
Finding the Vocabulary of Program Behavior Data for Anomaly Detection

C. C. Michael
�

Cigital Labs

Abstract

Application-based anomaly detectors construct a base-

line model of normal application behavior, and deviations

from that behavior are interpreted as signs of a possible

intrusion. But current anomaly detectors monitor applica-

tion behavior at a high level of detail, and many irrelevant

variations in that behavior can cause false alarms. This

paper discusses the preprocessing of audit data ultimately

used by application-based anomaly detection systems. The

goal is to create a more abstract picture of program be-

havior, filtering out many irrelevant details. Our specific

approach automatically identifies repeating sub-sequences

of behavior events and sequences of events that always oc-

cur together. Although this preprocessing technique can be

used with a wide variety of program-based anomaly detec-

tors, we present empirical results showing how it improves

the performance of the well-known stide anomaly detection

system.

1 Introduction

Host-based intrusion detection systems analyze data cap-

tured on a single information system. They might monitor

users or software processes, for example. The data captured

can be user data, such as keystrokes, login/logout times, op-

erational profiles, or programs run during a session. Alter-

natively, the data can be program behavior data such as sys-

tem calls or internal program states of monitored programs.

There is no “grand truth” of what constitutes and

anomaly. Just as two humans may disagree about what

constitutes an anomaly, so two anomaly detectors may dis-

agree without either being technically right or wrong. Each

anomaly detection system has a model of normal behavior

that it uses as a baseline, and this model necessarily only
�

This work was sponsored under DARPA contract N66001-00-C-8056

captures some aspects of the state of the world. It is devi-

ations from this baseline that are flagged as anomalies and

potential intrusions. Therefore, we can hope to reduce false

alarm rates by finding better models of normal behavior —

ones whose definition of an anomaly corresponds to mali-

cious behavior more often.

Thus, we would like to filter out those aspects of normal

behavior that are irrelevant to the question of whether or

not an intrusion is taking place. We would like to describe

normal behavior at a more abstract level where benign vari-

ations are less likely to be seen. This paper describes one

way of doing this.

We describe ways to automatically identify certain id-

ioms of normal program behavior — idioms that can vary

slightly without there being malicious intent. Our goal is

to find a vocabulary for program behavior that captures the

essence of that behavior without reflecting irrelevant details.

Normally, program behavior is captured in an audit trail

that can be used by an intrusion detector to spot anomalies.

Our approach is to preprocess the audit trail, simplifying it

with the help of a vocabulary that has been deduced from

training data. Thus, the audit trail that the anomaly detector

eventually sees is more abstract, contains fewer unnecessary

details, and is thus less likely to reflect benign variations in

program behavior that might trigger false alarms.

2 Background

Some of the earliest work in intrusion detection was per-

formed by [3] in the early 1980s. This paper defines an in-

trusion as any unauthorized attempt to access, manipulate,

modify, or destroy information, or to render a system unre-

liable or unusable. Intrusion detectors are meant to warn of

attempted intrusions.

Intrusion detection techniques are generally classified

into two categories: anomaly detection and misuse detec-

tion. Misuse detection systems try to identify behavior pat-

terns characteristic of intrusions, but this can be difficult if

an attack does not follow one of the patterns already known

beforehand to characterize an attack On the other hand,

anomaly detectors try to characterize the normal behavior

of a system, so that any deviation from that behavior can be

labeled as a possible intrusion. The work discussed in this

paper deals with anomaly detection.

Anomaly detection assumes that misuses or intrusions

are correlated to abnormal behavior exhibited by either a

user or the system. Anomaly detection approaches must

first determine the normal behavior of the object being mon-

itored, then use deviations from this baseline to detect pos-

sible intrusions. The initial impetus for anomaly detection

was suggested by [3], where it was noted that intruders

could be detected by observing departures from patterns

of use established for individual users. Anomaly detec-

tion approaches have been implemented in expert systems

that use rules for normal behavior to identify possible intru-

sions [13], systems that establish statistical models for user

or program profiles [5, 7, 15–18, 22], and systems that use

machine learning to construct models of user or program

behavior [4, 6, 8, 12].

