
Organization of Classes

Java classes are organized structurally in a hierarchy or tree with
the class Object (cf the API) as the ancestor or root of all classes

class A

class B

more general

more specialized

is a

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Organization of Classes

The relationship between two classes is thought of as being

“is a”

— as in a pencil is a kind of writing instrument.

The wider more general concept (writing instrument) contains all
of the more specialized items (all pencils) plus potentially a lot
more (fountain pens, chalk, and so on).

Organization of Classes

class A

class B

class C

more general

more specialized

is a

is a

Any number of levels in the hierarchy.

Organization of Classes

class A

class B class C

class D class E

more general

more specialized

Each class has one superclass; but any number of subclasses can
have the same superclass.

Example: Biological Classification

Animalia

Insecta Mammalia

Rodentia Primates

Lemuridae Hominidae

Lepidoptera

Kingdom

Class

Order

Family

Hierarchical Organization

person

staff student

undergrad graduate

faculty

Hierarchical Organization

Indo-Eurpoean

Indo-Iranian

Indic

Hindi Bengali

Iranian

Persian Pasto

Italic

Spanish French

Balto-Slavic

Slavic

Russian

Hierarchical Organization

JComponent

AbstractButton

JButton

JLabel JTextComponent

JTextArea JTextField

Hierarchical Organization

Object

Number

BigDecimal Integer Float

Faculty

Hierarchical Organization

Point

Rectangle Circle

Class Hierarchy

The class hierarchy is a tree. A tree is a kind of structure with a
root and the other elements are organized so that each element
has one branch connecting it to the root.

1. Every class descends from the class Object (the root of the
tree).

2. Every class has exactly one superclass (except the class
Object).

3. No class can descend directly or indirectly from itself.

extends

In Java, the relation or organization of classes is made explicitly by
name by the programmer.

class X extends Y {
}

The class X is declared a subclass of the class Y using the extends

keyword. The extends clause is optional and if ommitted then a
class is declared to be a direct subclass of Object.

Hierarchical Organization

class IndoEuropean { // ...
class IndoIranian extends IndoEuropean { // ...
class Indic extends IndoIranian { // ...
class Hindi extends Indic { // ...
class Bengali extends Indic { // ...
class Iranian extends IndoIranian { // ...
class Persian extends Iranian { // ...
class Pasto extends Iranian { // ...
class Italic extends IndoEuropean { // ...
class Spanish extends Italic { // ...
class French extends Italic { // ...
class BaltoSlavic extends IndoEuropean { // ...
class Slavic extends BaltoSlavic { // ...
class Russian extends Slavic { // ...

No Multiple Inheritance

class X extends Y, Z {
}

(But Java interfaces can be used to play this role.)

No Cyclic Inheritance

class X extends Y {
}

class Y extends X {
}

Hierarchical Organization

Sometimes the problem domain is naturally organized in a tree-like
hierarchy. Sometimes the problem domain is not naturally
organized like that.
In object-oriented programming we eventually learn the idioms or
design patterns to solve different problems using this organization.
First, we must learn more of the structure Java provides for
object-oriented programming.
Note that each class forms an interface, a suite of facilities or
methods.
Interface. In general, an interface is the boundary between distinct
systems. Specifically, the specification or protocol governing their
interaction.
Note that Java uses the keyword interface and has a construct
called an interface.

Polymorphism

What is the advantage of organizing classes in a tree structure?

The answer is flexibility which we call subclass polymorphism.
(Polymorphism is a word meaning many forms.) An object or
instance of a class can be viewed as having more than one type
(form).

Polymorphism

What is the advantage of organizing classes in a tree structure?

The answer is flexibility which we call subclass polymorphism.
(Polymorphism is a word meaning many forms.) An object or
instance of a class can be viewed as having more than one type
(form).

Subclass Polymorphism

Any object can be viewed as being a kind of Object. (Since
Object is at the top of the hierarchy.) This mean it has the
collection of methods or interface as does any Object.

