
Using Text Categorization Techniques for Intrusion Detection

Yihua Liao, V. Rao Vemuri
Department of Computer Science
University of California, Davis

One Shields Avenue, Davis, CA 95616�
yhliao, rvemuri � @ucdavis.edu

Abstract

A new approach, based on the k-Nearest Neighbor
(kNN) classifier, is used to classify program behavior
as normal or intrusive. Short sequences of system calls
have been used by others to characterize a program’s
normal behavior before. However, separate databases
of short system call sequences have to be built for dif-
ferent programs, and learning program profiles involves
time-consuming training and testing processes. With
the kNN classifier, the frequencies of system calls are
used to describe the program behavior. Text categoriza-
tion techniques are adopted to convert each process to
a vector and calculate the similarity between two pro-
gram activities. Since there is no need to learn individ-
ual program profiles separately, the calculation involved
is largely reduced. Preliminary experiments with 1998
DARPA BSM audit data show that the kNN classifier
can effectively detect intrusive attacks and achieve a low
false positive rate.

1 Introduction

Intrusion detection has played an important role in com-
puter security research. Two general approaches to in-
trusion detection are currently popular: misuse detec-
tion and anomaly detection. In misuse detection, basi-
cally a pattern matching method, a user’s activities are
compared with the known signature patterns of intrusive
attacks. Those matched are then labeled as intrusive ac-
tivities. That is, misuse detection is essentially a model-
reference procedure. While misuse detection can be ef-
fective in recognizing known intrusion types, it tends to
give less than satisfactory results in detecting novel at-
tacks.

Anomaly detection, on the other hand, looks for patterns
that deviate from the normal (for example, [1, 2]). In
spite of their capability of detecting unknown attacks,

anomaly detection systems suffer from a basic diffi-
culty in defining what is “normal”. Methods based on
anomaly detection tend to produce many false alarms
because they are not capable of discriminating between
abnormal patterns triggered by an otherwise authorized
user and those triggered by an intruder [3].

Regardless of the approach used, almost all intrusion de-
tection methods rely on some sort of usage tracks left
behind by users. People trying to outsmart an intru-
sion detection system can deliberately cover their ma-
licious activities by slowly changing their behavior pat-
terns. Some examples of obvious features that a user can
manipulate are the time of log-in and the command set
used [4]. This, coupled with factors emanating from pri-
vacy issues, makes the modeling of user activities a less
attractive option.

Learning program behavior and building program pro-
files is another possibility. Indeed building program pro-
files, especially those of privileged programs, has be-
come a popular alternative to building user profiles in
intrusion detection [5, 6, 7, 8]. Capturing the system
call history associated with the execution of a program
is one way of creating the execution profile of a pro-
gram. Program profiles appear to have the potential to
provide concise and stable descriptions of intrusion ac-
tivity. To date, almost all the research in this area has
been focused on using short sequences of system calls
generated by individual programs. The local ordering
of these system call sequences is examined and clas-
sified as normal or intrusive. There is one theoretical
and one practical problem with this approach. Theoret-
ically, no justification has been provided for this defini-
tion of “normal” behavior. Notwithstanding this theoret-
ical gap, this procedure is tedious and costly. Although
some automated tools may help to capture system call
sequences, it is difficult and time consuming to learn in-
dividually the behavior profiles of all the programs (i.e.,
system programs and application programs). While the
system programs are not generally updated as often as



the application programs, the execution traces of system
programs are likely to be dynamic also, thus making it
difficult to characterize “normality”.

This paper treats the system calls differently. Instead
of looking at the local ordering of the system calls, our
method uses the frequencies of system calls to charac-
terize program behavior for intrusion detection. This
stratagem allows the treatment of long stretches of sys-
tem calls as one unit, thus allowing one to bypass the
need to build separate databases and learn individual
program profiles. Using the text processing metaphor,
each system call is then treated as a “word” in a long
document and the set of system calls generated by a pro-
cess is treated as the “document”.This analogy makes
it possible to bring the full spectrum of well-developed
text processing methods [9] to bear on the intrusion
detection problem. One such method is the k-Nearest
Neighbor classification method [10, 11].

The rest of this paper is organized as follows. In Sec-
tion 2 we review some related work. Section 3 is a brief
introduction to the kNN text categorization method. Sec-
tion 4 describes details of our experiments with the 1998
DARPA data. We summarize our results in Section 5,
and Section 6 contains further discussions.

