Internet and Security: A Closer Look

JAN 16, 2015
- Key Ideas of the Internet
- Internet Security
- Mobile Security
Key Ideas of the Internet

PHILIP CHAN
Where did the Internet come from?

- Government sponsored project in the 1960s
 - Cold war

- Defense department
 - What if parts of the phone network are destroyed?
(Old) Phone Network

- Phone connection
 - Dedicated circuit between two parties
 - “Circuit Switching”
 - If a segment of the circuit in the network is destroyed
 - The two parties cannot communicate
A More Resilient Communication Network

- How to design a communication network
 - that can survive
 - when parts of the network are destroyed?
Key Idea 1: Packet Switching

- Multiple routes between two parties via a network
Key Idea 1: Packet Switching

- Multiple routes between two parties via a network
- A message is broken up into “packets” at the sender
Key Idea 1: Packet Switching

- Multiple routes between two parties via a network
- A message is broken up into “packets” at the sender
- Each packet can be transmitted via a different route
Key Idea 1: Packet Switching

- Multiple routes between two parties via a network
- A message is broken up into “packets” at the sender
- Each packet can be transmitted via a different route
- The message is composed from packets at the receiver
What if part of the network is destroyed?

- Some packets will be lost
- Lost packets are re-sent via other routes
- “Protocol” between sender and receiver
What if part of the network is destroyed?

- Some packets will be lost
- Lost packets are re-sent via other routes
- “Protocol” between sender and receiver
 - Detects lost packets
What if part of the network is destroyed?

- Some packets will be lost
- Lost packets are re-sent via other routes
- “Protocol” between sender and receiver
 - Detects lost packets
 - Detects out-of-order packets at the receiver
What if part of the network is destroyed?

- Some packets will be lost
- Lost packets are re-sent via other routes
- “Protocol” between sender and receiver
 - Detects lost packets
 - Detects out-of-order packets at the receiver
 - Detects duplicate packets at the receiver
What if part of the network is destroyed?

- Some packets will be lost
- Lost packets are re-sent via other routes
- “Protocol” between sender and receiver
 - Detects lost packets
 - Detects out-of-order packets at the receiver
 - Detects duplicate packets at the receiver
 - Detects corrupted packets at the receiver
Different Types of Computers in a Network

- Consider 3 different types of computers: A, B, C
 - 3 different pairs of computer types
 - A-B, B-C, A-C
 - 3 different “protocols”
Different Types of Computers in a Network

- Consider 3 different types of computers: A, B, C
 - 3 different pairs of computers
 - A-B, B-C, A-C
 - 3 different “protocols”

- N types of computers
 - $N(N-1)/2$ different protocols
 - Lots of work
Key Idea 2: Interface Message Processors (IMPs)

- Computers don’t directly connect to each other
- Each computer connects to an IMP
 - IMPs connect to each other
Key Idea 2: Interface Message Processors (IMPs)

- Computers don’t directly connect to each other

- Each computer connects to an IMP
 - IMPs connect to each other

- 3 Types of computers: A, B, C
 - 3 different protocols: A-IMP, B-IMP, C-IMP

- N types of computers
 - N protocols, instead of N(N-1)/2
Multiple Networks

- APRANET, NSFNET, USENET, CSNET, UUNET, ...

- Computers on one network couldn’t talk to those on another network.
Key Idea 3: Internet Protocol

- Networks are connected to each other via Gateways
 - “inter” network => Internet

- Internet Protocol (IP) (1970s)
 - If a computer /network understands IP
 - It can communicate with another on a different network
More Familiar Networks

- **Local Area Networks (LANs)**
 - Ethernet
 - Wifi

- These networks are connected to the Internet via routers/ISP/gateways/...
Software/Hardware Complexity

- Designing “apps” could be complex
 - Involving many ideas
Key Idea 4: Abstraction Levels

- Like an onion
 - Many layers/levels
 - Working at one level without knowing the details of the lower levels
Key Idea 4: Abstraction Levels

- Like an onion
 - Many layers/levels
 - Working at one level without knowing the details of the lower levels

- Send email, search via google, ...
 - Without knowing any details about Internet Protocol, Gateways, IP addresses....

- Easier to build “apps” quickly
Beyond Communication

• Phone system
 ○ 911 service
 ○ 411 service
 ○ 800 toll-free to businesses
Key Idea 5: Resource Sharing

- Internet is not just for communication
 - Allow sharing of resources
 - World Wide Web (1990s)
 - Sharing of scientific information/data/articles
Key Idea 5: Resource Sharing

- Internet is not just for communication
 - Allow sharing of resources
 - World Wide Web (1990s)
 - Sharing of scientific information/data/articles
 - Fast forward to now
 - Banking, shopping, entertainment, education,
Key Idea 5: Resource Sharing

- Internet is not just for communication
 - Allow sharing of resources
 - World Wide Web (1990s)
 - Sharing of scientific information/data/articles
 - “hyperlinks” that link related resources
 - URL: Uniform Resource Locator
 - Fast forward to now
 - Banking, shopping, entertainment, education, ...
 - Future
 - ???
 - Up to our imagination
 - Whatever that can be digitized can be transmitted and shared
Government and Free Enterprise

- The US government decided not to restrict internet technology
- No one single authority controls the Internet
 - Each network/gateway is controlled by its owner (in some cases governments)
 - Lots of cooperation
- Free to innovate and commercialize
Summary of Key Ideas

1. Packet switching
2. Interface Message Processors
3. Internet Protocol
4. Abstraction Levels
5. Resource Sharing
More Outreach Efforts

- cs.fit.edu/~pkc/cs4hs
 - District-wide tic-tac-toe tournament
 - Organized by Edgewood in April/May
 - Your player against others
 - Summer Camps
 - July