CSE 5693 Machine Learning HW?2
Due 6:30pm, Feb 26

Canvas: HW2

1. Written assignment (pdf file on Submit Server or
handwritten copy in class):

(e)

cloudy) and Humidity (high) and outcome
PlayTennis (yes, no) for the instance space (X).

i. Consider an unbiased hypothesis space
(H1), enumerate all possible hypotheses
(h1, ha,...) in terms of subsets of instances.
What is the number of possible unique hy-
potheses in H1?

ii. For each hypothesis in H1, represent it as
a boolean expression. What is the number
of unique hypotheses semantically?

iii. Consider a biased hypothesis space (H2)
where each attribute can only have a value,
?, or). What is the number of unique hy-
potheses semantically in the biased hypoth-
esis space (H2)?

iv. Identify hypotheses in the unbiased hypoth-
esis space (H1) that are not in the biased
hypothesis space (H2).

With the programming assignment: Discuss
and compare accuracy of no pruning versus rule
post-pruning in testlris and testIrisNoisy. In-
clude plots for the comparisons.

2. Programming assignment: Decision Tree

Allow more than two outcomes/classes
Allow continuous-valued attributes
Allow printing the tree

Allow the option of rule post-pruning and print-
ing the rules

Two data sets: Tennis and Iris on the course
web site.

The same program should be able to handle the
two data sets.

For each of the following experiments, provide a
script /program/function to run the experiment:

i. testTennis: print the tree, tree accuracy on
the training and test sets, the rules, rule
accuracy on the training and test sets (no
pruning, the dataset is too small)

ii. testlris: print the tree, tree accuracy on the
training and test sets, the rules after post-
pruning, rule accuracy on the training and
test sets

iii. testlrisNoisy: corrupt the class labels of
training examples from 0% to 20% (2% in-
crement) by changing from the correct class
to another class; output the accuracy on the
uncorrupted test set with and without rule
post-pruning.

(h) Implementation:

i. Use C (GNU gec), C++ (GNU g++), Java,
LISP (CLISP), or Python. If you don’t
have a preference, use Java since it’s more
portable.

ii. Your program should run on code01.fit.edu
(linux) *without* non-standard pack-
ages/libraries (no additional installation of
libraries/packages).

iii. You might have these modules:

A. Learner: input training exam-
ples/instances, output a tree (or
rule set)

B. Classifier/predictor: input a tree (or
rule set) and labeled instances, output
the classifications/predictions and how
accurate the tree is with respect to the
correct labels (% of correct classifica-
tions).

C. Tree printer (pre-order traversal,
deeper nodes are indented more, leaves
have class distribution), for example:
height = tall
| size>2 = T

| color = black

| | weight = heavy : Yes (1,0)

| | weight = light : No (0,1)

| color = white

| | weight = heavy : Yes (2,0)

|

| weight = light : No (0,1)
size>2 = F
| weight = heavy : Yes (4,0)

| | weight light : No (0,2)
height = short : No (0,8)
D. Rule set printer, for example:

height = tall ~ size>2 = T => Yes (1,0)
height = tall "~ size>2 = F => No (0,1)

(i) Submission:

i. README.txt: what are the files and
how to compile and run your program on
code01.fit.edu

ii. source code