2 Related Work

Ko et al. at UC Davis first proposed to specify the
intended behavior of some privileged programs (setuid
root programs and daemons in Unix) using a program
policy specification language [12]. During the pro-
gram execution, any violation of the specified behavior
was considered “misuse”. The major limitation of this
method is the difficulty of determining the intended be-
havior and writing security specifications for all moni-
tored programs. Nevertheless, this research opened the
door of modeling program behavior for intrusion detec-
tion. Uppuluri et al. applied the specification-based
techniques to the 1999 DARPA BSM data using a be-
havioral monitoring specification language [13]. With-
out including the misuse specifications, they were able to
detect 82% of the attacks with 0% false positives. The
attack detection rate reached 100% after including the
misuse specifications.

Forrest’s group at the University of New Mexico intro-
duced the idea of using short sequences of system calls
issued by running programs as the discriminator for in-
trusion detection [5]. The Linux program strace was
used to capture system calls. Normal behavior was de-

fined in terms of short sequences of system calls of a
certain length in a running Unix process, and a sepa-
rate database of normal behavior was built for each pro-
cess of interest. A simple table look-up approach was
taken, which scans a new audit trace, tests for the pres-
ence or absence of new sequences of system calls in
the recorded normal database for a handful of programs,
and thus determines if an attack has occurred. Lee et
al. [7] extended the work of Forrest’s group and applied
RIPPER, a rule learning program, to the audit data of
the Unix sendmail program. Both normal and abnormal
traces were used. Warrender et al. [6] introduced a new
data modeling method, based on Hidden Markov Model
(HMM), and compared it with RIPPER and simple enu-
meration method. For HMM, the number of states is
roughly the number of unique system calls used by the
program. Although HMM gave comparable results, the
training of HMM was computationally expensive, espe-
cially for long audit traces. Ghosh and others [8] em-
ployed artificial neural network techniques to learn nor-
mal sequences of system calls for specific UNIX system
programs using the 1998 DARPA BSM data. More than
150 program profiles were established. For each pro-
gram, a neural network was trained and used to identify
anomalous behavior.

Wagner et al. proposed to implement intrusion detec-
tion via static analysis [14]. The model of expected
application behavior was built statically from program
source code. During a program’s execution, the ordering
of system calls was checked for compliance to the pre-
computed model. Dynamic linking, thread usage and
modeling library functions pose difficult challenges to
static analysis. Another limitation of this approach is the
running time involved in building models for individual
programs from lengthy source code.

Unlike most researchers who concentrated on building
individual program profiles, Asaka et al. [15] intro-
duced a method based on discriminant analysis. With-
out examining all system calls, an intrusion detection
decision was made by analyzing only 11 system calls
in a running program and calculating the program’s Ma-
halanobis’ distances to normal and intrusion groups of
the training data. There were four instances that were
misclassified out of 42 samples. Due to its small size
of sample data, however, the feasibility of this approach
still needs to be established.

Ye et al. attempted to compare the intrusion detection
performance of methods that used system call frequen-
cies and those that used the ordering of system calls [16].
The names of system calls were extracted from the au-



dit data of both normal and intrusive runs, and labeled
as normal and intrusive respectively. It is our impres-
sion that they did not separate the system calls based on
the programs executing. Since both the frequencies and
the ordering of system calls are program dependent, this
oversimplification limits the impact of their work.

Our approach employs a new technique based on the k-
Nearest Neighbor classifier for learning program behav-
ior for intrusion detection. The frequencies of system
calls executed by a program are used to characterize the
program’s behavior. Text categorization techniques are
adopted to convert each process to a vector. Then the k-
Nearest Neighbor classifier, which has been successful
in text categorization applications, is used to categorize
each new program behavior into either normal or intru-
sive class.

3 Review of K-Nearest Neighbor Text Cat-
egorization Method

Text categorization is the process of grouping text doc-
uments into one or more predefined categories based on
their content. A number of statistical classification and
machine learning techniques have been applied to text
categorization, including regression models, Bayesian
classifiers, decision trees, nearest neighbor classifiers,
neural networks, and support vector machines [9].