Object Is A Special Class
The Top of the Hierarchy

class Object {
public String toString ();
public boolean equals (Object obj);
protected Object clone (); // copy
public Class <?> getClass (); // meta information
public void notify (); // synchronization of threads
public void wait ();

}

For example, assignment

Object obj;
Number num;

obj = new String (); // string "is-a" object
obj = new Integer (4);
obj = new Float (4.0f);
obj = new ArrayList (); // ArrayList "is-a" object
obj = new int [4]; // int array "is-a" object

num = new Integer (4);
num = new Float (4.0f); // Float "is-a" Number
num = new BigDecimal (4.0d);
num = new Double (7.0d);// Double "is-a" Number
num = 4.0d; // double is a Number

Subclass Polymorphism

Object [] objArray = new Object [5];
Number [] numArray = new Number [5];

objArray [0] = new String (); // string "is -a" object
objArray [1] = new Integer (4);
objArray [2] = new Float (4.0f);
objArray [3] = new ArrayList (); // ArrayList "is -a" object
objArray [4] = new int [4]; // int array "is -a" object

numArray [0] = new Integer (4);
numArray [1] = new Float (4.0f); // Float "is -a" Number
numArray [2] = new BigDecimal (4.0d);
numArray [3] = new Double (7.0d);// Double "is -a" Number
numArray [4] = 4.0d; // double is a Number

Polymorphism

Number num = new Number [5];

num = new String (); // a string is NOT a Number
num = new ArrayList ();// an ArrayList is NOT a Number
num = new int [4]; // an int array is NOT a Number
num = new Object (); // an object is NOT a Number

Compile-time, semantic error

incompatible types

Subclass Polymorphism

Substitution Principle. A variable of a given type may be assigned
a value of any subtype of that type, and a method with a
parameter of a given type may be invoked with an argument of any
subtype of that type.

Subclass Polymorphism

The flexibility only works one way.

Object o = new Integer (4);// OK
Integer i = new Object (); // Semantic Error: incompatible types

And remember, primitive types are not technically classes. Yet:

Object o = 4; // autoboxing
Integer i = 4; // autoboxing
Number n = 4; // autoboxing
int i = new Integer (4); // auto -unboxing
int i = new Object (); // compilation error

Another Example

An instance of a subclass “is-a” instance of the superclass.

class Main {
public static void Main (String [] args) {

IndoEuropean [] languages = new IndoEurpoean [100];
languages [0] = new Hindi ();
languages [1] = new Persian ();
languages [2] = new Spanish ();
languages [3] = new French ();
languages [4] = new Russian ();

}
}

Another Example

import java.math.BigDecimal;

public class NumberMain {

public static long add (Number n1 , Number n2) {
return n1.longValue () + n2.longValue ();

}

public static void main (String [] args) {
// BigDecimal and Long are each a Number.
System.out.println (add (

new BigDecimal ("32.1"), 34L));
}

}

Vocabulary

extend. To make a new class that inherits the members of an
existing class.

superclass. The parent or base class. “Super” in the sense of
“above” not “more.”

subclass. The child or derived class that inherits or extends a
superclass. It represents a subpart of the universe of things that
make up the superclass.

inheritance. A subclass implicitly has the member fields and
methods of a class by virtue of extending that class.

Important terms coming up: overriding, and dynamic dispatch.

Extend

How do you extend another class in Java?

class SubClass extends SuperClass {
// additional fields ...
// constructors ...
// additional methods ...

}

If the extends clause is omitted from a class, then it is as if you
have extended the class Object.

Extend

So,

class SubClass {
// ...

}

is the same as:

class SubClass extends Object {
// ...

}

It follows, that every class has:

public String toString ();
public boolean equals (Object obj);
protected Object clone (); // copy
public Class <?> getClass (); // meta information
public void notify (); // synchronization of threads
public void wait ();

Polymorphism

Conundrum: how can one class also be another class at the same
time?

Answer: the interface of the superclass must also be the interface
of the subclass. Every thing the superclass can do, the subclass
can do as well. If the superclass has a method int getX(), then
the subclass must also have method int getX().

Therefore: the subclass inherits all the member methods and fields
of the superclass.