Many intrusion detection techniques, like that of [7],

characterize application behavior in terms of information

system audit data. When an executing application requests

an operating-system service (such as accessing files, allo-

cating memory, and so on), this fact is recorded in an audit

data stream that can be examined by an intrusion detector.

First, the audit data is reduced to a series of symbols, with

each symbol representing a different type of request such

as write, malloc, exit, and so on. (The audit stream

may also include information such as parameters, and re-

turn values, but that information is discarded.) The now

classic approach of [7] works by moving a sliding window

of length � across the symbolic audit data stream (for some
�), creating a series of � -grams, each containing a series

of � consecutive operating system requests. These � -grams

are characterized as being either normal or abnormal, de-

pending on whether they were seen previously in training

data taken from non-intrusive program executions.

3 Vocabulary extraction for intrusion detec-
tion.

The goal of vocabulary extraction is to find a vocabulary

that can be used to describe audit streams more abstractly.

The idea is to start with an audit trace that consists of a

series of symbols, and convert it to a sequence of meta-

symbols, where each meta-symbol represents one or more

consecutive symbols from the original trace. For example,

the original audit stream

�������������������	��
��������������	

might be converted to the more abstract execution trace

����� ����

where A represents one or more consecutive occurrences of

the string abc and B represents the string dde. In this ex-

ample, the d and f at the end of the trace are not represented

by any vocabulary symbol, so they are copied verbatim.

Instead of using meta-symbols, it is also possible to re-

place vocabulary terms with simpler versions of themselves

(this will be explained in more detail below). The advantage

of this approach is that it simplifies the audit data without

adding complexity by increasing the the number of audit

symbols that the detector has to deal with.

Finally, the vocabulary extraction system described in

this paper can be used as an intrusion detector in itself. In

that capacity, it double-checks the results of other intrusion

detectors and is often able to intercept false alarms.

The rest of this paper is organized as follows: in Sec-

tion 4 we begin by discussing the implementation of a vo-

cabulary extractor. Next, we discuss various ways of apply-

ing vocabulary extraction (Section 5), and then we present

an evaluation of the system in Section 6.

4 Implementation of a Vocabulary Extrac-
tion System

The description of our approach will be simplified by

some extra terminology. A tandem repeat is a string � that

can be written as the concatenation of some other string �
with itself, e.g., �����	� . A tandem array is a series of

repeated substrings; a string is a tandem repeat if it can be

written as some substring � concatenated with itself � times

for some ����� ; e.g.,

��������� � �!��" #%$'&

The tandem repeat types of set of strings (are the strings

that appear in tandem arrays in (. That is, the tandem repeat

types are the set
) �+* #-,�.0/ (� � /1. *������ � � ���2��&435"

2

A primitive tandem repeat type is a tandem repeat type that

does not contain any other tandem arrays.

Finally, a string � of symbols is atomic with respect to a

set of exemplar strings (if and only if, for all strings .0/ (
and all prefixes � such that ��� � � , all occurrences of �
in . are followed by � . Informally, if � is atomic then we

never see any prefix of � without seeing all of � (at least as

far as the exemplar strings are concerned).

Our goal is to find the atomic substrings and tandem re-

peat types in a set of strings S. To accomplish this, the exe-

cution traces are represented in a suffix tree, which is used

to identify tandem repeat types and later to identify atomic

substrings. For completeness, we briefly review this data

structure.