The first step in text categorization is to transform doc-
uments, which typically are strings of characters, into
a representation suitable for the learning algorithm and
the classification task. The most commonly used docu-
ment representation is the so-called vector space model.
In this model, each document is represented by a vec-
tor of words. A word-by-document matrix A is used for
a collection of documents, where each entry represents
the occurrence of a word in a document, i.e., �������
	��� ,
where ��	�� is the weight of word i in document j. There
are several ways of determining the weight ��	�� . Let ��	��
be the frequency of word i in document j, N the number
of documents in the collection, M the number of distinct
words in the collection, and � 	 the total number of times
word i occurs in the whole collection. The simplest ap-
proach is Boolean weighting, which sets the weight � 	��
to 1 if the word occurs in the document and 0 other-
wise. Another simple approach uses the frequency of
the word in the document, i.e., ��	�������	�� . A more com-
mon weighting approach is the so-called tf � idf (term fre-
quency - inverse document frequency) weighting:��	�������	������! #" $&%�'	)(+* (1)

A slight variation [17] of the tf � idf weighting, which
takes into account that documents may be of different
lengths, is the following:��	���� � 	��, -�./1032 �54/ � �6�� #" $ %�'	)(7* (2)

For matrix A, the number of rows corresponds to the
number of words M in the document collection. There
could be hundreds of thousands of different words.
In order to reduce the high dimensionality, stop-word
(frequent word that carries no information) removal,
word stemming (suffix removal) and additional dimen-
sionality reduction techniques, feature selection or re-
parameterization [9], are usually employed.

To classify a class-unknown document X, the k-Nearest
Neighbor classifier algorithm ranks the document’s
neighbors among the training document vectors, and
uses the class labels of the k most similar neighbors
to predict the class of the new document. The classes
of these neighbors are weighted using the similarity of
each neighbor to X, where similarity is measured by Eu-
clidean distance or the cosine value between two docu-
ment vectors. The cosine similarity is defined as follows:8)9;: ��<>=@? � A� -CBED;F�GIHKJ�L3MON�P 	Q��R�	��S < S 4 � S ?T� S 4 (3)

where X is the test document, represented as a vector; ? �
is the jth training document; U 	 is a word shared by X and? � ; P 	 is the weight of word U 	 in X; R 	�� is the weight of
word U 	 in document ? � ; S < S 4 ��V P 4 2AW P 44 W P 4X W *I*Y*is the norm of X, and

S ? � S 4 is the norm of ? � . A cut-
off threshold is needed to assign the new document to a
known class.

The kNN classifier is based on the assumption that the
classification of an instance is most similar to the clas-
sification of other instances that are nearby in the vector
space. Compared to other text categorization methods
such as Bayesian classifier, kNN does not rely on prior
probabilities, and it is computationally efficient. The
main computation is the sorting of training documents
in order to find the k nearest neighbors for the test docu-
ment.

We seek to draw an analogy between a text document
and the sequence of all system calls issued by a process,
i.e., program execution. The occurrences of system calls
can be used to characterize program behavior and trans-
form each process into a vector. Furthermore, it is as-
sumed that processes belonging to the same class will



Table 1: Analogy between text categorization and intrusion detection when applying the kNN classifier.

Terms Text categorization Intrusion Detection
N total number of documents total number of processes
M total number of distinct words total number of distinct system calls�'	 number of times ith word occurs number of times ith system call was issued��	�� frequency of ith word in document j frequency of ith system call in process j? � jth training document jth training process
X test document test process

cluster together in the vector space. Then it is straight-
forward to adapt text categorization techniques to mod-
eling program behavior. Table 1 illustrates the similarity
in some respects between text categorization and intru-
sion detection when applying the kNN classifier.

There are some advantages to applying text categoriza-
tion methods to intrusion detection. First and fore-
most, the size of the system-call vocabulary is very lim-
ited. There are less than 100 distinct system calls in
the DARPA BSM data, while a typical text categoriza-
tion problem could have over 15000 unique words [9].
Thus the dimension of the word-by-document matrix A
is significantly reduced, and it is not necessary to apply
any dimensionality reduction techniques. Second, we
can consider intrusion detection as a binary categoriza-
tion problem, which makes adapting text categorization
methods very straightforward.

4 Experiments

4.1 Data Set

We applied the k-Nearest Neighbor classifier to the 1998
DARPA data. The 1998 DARPA Intrusion Detection
System Evaluation program provides a large sample of
computer attacks embedded in normal background traf-
fic [18]. The TCPDUMP and BSM audit data were col-
lected on a network that simulated the network traffic of
an Air Force Local Area Network. The audit logs con-
tain seven weeks of training data and two weeks of test-
ing data. There were 38 types of network-based attacks
and several realistic intrusion scenarios conducted in the
midst of normal background data.