An instance of a subclass “is-a” instance of the superclass.

class SuperClass { int x; }
class SubClass extends SuperClass { }

class Main {
public static void main (String [] args) {

SuperClass [] a = new SuperClass [2];
a[0] = new SuperClass ();
a[1] = new SubClass ();
for (int i=0; i<a.length; i++) {

System.out.println (a[i].x);
}

}
}

toString()

Every object has a toString() method!

class SuperC { int x; }
class SubClass extends SuperC { }
class Main {

public static void main (String [] args) {
Object []a={new Object(),new SuperC(),new SubClass ()};
for (int i=0;i<a.length;i++) {

System.out.println (a[i]. toString ());
}

}
}

By the way, the output is not very specific:

java.lang.Object@16930e2

SuperC@108786b

SubClass@119c082

Overloaded println()

The implementation of the java.io.PrintStream class:

void print (Object o) {print(o.toString ());}
void print (boolean b){ print(String.valueOf(b));}
void print (char c) {print(String.valueOf(c));}
void print (int i) {print(String.valueOf(i));}
void print (long l) {print(String.valueOf(l));}
void print (float f) {print(String.valueOf(f));}
void print (double d) {print(String.valueOf(d));}

void print (String s) {
// Do the real print work

}

Fields are Inherited

class Point {
int x,y;

}

class Circle extends Point {
int radius;

}

class Main {
public static void Main (String [] args) {

Circle c = new Circle ();
System.out.printf ("%d,%d,%d%n",

c.x, c.y, c.radius);
}

}

Methods are Inherited

class Point {
int x, y;
void move (int dx , int dy) { x += dx; y += dy; }

}
class Circle extends Point {

int radius;
}
class Main {

public static void Main (String [] args) {
Circle c = new Circle ();
c.move (2,3);
System.out.println (c.x +", "+ c.y +", "+ c.radius);

}
}

Fields Can Be Hidden

class SuperClass {
int x, y;

}

class SubClass extends SuperClass {
int x, y;

}

The class SubClass has two fields named x and two fields named
y.

class SuperClass {
int x=2;

}

class SubClass extends SuperClass {
int x=super.x+1;

}

class SubSubClass extends SubClass {
int x=((SuperClass)this).x+3;

}

If the integer x in the class SuperClass is declared private, then
access to it from a subclass causes a compile-time, semantic error.

Static Methods

You can use the name of the subclass to access static methods of
the superclass. (Not so terribly important.)

class IndoEuropean {
static void info () {

System.out.println ("To find out more ...");
}

}
class German extends IndoEuropean {}
class Main {

public static void Main (String [] args) {
IndoEuropean.info ();
German.info ();

}
}

It might be better to always use the class name IndoEuropean

when accessing the method info(), to show where to actually find
the code.

Constructors Not Inherited

Constructors are not class members; they are not inherited.

Constructors and super

Default constructor. “If a class contains no constructor
declarations, then a default constructor that takes no parameters is
automatically provided.”

class Point {
int x, y;

}

is equivalent to the declaration

class Point {
int x, y;
Point () { super (); }

}

“A compile-time error occurs if a default constructor is provided by
the compiler but the superclass does not have an accessible
constructor that takes no arguments.”

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#16823

Pitfall: Constructors and Subclasses

class Super {

final int i;

Super (int i) { this.i = i; }

}

class Sub extends Super { } // Illegal!

Methods Can Be Overridden

Sometimes the behavior of inherited methods is close, but not
quite right for the subclass. In these cases it is appropriate to
override the method.
A subclass overrides a method by defining a method of the same
name and signature.

public String toString()

“A class type may contain a declaration for a method with the
same name and the same signature as a method that would
otherwise be inherited from a superclass. In this case, the method
of the superclass is not inherited. The new declaration is said to
override it.”

Dynamic Dispatch

Dynamic dispatch (aka single dispatch, aka virtual function call)
In most OO systems, the concrete function that is called from a
function call in the code depends on the type of a single object at
runtime.

Dynamic Dispatch

A simple example: class/Dispatch.java

http://www.cs.fit.edu/~ryan/java/programs/class/Dispatch-java.html

Overriding

The following is not so very important, but everyone asks. [Don’t
ask because if you do, either:

I your OO design is bad,

I you don’t understand the subclass contract, or

I you have been looking at C++.]