4.1 Suffix trees

A suffix tree (see [9]) is a trie that stores one or more

strings and their suffixes. For example, a suffix tree contain-

ing the word “banana” also contains “anana” and “nana”

and so on. This is shown in Figure 1, where $ has been

added as an end-of-string symbol ensuring that each suffix

ends at a leaf node. Interior nodes having only one child are

not usually represented as explicit nodes in practice; omit-

ting them (and labeling the edges with strings instead of

characters) allows many operations on the data structure to

be performed more quickly. This leads to a compact suffix

tree, illustrated in Figure 2 for the banana example.

b

a

n

a

n

a

n

a

n

a

n

a

n

a

$

$

$

a

$

$
$

Figure 1. A suffix tree for
the string “banana”. There
is one symbol per edge and
this structure is sometimes
known as an explicit suffix
tree.

b
a

n
a

n
a

n
a

n
a

n
a

n

a

$

$

$

a

$

$
$

Figure 2. A compact
suffix tree for “banana;”
nodes with just one child
have been removed and the
edges are now labeled by
substrings rather than sym-
bols.

We use � to denote the node in the explicit suffix tree that

is reached by starting at the root and traversing the edges la-

beled by the symbols of � in order. For example, the right-

most leaf node in Figure 1 is denoted by � ��� . If � is also a

node in the compact suffix tree, we refer to it as an explicit

node, otherwise it is an implicit node in the compact suffix

tree.

Suffix trees were previously suggested for intrusion de-

tection by [19]. The idea there was to represent normal pro-

gram behavior using a suffix tree rather than, say, a database

of � -grams as in stide. If ASCII characters are replaced by

symbols representing system calls, then it is clear that every
� -gram in an audit trace . is represented somewhere in a

full suffix tree for . . In fact, this is still true if the tree is

pruned at depth � , and the resulting data structure can be

more compact than an � -gram database.

Our own goal, however, is preprocess audit data before

it is seen by the intrusion detector, using suffix trees to an-

alyze the structure of the data. As a simple example, one

could argue that the labels of the edges of the compact suf-

fix tree in Figure 2 represent, in some sense, the vocabulary

of substrings that can be found in the word banana. We can

take advantage of that fact in the construction of intrusion

detectors.

The advantage of using suffix trees for such analyses is

that many other useful operations can also be performed ef-

ficiently. The tree itself can be constructed in linear time

[20, 26, 27], and operations like pattern-matching can be

performed efficiently once the tree is constructed. One op-

eration of particular interest in this paper is the detection of

tandem arrays [10, 24].

4.2 Analyzing the structure of audit traces

It is straightforward to store two or more symbol-strings

in a single suffix tree. If this is done with a compact suf-

fix tree, we can then use it to enumerate atomic substrings.

Because of the way a compact suffix tree is constructed, the

labels of the edges originating at the root are the atomic

substrings with respect to strings represented in the tree.

�����	��
���
If a compact suffix tree is constructed from

a set of strings (, then the labels of the edges leading out
of the root node and their prefixes are exactly the atomic
substrings of (.

3

���������	�
To show that each substring labeling an edge out of

the root node is an atomic substring, we assume the con-

trary: that such an edge label � has the form � � (meaning

that some . / (has ��� as a substring), and that the string

� ��
 also appears in some string .0/ (, where ������
 . With-

out loss of generality, we assume that � and ��
 differ in their

leftmost symbols (if the other conditions hold we can al-

ways find a � � � and ��
 that also cause this condition to be

satisfied). (must contain some string that has a suffix start-

ing with ��� and some string that has a suffix starting with

� ��
 ; this is just a restatement of the assumption that ��� and

� �
 are both substrings of strings that occur in (. Thus, � �
and ���
 are nodes in the explicit suffix tree, as is � . But �
has two children: one labeled with the leftmost symbol in

� , and one labeled with the leftmost symbol of ��
 . Thus, �
is an explicit node in the compact suffix tree. But � � ��� is

a descendant of � in the explicit suffix tree (since it is a trie

on the symbols in these strings), so � is not a descendant

of the root in the compact suffix tree, which contradicts the

original assumption. The same argument shows that each

prefix of � is atomic.