We used the Basic Security Module (BSM) audit data
collected from a victim Solaris machine inside the sim-
ulation network. The BSM audit logs contain informa-
tion on system calls produced by programs running on

the Solaris machine. See [19] for a detailed description
of BSM events. We only recorded the names of system
calls. Other attributes of BSM events, such as arguments
to the system call, object path and attribute, return value,
etc., were not used here, although they could be valuable
for other methods.

The DARPA data was labeled with session numbers.
Each session corresponds to a TCP/IP connection be-
tween two computers. Individual sessions can be pro-
grammatically extracted from the BSM audit data. Each
session consists of one or more processes. A complete
ordered list of system calls is generated for every pro-
cess. A sample system call list is shown below. The first
system call issued by Process 994 was close, execve was
the next, then open, mmap, open and so on. The process
ended with the system call exit.

Process ID: 994
close munmap open munmap chmod
execve mmap mmap open close
open mmap mmap ioctl close
mmap close munmap access close
open open mmap chown close
mmap mmap close ioctl close
mmap close close access exit

The numbers of occurrences of individual system calls
during the execution of a process were counted. Then
text weighting techniques were ready to transform the
process into a vector. We used Equation (2) to encode
the processes.

During our off-line data analysis, our data set included
system calls executed by all processes except the pro-
cesses of the Solaris operating system such as the inetd
and shells, which usually spanned several audit log files.



Table 2: List of 50 distinct system calls that appear in the training data set.

access chown fchdir getaudit login mmap pipe setaudit setpgrp su
audit close fchown getmsg logout munmap putmsg setegid setrlimit sysinfo
audition creat fcntl ioctl lstat nice readlink seteuid setuid unlink
chdir execve fork kill memcntl open rename setgid stat utime
chmod exit fork1 link mkdir pathdonf rmdir setgroups statvfs vfork

4.2 Anomaly Detection

First we implemented intrusion detection solely based
on normal program behavior. In order to ensure that all
possible normal program behaviors are included, a large
training data set is preferred for anomaly detection. On
the other hand, a large training data set means large over-
head in using a learning algorithm to model program be-
havior. There are 5 simulation days that were free of
attacks during the seven-week training period. We arbi-
trarily picked 4 of them for training, and used the fifth
one for testing. Our training normal data set consists
of 606 distinct processes running on the victim Solaris
machine during these 4 simulation days. There are 50
distinct system calls observed from the training data set,
which means each process is transformed into a vector
of size 50. Table 2 lists all the 50 system calls.

Once we have the training data set for normal behav-
ior, the kNN text categorization method can be easily
adapted for anomaly detection. We scan the test audit
data and extract the system call sequence for each new
process. The new process is also transformed to a vec-
tor with the same weighting method. Then the similarity
between the new process and each process in the train-
ing normal process data set is calculated using Equation
(3). If the similarity score of one training normal pro-
cess is equal to 1, which means the system call frequen-
cies of the new process and the training process match
perfectly, then the new process would be classified as a
normal process immediately. Otherwise, the similarity
scores are sorted and the k nearest neighbors are chosen
to determine whether the new program execution is nor-
mal or not. We calculate the average similarity value of
the k nearest neighbors (with highest similarity scores)
and set a threshold. Only when the average similarity
value is above the threshold, is the new process consid-
ered normal. The pseudo code for the adapted kNN al-
gorithm is presented in Figure 1.

In intrusion detection, the Receiver Operating Charac-
teristic (ROC) curve is usually used to measure the per-
formance of the method. The ROC curve is a plot of

build the training normal data set ? ;
for each process < in the test data do

if < has an unknown system call then< is abnormal;
else then

for each process ?T� in training data do
calculate 8Z9;: �E<>=[?T�) ;
if 8)9;: ��<>=@?T�) equals 1.0 then< is normal; exit;

find \ biggest scores of 8)9;: ��<>=@?] ;
calculate 8)9;: ��^_" for \ -nearest neighbors;
if 8Z9;: �`^`" is greater than UOa
b�c 8 ad ���R then< is normal;
else then< is abnormal;

Figure 1: Pseudo code for the kNN classifier algorithm for
anomaly detection.