What if you want some particular method to be called. You don’t
want the method in the subclass called, but the method
somewhere up in the subclass hierarchy.
Casting does not help for methods

I class/AccessField.java – casts make a different

I class/AccessMethod.java – casts make no difference

http://www.cs.fit.edu/~ryan/java/programs/class/AccessField-java.html
http://www.cs.fit.edu/~ryan/java/programs/class/AccessMethod-java.html

Object-Oriented Design

1. Identify the problem’s objects.

1.1 If the object cannot be directly represented using the existing
types, then design a class to do so.

1.2 If two or more classes share common attributes, then design a
hierarchy to store their common attributes

2. Identify the problem’s operations.

2.1 Define a method to do the operations.
2.2 Structure the method within the class hierarchy so as to take

advantage of inheritance
2.3 Where necessary, have subclasses override inherited definitions.

3. Solve the problem

Attribute or Method

If a value depends on parameter, then use a method. If a value
needs to be computed (like with a random number generator), then
use a method. If no behavioral variation, then use an attribute.
Inherited attributes, might be private and given access through
getter and setter methods.

private int x;
protected int getX () {return x;}
protected void setX (int i) {x=i;}

This way the validity of any new value can be checked

Calling Procedure

I call P(a) – compiler looks up address of P and jumps to
instruction

I call P(a) – (overloading) compiler chooses from among
several procedures based on the static types of arguments

I o.P(a) – (dynamic dispatch) the runtime system chooses
from among several procedures based on the subtype of object
o

Note that static type checking is possible in all cases.

Casting

Upcast or widening — OK
Downcast or narrowing — dangerous
Narrowing often must be used in OO languages.

Narrowing

Coercions can be classified into those that preserve information
(widenings) and those that lose information (narrowings). The
coercion int to long is a widening; int to short is a narrowing.
See the table of Java coercions at

/ ryan/java/language/java-data.html

The terms apply to the OO hierarchy as well. OO programming
often requires narrowing which defeats the purpose of strong
typing. See the Java program example:

misc/Points.java class/Widening.java

http://www.cs.fit.edu/~ryan/java/language/java-data.html
http://www.cs.fit.edu/~ryan/java/programs/misc/Points-java.html
http://www.cs.fit.edu/~ryan/java/programs/class/Widening-java.html

Casting Classes Summary

class Mammal {}
class Dog extends Mammal {}
class Cat extends Mammal {}
Mammal m = (Math.random () <0.5)? new Mammal (): new Dog ();
Dog spot = new Dog ();
Cat felix = new Cat ();

m = spot; m = felix; // Valid (no cast needed)
spot = m; // Compile -time error
spot = (Dog) m; // Valid at compile time; runtime check
felix = (Cat) m; // Valid at compile time; runtime check
felix = spot; // Compile -time error
felix = (Cat) spot; // Compile -time error

Wary programmer:

if (m instanceof Cat) {
felix = (Cat) m;

}

Runtime system:

if (m instanceof Cat) {
felix = (Cat) m;

} else {
throw new ClassCastException ();

}

Abstract Classes

An abstract class is a class that has some abstract methods.
Abstract methods have a specification but lack
code/instructions/behavior. An abstract class cannot be
created/instantiated (but can have constructors), but can be used
as a superclass to define a subclass.

abstract

In a class hierarchy, If a method’s behavior depends the class, it is
natural to override it. But if some class has no special behavior for
the method, then there are two choices.

1. Define a meaningless or generic default behavior and let
subclass override it. (Think of toString() for Object.)

2. Declare the method abstract

If you declare a method abstract in a class, then the class is
abstract. Meaning that the class is not used for instantiation,
but only for defining other classes.
Subclass responsibility. All (non-abstract) subclasses are given
the requirement (not just the opportunity) that the method be
overridden.

class Object {
public String toString () { return "Object"; }

}
class SubClass extends Object {

int x;
public String toString () { return Integer.toString(x); }

}

abstract class Object {
abstract public String toString ();

}
class SubClass extends Object {

int x;
public String toString () { return Integer.toString(x); }

}

Interface

An interface is a set of methods describing functionality common
across several classes.
Interfaces are totally abstract classes.
Advantage: can implement as many of them as you like.
Disadvantage: can’t implement code.
Used as (rather poor) enumeration types. Important in threads.
Important as callbacks (especially in GUI code). Important in
collection classes.