On the other hand, if � is atomic then no ancestor of �
has more than one child in the explicit suffix tree. Hence

� is an explicit node in the compact suffix tree that is a

descendant of the root, or else it is an implicit node on an

edge leading out of the root. In the former case, � is the

label of an edge leading from the root, and in the latter case

� is a prefix of such a label. �
The potential usefulness of atomic substrings lies in the

fact that they help us model the data to some extent. That

is, if � is an atomic substring and we see some prefix of

� , then we expect the remainder of � to follow. If we

see something else instead, we can regard it as a potential

anomaly. On the other had, once we have established that

the whole atomic substring � really is there, we can take

the position that this substring is normal, and not in need

of further analysis. Thus, we can replace it with a meta-

token before sending the audit trace on to another intrusion

detection algorithm such as stide.

For the purposes of intrusion detection, it is also use-

ful to detect tandem repeats. When the audit data are se-

quences of system calls generated by an executing program,

we can make the heuristic assumption that tandem repeats

are caused by loops in the program. This lets us represent

loops more compactly in the behavior model; for example,

we might replace each tandem repeat with a meta-symbol

indicating that the corresponding sequence of symbols was

seen repeated one or more times. Thus, banana might be

represented as bAAa, with the meta-symbol A representing

the substring an, or baBB with B representing na.

Of course, it may be that the number of times a substring

repeats is important for intrusion detection. For example,

a loop that is executed too few or too many times may in-

dicate malicious activity. But from a practical standpoint,

we cannot represent such information explicitly by keep-

ing a database where the substring is repeated once in one

example, twice in another example, three times in the next

example and so on potentially ad infinitum. Therefore, even

if we decide to store information about the number of times

an audit subsequence can be repeated, we have to start by

identifying the repeated subsequences themselves.

4.2.1 Detection of tandem repeats

An algorithm for linear-time detection of tandem repeats is

given in [10], and requires other algorithms described in [9].

(Demonstration source-code at [11] is also helpful in im-

plementing these algorithms, since the description in [10]

is incomplete.) A description of this algorithm would re-

quire more space than is available in this paper, but to bring

across the general idea we present a simpler (though more

expensive) algorithm for tandem repeat detection.

To simplify the exposition we limit ourselves to suffix

trees containing only one string. The extension to trees with

more than one string is straightforward.

The first step in detecting tandem arrays is to outfit each

leaf with a suffix position. Recall that each leaf represents

the end of some suffix of the string . stored in the tree. The

suffix position stored at a leaf is the beginning of the suffix

represented at that leaf (that is, if � is a suffix of . , then the

suffix position of � is the position where � starts within .).
For example, the rightmost leaf in Figure 2 represents the

suffix na, which begins at position � in the string banana,

hence the suffix position of that leaf is � .

The second step is to propagate the suffix positions up-

ward to the interior nodes. This is done by giving each in-

terior node a leaf-list containing the suffix positions of its

offspring. We also compute the string depth of each interior

node � , defined to be the number of symbols in the substring

� , which is the number of on the edge-labels that must be

traversed to reach � starting from the root. For example, the

edge leading from the root of Figure 2 and labeled na leads

4

to a node whose string depth is two since the edge-label

contains two characters. If we traverse the edge labeled na

from that node we arrive at a node whose string-depth is � .

The leaf-lists and string-depths contain enough informa-

tion to identify the tandem repeats in � .

�����	��
�� �
[24] and elsewhere: Consider two positions �

and � of some string . , $�� � � � ��� .�� , and let 	 denote
��
�� . Then the following statements are equivalent:

 There is a tandem repeat of length � 	 starting at posi-
tion � in .

 � and � both appear in the leaf-list of some node in the
suffix tree for . whose string-depth is greater than or
equal to 	 .