intrusion detection accuracy against the false positive
probability. It can be obtained by varying the detection
threshold. We formed a test data set to evaluate the per-
formance of the kNN classifier algorithm. The BSM data
of the third day of the seventh training week was chosen
as part of the test data set (none of the training processes
was from this day). There was no attack launched on this
day. It contains 412 sessions and 5285 normal processes.
The rest of the test data set consists of 55 intrusive ses-
sions chosen from the seven-week DARPA training data.
There are 35 clear or stealthy attack instances included
in these intrusive sessions (some attacks involve multiple
sessions), representing all types of attacks and intrusion
scenarios in the seven-week training data. Stealthy at-
tacks attempt to hide perpetrator’s actions from someone
who is monitoring the system, or the intrusion detection
system. Some duplicate attack sessions of the types eject
and warezclient were skipped and not included in the test
data set. When a process is categorized as abnormal, the
session that the process is associated with is classified
as an attack session. The intrusion detection accuracy is
calculated as the rate of detected attacks. Each attack
counts as one detection, even with multiple sessions.



0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate(%)

A
tta

ck
 d

et
ec

tio
n 

ra
te

k=5
k=10
k=25

(0.72) 

(0.70) 

(0.66) 

(0.6) 

(0.40) 

Figure 2: Performance of the kNN classifier method expressed in ROC curves. False positive rate vs attack detection rate for k=5,
10 and 25. Corresponding threshold values are shown in the parentheses for k=10.

Unlike the groups who participated in the 1998 DARPA
Intrusion Detection Evaluation program [20], we define
our false positive probability as the rate of mis-classified
processes, instead of mis-classified sessions.

The performance of the kNN classifier algorithm also
depends on the value of k, the number of nearest neigh-
bors of the test process. Usually the optimal value of
k is empirically determined. We varied k’s value from
5 to 25. Figure 2 shows the ROC curves for different
k values. For this particular data set, k=10 is a better
choice than other values in that the attack detection rate
reaches 100% faster. For k=10, the kNN classifier al-
gorithm can detect 10 of the 35 attacks with zero false
positive rate. The detection rate reaches 100% rapidly
when the threshold is raised to 0.72 and the false posi-
tive rate remains as low as 0.44% (23 false alarms out of
5285 normal processes) for the whole simulation day.

The RSTCORP group gave good performance during
the evaluation of the 1998 DARPA BSM data [20]. By
learning normal sequences of system calls for more than
150 programs, their Elman neural networks [8] were
able to detect 77.3% of all intrusions with no false pos-
itives, and 100% of all attacks with about 10% miss-
classified normal sessions, which means 40 to 50 false
positive alarms for a typical simulation day with 500
sessions. Their test data consisted of 139 normal ses-
sions and 22 intrusive sessions. Since different test data
sets were used, it is difficult to compare the performance
of our kNN classifier with that of the Elman networks.
Although the kNN classifier has lower attack detection

rate at zero false positive rate, the attack detection rate
reaches 100% quickly, and hence a low false alarm fre-
quency can be achieved.

4.3 Anomaly Detection Combined with Signa-
ture Verification

We have just shown that the kNN classifier algorithm can
be implemented for effective abnormality detection. The
overall running time of the kNN method is O(N), where
N is the number of processes in the training data set (usu-
ally k is a small constant). When N is large, this method
could still be computationally expensive for some real-
time intrusion detection systems. In order to detect at-
tacks more effectively, the kNN anomaly detection can
be easily integrated with signature verification. The ma-
licious program behavior can be encoded into the train-
ing set of the classifier. After carefully studying the 35
attack instances within the seven-week DARPA training
data, we generated a data set of 19 intrusive processes.
This intrusion data set covers most attack types of the
DARPA training data. It includes the most clearly ma-
licious processes, including ejectexploit, formatexploit,
ffbexploit and so on.

For the improved kNN algorithm, the training data set in-
cludes 606 normal processes as well as the 19 aforemen-
tioned intrusive processes. The 606 normal processes
are the same as the ones in subsection 4.2. Each new test
process is compared to intrusive processes first. When-
ever there is a perfect match, i.e., the cosine similarity



Table 3: Attack detection rate for DARPA testing data (k=10
and threshold=0.8) when anomaly detection is combined with
signature verification.

Attack Instances Detected Detection rate
Known attacks 16 16 100%
Novel attacks 8 6 75%

Total 24 22 91.7%

is equal to 1.0, the new process is labeled as intrusive
behavior (one could also check for near matches). Oth-
erwise, the abnormal detection procedure in Figure 1 is
performed. Due to the small amount of the intrusive pro-
cesses in the training data set, this modification of the
algorithm only causes minor additional calculation for
normal testing processes.

