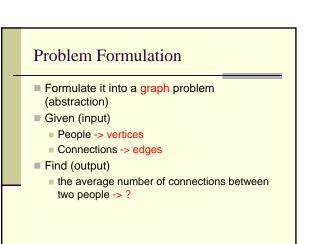
Degree of Separation

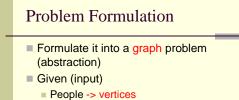
The number of connections to reach another person




Small World

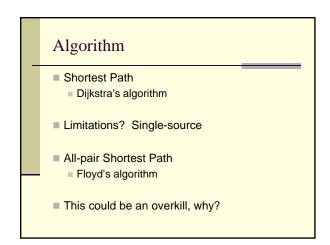
- Six degrees of separation
- Everyone is connected to everyone by a few people—about 6 on the average.
 - Obama might be 6 connections away from you
- "Small world" phenomenon


Bacon Number


- Number of connections to reach actor Kevin Bacon
- http://oracleofbacon.org/
- Is a connection in this network different from the one in Milgram's experiment?

- Connections
- Find (output)
 - the average number of connections between two people

- Connections -> edges
- Find (output)
 - the average number of connections between two people -> average shortest path length



Ideas?

Algorithm

Shortest Path
 Dijkstra's algorithm

Limitations?

Algorithm

- Unweighted edges
 - Each edge has the same weight of 1
- Simpler algorithm?

Algorithm

Breadth-first search (BFS)

Algorithm

- Breadth-first search (BFS)
 - Data structure to remember visited vertices

Algorithm

- Breadth-first search (BFS)
 - Data structure to remember visited vertices
 - Single source; repeat for each vertex to start

Algorithm

- Breadth-first search (BFS)
 - Data structure to remember visited vertices
 - Single source; repeat for each vertex to start
 - ShortestPath(x,y) = shortestPath(y,x)

Implementation

Which data structure to represent a graph (vertices and edges)?

Implementation

- Which data structure to represent a graph (vertices and edges)?
 - Adjacency matrix
 - Adjacency list
 - Tradeoffs?

Implementation

- Which data structure to represent a graph (vertices and edges)?
 - Adjacency matrix
 - Adjacency list
 - Tradeoffs?
 - Time

Adjacency Matrix vs List

Time

Speed of what?

Adjacency Matrix vs List

- Speed of key operations in the algorithm
 Algorithm:
 - Key operation:

Adjacency Matrix vs List

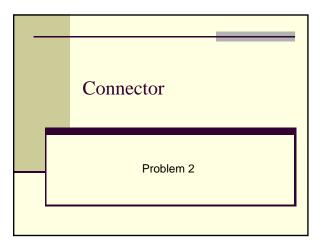
Time

- Speed of key operations in the algorithm
 Algorithm: BFS
 - Key operation: identifying children

Adjacency Matrix vs List

Time

- Speed of key operations in the algorithm
 Algorithm: BFS
 - Key operation: identifying children


Space

Amount of data in the problem

Adjacency Matrix vs List

Time

- Speed of key operations in the algorithm
 - Algorithm: BFS
 - Key operation: identifying children
- Space
 - Amount of data in the problem
 - Number of people/vertices
 - Number of friends/edges each person has

Revolutionary War

- Spreading the word that the British is going to attack
- Paul Revere vs William Dawes
 - Revere was more successful than Dawes
 - History books remember Revere more

Who is the most connected? (Problem understanding)

What does that mean?

Who is the most connected?

What does that mean?The person with the most friends?

Who is the most connected?

- What does that mean?
 - The person with the most friends?
 - Phone book experiment
 - 250 random surnamesNumber of friends with those surnames

Who is the most connected?

What does that mean?

- The person with the most friends?
 - Phone book experiment
 - 250 random surnames
 - Number of friends with those surnames
 - Number of friends have a wide range
 - Random sample: 9 -118
 - Conference in Princeton: 16 108

Who is the most connected?

What does that mean?

The person with the most friends?How to formulate it into a graph problem?

Who is the most connected?

- What does that mean?
 - The person with the most friends?How to formulate it into a graph problem?