The reader can verify that the lemma holds in Fig-

ures 1 and 2. Verifying the general case may also be a help-

ful exercise for understanding the nature of suffix trees.

Thus, a straightforward algorithm for finding the tandem

repeats in a suffix tree is to visit each node and enumerate

all pairs of entries on the leaf list that satisfy lemma 2. The

enumeration process that takes place at each node is what

prevents this from being accomplished in linear time.

Even though our actual implementation does use linear-

time detection of tandem repeats, additional time and space

can still be saved by preprocessing repeats of length one.

This can be done without a suffix tree using straightfor-

ward algorithm shown in Figure 3. The advantage is that, at

least for the data in our evaluations, considerable data com-

paction can be accomplished by replacing each such repeat

with a meta-symbol or with a single occurrence of the re-

peated symbol. This is useful for two reasons. First, the

“linear” in the linear-time algorithm includes the number

of repeats that must be found; second, virtual memory sys-

tems perform poorly with suffix trees due to the non-local

way nodes are accessed, meaning that the suffix tree should

ideally fit into real memory. Preprocessing serves to reduce

the size of the suffix tree, and it also removes the potentially

numerous tandem arrays the are just repetitions of a single

symbol.

4.2.2 Stage 1

The algorithm of [10] marks each string with the start- and

endpoints of each tandem repeat. This makes it easy to con-

Are there input
symbols left? exit

No

Read value of NextSym
from the input stream

Is NextSym
the same as

Prevsym?

Y

output PrevSym
N

PrevSym = NextSym

PrevSym = Start Symbol

Figure 3. A simple algorithm in which two or more con-
secutive occurrences of any symbol are replaced by just one
occurrence of that symbol. Any symbol that is identical to
the previously-seen symbol is simply dropped.

struct a nondeterministic finite automaton that recognizes

the tandem repeat types even though some of them might

contain tandem arrays themselves. Conceptually, the idea is

to construct an automaton that accepts two or more occur-

rences of any tandem repeat type seen in the training data.

Furthermore, if a tandem repeat type contains tandem arrays

itself, the automaton must accept them even if those tandem

arrays contain a different number of repeats. That is, if � is

a tandem repeat type, then, for all ��� � � � ��� such that � can

be written as � � � � � � , the automaton for � must also accept

two or more occurrences of � � ��� � � for any � ��$.
One way to construct such automata is to build a list of

tandem repeats sorted in increasing order of length. The

shortest repeats on the list are then replaced with meta-

symbols in situu (recall that they are represented by their

start- and endpoints in the original audit traces) at the same

time that automata are constructed to recognize them. This

process continues for longer repeats, and as each repeat is

processed we scan it for meta-symbols inserted during pre-

vious iterations of the procedure. When a meta-symbol for

the repeat-type � encountered during the processing of a re-

peat � , we can insert the automaton that recognizes � into

the one that recognizes � . (In other words, if � � � ��� � � ,

5

where � a meta-symbol representing the tandem repeat type

� , then we start by constructing an automaton that accepts

� � � � � # � ��� � � & � �

treating � as a symbol. Then we can easily replace � with

an automaton that accepts �	� � .)

Note that each symbol from the original audit stream is

scanned only once, and in addition each meta-symbol is

scanned only once. But in practice, it is also useful to elim-

inate redundant tandem repeat types. This is more compli-

cated than it may appear to be at first, because two distinct

repeat types that contain embedded repeats may become

identical after the embedded repeats are replaced by meta-

symbols. For example, the repeat types baac and baaac

are not identical and hence not redundant to one another, but

if the repeats aa and aaa are both replaced by the meta-

symbol A, then baaac and baac are both represented as

bAc, and we we only need to submit one of the two copies

of bAc to further processing. To eliminate such redundan-

cies, we scan the list of tandem array types many times,

resulting an algorithm of superlinear complexity. Nonethe-

less, the combined lengths of the tandem repeat types are so

much smaller in practice then the combined lengths of the

original audit streams that this elimination of redundancy

leads to a performance improvement.