The performance of the modified kNN classifier algo-
rithm was evaluated with 24 attacks within the two-week
DARPA testing audit data. The DARPA testing data con-
tains some known attacks as well as novel ones. Some
duplicate instances of the eject attack were not included
in the test data set. The false positive rate was evalu-
ated with the same 5285 testing normal processes as de-
scribed in Section 4.2. Table 3 presents the attack de-
tection accuracy for k=10 and the threshold of 0.8. The
false positive rate is 0.59% (31 false alarms) when the
threshold is adjusted to 0.8.

The two missed attack instances were a new denial of
service attack, called process table. They matched with
one of training normal processes exactly, which made it
impossible for the kNN algorithm to detect. The pro-
cess table attack was implemented by establishing con-
nections to the telnet port of the victim machine every 4
seconds and exhausting its process table so that no new
process could be launched [21]. Since this attack con-
sists of abuse of a perfectly legal action, it did not show
any abnormality when we analyzed individual processes.
Characterized by an unusually large number of connec-
tions active on a particular port, this denial of service
attack, however, could be easily identified by other in-
trusion detection methods.

Among the other 22 detected attacks, eight were cap-
tured with signature verification. These eight attacks
could be identified without signature verification as well.
With signature verification, however, we did not have to
compare them with each of the normal processes in the
training data set.

5 Summary

In this paper we have proposed a new algorithm based
on the k-Nearest Neighbor classifier method for model-
ing program behavior in intrusion detection. Our pre-
liminary experiments with the 1998 DARPA BSM audit
data have shown that this approach is able to effectively
detect intrusive program behavior. Compared to other
methods using short system call sequences, the kNN
classifier does not have to learn individual program pro-
files separately, thus the calculation involved with clas-
sifying new program behavior is largely reduced. Our
results also show that a low false positive rate can be
achieved. While this result may not hold against a more
sophisticated data set, the k-Nearest Neighbor classifier
appears to be well applicable to the domain of intrusion
detection.

The tf � idf text categorization weighting technique was
adopted to transform each process into a vector. With the
frequency-weighting method, where each entry is equal
to the number of occurrences of a system call during the
process execution, each process vector does not carry
any information on other processes. A new training pro-
cess could be easily added to the training data set with-
out changing the weights of the existing training sam-
ples. This could make the kNN classifier method more
suitable for dynamic environments that require frequent
updates of the training data.

In our current implementation, we used all the system
calls to represent program behavior. The dimension of
process vectors, and hence the classification cost, can be
further reduced by using only the most relevant system
calls.

6 Discussion

In spite of the encouraging initial results, there are sev-
eral issues that require deeper analysis.

Our approach is predicated on the following properties:
the frequencies of system calls issued by a program ap-
pear consistently across its normal executions and un-
seen system calls will be executed or unusual frequen-
cies of the invoked system calls will appear when the
program is exploited. We believe these properties hold
true for many programs. However, if an intrusion does
not reveal any anomaly in the frequencies of system
calls, our method would miss it. For example, attacks
that consist of abuse of perfectly normal processes such
as process table would not be identified by the kNN clas-



sifier.

With the kNN classifier method, each process is classi-
fied when it terminates. We argue that it could still be
suitable for real-time intrusion detection. Each intrusive
attack is usually conducted within one or more sessions,
and every session contains several processes. Since the
kNN classifier method monitors the execution of each
process, it is highly likely that an attack can be detected
while it is in operation. However, it is possible that an at-
tacker can avoid being detected by not letting the process
exit. Therefore, there is a need for effective classification
during a process’s execution, which is a significant issue
for our future work.

7 Acknowledgment

The authors wish to thank Dr. Marc Zissman of Lincoln
Laboratory at MIT for providing us the DARPA training
and testing data. We also thank the reviewers for their
valuable comments. Special thanks to Dr. Vern Paxton
for his insightful comments that helped us to improve the
quality and readability of the final version. This work
is supported in part by the AFOSR grant F49620-01-1-
0327 to the Center for Digital Security of the University
of California, Davis.

References

[1] H.S. Javitz and A. Valdes, The NIDES Statistical
Component: Description and Justification, Tech-
nical Report, Computer Science Laboratory, SRI
International, Menlo Park, CA, March 1994.