- _____
 - What does that mean?The person with the most friends?
 - Are all friends equal?

Who is the most connected?

Output: the vertex with the highest degree

Who is the most connected?

- What does that mean?
 - The person with the most friends?
 - Are all friends equal?
 - You have 100 friends
 - Michelle Obama has only one friend:
 Barack Obama, who has a lot of friends
 - Not just how many, but who you know

Milgram's Experiment

- 24 letters get to the stockbroker at home
 16 from Mr. Jacobs
- The rest get to the stockbroker at work
 Majority from Mr. Brown and Mr. Jones
- Overall, half of the letters came through the three people
- But Milgram started from a random set of people
- What does this suggest?

Milgram's Experiment

- Average degree of separation is six, but:
 - A small number of special people connect to many people in a few steps
 - Small degree of separation
 - The rest of us are connected to those special people
- Called "Connectors" by Gladwell

Getting a Job experiment

- Mark Granovetter, sociologist
- Experiment in 1974
 - 19%: formal means—advertisements, headhunters
 - 20%: apply directly
 - 56%: personal connection

Getting a Job experiment

- Personal connection
 - 17%: see often
 - 56%: see occasionally
 - 28%: see rarely
- What does this suggest?

Getting a Job experiment

- Personal connection
 - 17%: see often → friends
 - 56%: see occasionally \rightarrow acquaintances
 - 28%: see rarely \rightarrow almost strangers?

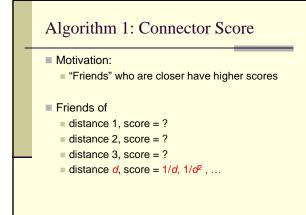
What does this suggest?

- Getting jobs via acquaintances
 - Why?

Getting a Job experiment

- Personal connection
 - 17%: see often \rightarrow friends
 - 56%: see occasionally → acquaintances
 - = 28%: see rarely \rightarrow almost strangers?
- What does this suggest?
 - Getting jobs via acquaintances
 - connect you to a different world
 - might have a lot connections
 - "The Strength of Weak Ties"

Who is the most connected?


- "Connector"
 - How many friends does one have?
 - What kind of friends does one have?
- How do you find Connectors?
- How do you formulate it into a graph problem?

Problem Formulation

Given (input)

- People -> vertices
- Connections -> edges
- Find (output)
 - Person with the "best" Connector score
 - Part of the algorithm is to define the Connector score
- Simplification
 - Don't care about how strong/long/... the friendships/connections are

Algorithm 1: Connector Score Motivation: "Friends" who are closer have higher scores Friends of distance 1, score = ? distance 2, score = ? distance 3, score = ? distance d, score = ?

Algorithm 1: Adding the scores

How to enumerate the people so that we can add the scores?

Algorithm 1: Adding the scores

How to enumerate the people so that we can add the scores?BFS

Algorithm 1: Adding the scores

How to enumerate the people so that we can add the scores?

BFS

Is score(x, y) the same as score(y, x)?

Algorithm 2: Connector Score

Motivation:

 Degree of separation (number of connections) to other people is small

Connector score:

Ideas?

Algorithm 2: Connector Score

Motivation:

- Degree of separation (number of connections) to other people is small
- Connector score:
 - Average degree of separation from a person to every other person

Algorithm 2: Adding the scores

How to enumerate the people so that we can add the scores?

Algorithm 1 vs 2

How do you compare the two algorithms?

Algorithm 1 vs 2

- How do you compare the two algorithms?
 - Changing Algorithm 1 slightly will yield Algorithm 2, how?

Algorithm 1 vs 2

- How do you compare the two algorithms?
 - Changing Algorithm 1 slightly will yield Algorithm 2, how?
 - Algorithm 1 is more flexible, why? But?

Algorithm 3: Connector Score

Motivation:

"bridge"

- If the person is not there, it takes a longer path for two people to connect
- Connector Score:
 - Ideas?