One further subtlety is that, even if we believe that

tandem arrays represent loops in the underlying applica-

tion, the process described above for detecting tandem

repeat types may not correctly identify the beginnings

and ends of these loops. For example, the sequence

of audit events write write read write write

read write may represent two iterations of a loop that

performs write write read, followed by a write

that is not inside the loop. It may also represent two itera-

tions of a loop containing write read write preceded

by a write outside the loop.

We deal with this problem by making each finite state

machine accept rotations of the repeat type that it was built

for. (If � is a symbol and � is a string, then � � is a rotation

of ��� , and all rotations of � � are also rotations of ��� .)

A single nondeterministic automaton is built for each ap-

plication by combining the automata that accept the applica-

tion’s tandem repeat types (those smaller automata are also

nondeterministic at this point). Figure 4 shows the result-

ing NDFA, constructed from one week of audit data for the

Unix program pwd taken from data collected for the 1998

Lincoln Labs intrusion detection evaluations.

Finally, to facilitate faster operation during the detection

phase, an equivalent DFA is constructed for each of the ND-

FAs (one for each application whose audit data will be mon-

itored). This is done using well-known techniques (see [2]

for example). While this can be computationally expensive

in principle, the simple and regular structure of NDFAs ac-

cepting tandem repeat types makes the process reasonably

fast. Figure 5 shows the DFA obtained from the NDFA of

Figure 4.

ε ε

ε

190:0

189:0

ε

ε

190:0

189:0

ε

ε

ε

189:0

190:0

ε

ε

189:0

190:0

ε

ε

Figure 4. A nondetermin-
istic finite automaton that ac-
cepts the tandem repeat types
found traces for the appli-
cation pwd in one week of
training data from the 1998
Lincoln Labs intrusion detec-
tion evaluations. The tran-
sitions are labeled with � or
numbers representing audit
events. In fact, there is only
one repeat type consisting of
two audit events; the automa-
ton accepts one or more oc-
currences of this repeat and
one or more occurrences of
its single rotation.

189:0 190:0

190:0

190:0

189:0

189:0

189:0

189:0

190:0

190:0

Figure 5. The deterministic
finite automaton that accepts
the same repeat types.

4.3 Tokenizing audit data

Once DFAs have been constructed to recognize the

atomic substrings and tandem arrays in an audit trace, they

can be used to tokenize the data. This process is similar to

lexical analysis, except that a lexical analyzer reduces the

shortest substring matching a given regular expression to a

6

corresponding token, while we reduce the longest substring.

One approach is to replace each tandem array and each

atomic substring with a meta-symbol unique to it. An alter-

native is to replace each tandem array with a single copy of

the repeated substring. The second approach is somewhat

preferable; the first tends to increase the number of unique

features in an audit trace even as it decreases the length of

the traces. Increasing the number of features would con-

tradict our original intention of simplifying the audit data,

and, indeed, it seems to make the task of learning normal

application behavior slightly more difficult. Replacing each

tandem array with one copy of the corresponding tandem

repeat (e.g., the repeated substring) leads to better results.

During training, tokenization is first performed on the

audit traces that will be used for training. This is done by us-

ing the DFAs that were originally constructed from the same

audit traces. These tokenized audit traces are then passed to

a learning algorithm (such as stide) that then builds an ac-

tual anomaly detector. During detection, the same DFAs are

used to preprocess new audit traces before they are passed

to this detector. The process is illustrated in Figure 6.

Training Phase

Detection Phase

Build DFAs

DFAs

DFAs

Learning
Algorithm

Detector

Training
Data

Live Data Alarms

Figure 6. A diagram showing the use of vocabulary ex-
traction in an intrusion detection system. Ovals (the DFAs
and the detector) represent artifacts of the training process,
and the solid lines represent the flow of data from audit
traces. In the training phase, audit data is used to build
DFAs that tokenize the audit data and to build detectors;
when the detector is fielded, the same DFAs preprocess new
audit data before it is seen by the detectors.