[2] H.S. Vaccaro and G.E. Liepins, “Detection of
Anomalous Computer Session Activity”, Proceed-
ings of 1989 IEEE Symposium on Security and Pri-
vacy, 280-289, 1989.

[3] E. Lundin and E. Johnsson, “Anomaly-based in-
trusion detection: privacy concern and other prob-
lems”, Computer Networks, vol. 34, 623-640,
2000.

[4] V. Dao and V. R. Vemuri, “Computer Network In-
trusion Detection: A Comparison of Neural Net-
works Methods”, Differential Equations and Dy-
namical Systems, (Special Issue on Neural Net-
works, Part-2), vol.10, No. 1&2, 2002.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Logstaff, “A Sense of Self for Unix process”, Pro-

ceedings of 1996 IEEE Symposium on Computer
Security and Privacy, 120-128, 1996.

[6] C. Warrender, S. Forrest and B. Pearlmutter, “De-
tecting Intrusions Using System Calls: Alternative
Data Models”, Proceedings of 1999 IEEE Sympo-
sium on Security and Privacy, 133-145, 1999.

[7] W. Lee, S. J. Stolfo and P. K. Chan, “Learning Pat-
terns from Unix Process Execution Traces for In-
trusion Detection”, Proceedings of AAAI97 Work-
shop on AI Methods in Fraud and Risk Manage-
ment, 50-56, 1997.

[8] A. K. Ghosh, A. Schwartzbard and A. M. Shatz,
“Learning Program Behavior Profiles for Intrusion
Detection”, Proceedings of 1st USENIX Workshop
on Intrusion Detection and Network Monitoring,
Santa Clara, CA, April 1999.

[9] K. Aas and L. Eikvil, Text Categorisation: A Sur-
vey, http://citeseer.nj.nec.com/
aas99text.html, 1999.

[10] Y. Yang, An Evaluation of Statistical Ap-
proaches to Text Categorization, Technical Report
CMU-CS-97-127, Computer Science Department,
Carnegie Mellon University, 1997.

[11] Y. Yang, “Expert Network: Effective and Efficient
Learning from Human Decisions in Text Catego-
rization and Retrieval”, Proceedings of 17th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR’94), 13-22, 1994.

[12] C. Ko, G. Fink and K. Levitt, “Automated Detec-
tion of Vulnerabilities in Privileged Programs by
Execution Monitoring”, Proceedings of 10th An-
nual Computer Security Applications Conference,
Orlando, FL, Dec, 134-144, 1994.

[13] P. Uppuluri and R. Sekar, “Experiences with
Specification-Based Intrusion Detection”, Recent
Advances in Intrusion Detection (RAID 2001),
LNCS 2212, Springer, 172-189, 2001.

[14] D. Wagner and D. Dean, “Intrusion Detection via
Static Analysis”, Proceedings of IEEE Symposium
on Research in Security and Privacy, Oakland, CA,
2001.

[15] M. Asaka, T. Onabuta, T. Inoue, S. Okazawa and S.
Goto, “A New Intrusion Detection Method Based
on Discriminant Analysis”, IEEE TRANS. INF. &
SYST., Vol. E84-D, No. 5, 570-577, 2001.



[16] N. Ye, X. Li, Q. Chen S. M. Emran and M. Xu,
“Probabilistic Techniques for Intrusion Detection
Based on Computer Audit Data”, IEEE Trans.
SMC-A, Vol. 31, No. 4, 266-274, 2001.

[17] J. T.-Y. Kwok, “Automatic Text Categorization
Using Support Vector Machine”, Proceedings of
International Conference on Neural Information
Processing, 347-351, 1998.

[18] MIT Lincoln Laboratory,
http://www.ll.mit.edu/IST/ideval/.

[19] Sun Microsystems, SunShield Basic Security Mod-
ule Guide, 1995.

[20] R. Lippmann, D. Fried, I. Graf, J. Haines, K.
Kendall, D. McClung, D. Webber, S. Webster,
D. Wyschograd, R. Cunninghan and M. Zissan,
“Evaluating Intrusion Detection Systems: the 1998
DARPA off-line Intrusion Detection Evaluation”,
Proceedings of the DARPA Information Survivabil-
ity Conference and Exposition, IEEE Computer
Society Press, Los Alamitos, CA, 12-26, 2000.

[21] K. Kendall, “A Database of Computer Attacks for
the Evaluation of Intrusion Detection Systems”,
Master’s Thesis, Massachusetts Institute of Tech-
nology, 1998.