Algorithm 3: Connector Score

Motivation:

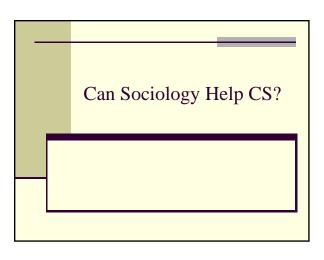
- "bridge"
- If the person is not there, it takes a longer path for two people to connect
- Connector Score ("betweenness"):
 - Number of times the person appears on the shortest path between all pairs
 - For one pair, what if multiple shortest paths of the same length (ties)?

Algorithm 3: Connector Score

- Motivation:
 - "bridge"
 - If the person is not there, it takes a longer path for two people to connect
- Connector Score ("betweenness"):
 - Number of times the person appears on the shortest path between all pairs

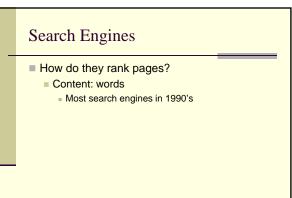
Algorithm 3: Connector Score

Motivation:


- "bridge"
- If the person is not there, it takes a longer path for two people to connect

Connector Score ("betweenness"):

- Number of times the person appears on the shortest path between all pairs
- For one pair, what if multiple shortest paths of the same length exist (ties)?
 - Fractional score for each person/vertex


Summary

- Problem 1: Degree of Separation—how close are we from each other?
- Problem 2: Connector—who is the most connected?
 - Algorithm 1: score = 1/d
 - Algorithm 2: score = degree of separation
 Length (not vertices) of shortest path is needed
 - Algorithm 3: score = betweenness
 - Vertices (not length) on the shortest path are needed

Search Engines

How do they rank pages?

Search Engines

- How do they rank pages?
 - Content: words
 - Most search engines in 1990's
 - Link structure: incoming and outgoing links
 PageRank algorithm (1998) → Google

Search Engines

- How do they rank pages?
 - Content: words
 - Most search engines in 1990's
 - Link structure: incoming and outgoing links
 PageRank algorithm (1998) → Google
 - User data: click data

Key Ideas of PageRank

How to use link structure to score web pages?

Key Ideas of PageRank

- How to use link structure to score web pages?
 - If a web page is important
 - What can we say about the number of incoming links?

Key Ideas of PageRank

- How to use link structure to score web pages?
 - If a web page is important
 - What can we say about the number of incoming links?
 - Are all incoming links equal?

Key Ideas of PageRank How to use link structure to score web pages? If a web page is important

- What can we say about the number of incoming links?
- Are all incoming links equal?How important are they? (recursive)

Key Ideas of PageRank

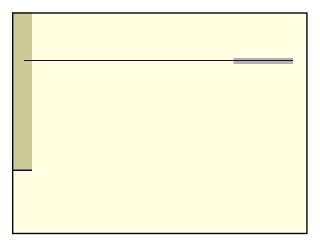
- How to use link structure to score web pages?
 - If a web page is important
 - What can we say about the number of incoming links?
 - Are all incoming links equal?
 - How important are they? (recursive)
 - How many outgoing links do they have?

Key Ideas of PageRank

- How to use link structure to score web pages?
 - If a web page is important
 - What can we say about the number of incoming links?
 - Are all incoming links equal?
 - How important are they? (recursive)
 - How many outgoing links do they have?

A link is similar to a vote/recommendation

Key Ideas of PageRank


- How to use link structure to score web pages?
 - If a web page is important
 - What can we say about the number of incoming links?
 - Are all incoming links equal?
 - How important are they? (recursive)
 - How many outgoing links do they have?
- A link is similar to a vote/recommendation
- Is this similar to finding the "Connector?"

PageRank

- PageRank(p) ~=
 - Sum i=incoming(p) PageRank(i) / #outgoing(i)

Reading Assignment

How and why does the Dijkstra's shortest path algorithm work?

Reading Assignment

- Handout on "Representation of Spatial Objects"
 - P. Rigaux, M. Scholl & A. Voisard
 - Spatial Databases with Application to GIS
 - Morgan Kaufmann, 2002
- How and why does the Dijkstra's shortest path algorithm work?