Interface

interface/Verbose.java

interface/List.java

interface/Example.java

interface/PointPack.java

misc/Reactive.java

http://www.cs.fit.edu/~ryan/java/programs/interface/Verbose-java.html
http://www.cs.fit.edu/~ryan/java/programs/interface/List-java.html
http://www.cs.fit.edu/~ryan/java/programs/interface/Example-java.html
http://www.cs.fit.edu/~ryan/java/programs/interface/PointPack-java.html
http://www.cs.fit.edu/~ryan/java/programs/misc/Reactive-java.html

Common Interfaces

I interface Comparable.

I interface Comparator.

I interface Iterator.

I interface Runnable.

I marker interface Serializable.

I marker interface Cloneable.

A marker interface has no methods; hence any class can
“implement” it. It is used as a signal to the JVM. A class the
implements such an interface is allowed to be serialized, cloned,
etc.

http://java.sun.com//java/api/java/lang/Comparable.html
http://java.sun.com//java/api/java/util/Comparator.html
http://java.sun.com//java/api/java/util/Iterator.html
http://java.sun.com//java/api/java/lang/Runnable.html
http://java.sun.com//java/api/java/io/Serializable.html
http://java.sun.com//java/api/java/lang/Cloneable.html

Nested Classes

inner/Nest.java

inner/Local.java

inner/Iter.java

misc/Anon.java

inner/Searcher.java

http://www.cs.fit.edu/~ryan/java/programs/inner/Nest-java.html
http://www.cs.fit.edu/~ryan/java/programs/inner/Local-java.html
http://www.cs.fit.edu/~ryan/java/programs/inner/Iter-java.html
http://www.cs.fit.edu/~ryan/java/programs/misc/Anon-java.html
http://www.cs.fit.edu/~ryan/java/programs/inner/Searcher-java.html

Equals

equals/Main.java

equals/Override.java

http://www.cs.fit.edu/~ryan/java/programs/equals/Main-java.html
http://www.cs.fit.edu/~ryan/java/programs/equals/Override-java.html

Clone

Why clone? Because assignment just copies references. This
creates aliases and this leads to programming mistakes.

BankAccount ba153 = new BankAccount (500);
BankAccount ba714 = ba153; // sharing
ba153.deposit (25); // both get deposit!

BankAccount ba153 = new BankAccount (500);
BankAccount ba714 = ba153.clone (); // a copy
ba153.deposit (25); // only one deposit

Clone

class/Clone.java

Superclass does the work and even copies the added fields (x).
The class must be marked Cloneable or the unchecked exception
CloneNotSupportedException will be raised. The protected

method clone is overridden with a public method. This is
permitted. You can override with less restrictive access, but not
more restrictive access.

http://www.cs.fit.edu/~ryan/java/programs/class/Clone-java.html

I private—members declared private are only accessible within
the class itself.

I “package”—members declared with no access modifier are
accessible in classes in the same package.

I protected—members declared protected are accessible in
subclasses (in the same package or not) and in the class itself.

I public—members declared public are accessible anywhere
the class is accessible.

access from private “package” protected public

same class yes yes yes yes

in subclass,
same package

no yes yes yes

non-subclass,
same package

no yes yes yes

in subclass, out
of package

no no yes yes

non-subclass,
out of package

no no no yes

Overriding: same name, different classes, same signature, at least
as much access (cf. §8.4.8.3 JLS 3rd).

private < “package” < protected < public

class Restrictive {
// Semantic error!
// "attempting to assign weaker access privileges"
private boolean equals (Object x) {

return false;
}
// OK. But , overloading not overriding !!
private boolean equals (Restrictive x) {

return true;
}

}

Is-a versus Has-a

Design consideration.
It is easy to misuse inheritance. “is-a” or “has-a”.
Aspects.

I aspect/Point.java

I aspect/SubPoint.java

I aspect/Aspect.java

http://www.cs.fit.edu/~ryan/java/programs/aspect/Point-java.html
http://www.cs.fit.edu/~ryan/java/programs/aspect/SubPoint-java.html
http://www.cs.fit.edu/~ryan/java/programs/aspect/Aspect-java.html

Summary

I class hierarchy

I subtype polymorphism

I inheritance

I overriding

I dynamic dispatch

I Java’s abstract classes

I Java’s interfaces

	Overriding