5 Applications of Vocabulary Extraction

One of the benefits of vocabulary extraction is that can

provide significant reductions in data volume. This can be

useful simply from the implementation standpoint, since ex-

ecution traces can contain hundreds of thousands of sym-

bols even for programs that do not execute indefinitely. To-

kenization not only reduces the length of execution traces;

it can also reduce the number of unique traces, which makes

the audit information easier to store. Furthermore, reducing

the data volume can make audit data can be easier to pro-

cess in real time, though this benefit can only be realized if

the process of tokenization is efficient itself.

The table below shows the effects of tokenization on au-

dit traces for the Unix program ps, taken from the a corpus

of data from MIT Lincoln Labs [1]. This data was used for

two evaluations of intrusion detection systems, and evalua-

tions took place in 1998 and 1999. The 1998 contained data

representing eight weeks of activity on a simulated com-

puter network, and this is the data we use in the table. We

show the results for ps because the traces were particulary

long and numerous, in fairness we should mention that the

execution traces from some other applications were com-

pressed by as little as ����� .

Week

Number of
unique traces
(unprocessed)

Number of audit
events
(unprocessed)

2 81 14,007
3 150 31,276
4 167 39,868
5 202 66,746
6 99 22,350
7 88 19,355
8 144 30,737
2-8 483 125,872

Week

Number of
unique traces
(processed)

Number of audit
events
(processed)

2 24 877
3 34 1,528
4 32 1,942
5 58 3,501
6 25 1,196
7 25 1,375
8 51 1,986
2-8 161 8,750

The table shows the data reduction that results from pre-

processing repeats in all eight weeks of the 1998 Lincoln

Labs data for ps. We see that on average over the 8 weeks

of data, the number of unique traces is reduced by nearly��� � , while the number of events is reduced by about � ��� "
(When all seven weeks are taken together, the number of

7

unique strings is not the sum of the unique strings for each

week, since there is some overlap. Hence the results ob-

tained by processining all seven weeks at the same time are

also not sums of the corresponding results from the inidi-

vidual weeks.)

5.1 Tokenization in intrusion detection

The main reason for for performing vocabulary extrac-

tion is that we hope it will improve the performance of in-

trusion detectors. We evaluated three techniques for prepro-

cessing audit data before sending it to the intrusion detector.

1. Simple tokenization: Each tandem array (sequence

of repeated substrings) is replaced by a single meta-

token representing the particular sequence of symbols

that is repeated. Likewise, sequences of symbols that

always occur together are replaced by a metasymbol

representing that sequence.

2. Deflation: Each tandem array is replaced by just a

single occurence of the repeated substring. The actual

audit symbols, however, are the same ones that appear

in the original trace (they are not metasymbols).

3. Alarm censoring: The data is sent to the intusion

detector in its original form (or it is deflated), but if

an anomaly that occurs entirely within a vocabulary

string, that anomaly does not raise and alarm. (Since

the regular expression parsers recognize features that

occurred in the training data, and since that data is as-

sumed to represent normal behavior, we assume that

those features are themselves representative of normal

behavior. Therefore an anomaly within a vocabulary

string is assumed to be a false alarm.)

6 Evaluation

We applied vocabulary extraction in conjunction with

stide. The latter detection technique is generally combined

with post-processing that averages the last � anomaly scores

(for some �), leading to a filtered anomaly score that takes

on a value between � and $, depending on how many alarms

were raised by the last � audit events. This allows us

to set an alarm threshold; we signal a possible intrusion

only when the filtered anomaly score exceeds this thresh-

old. In our experiments, we applied the same type of post-

processing.

Our training data came from several sources, the most

important of which was a series simulations of a computer

network conducted by Lincoln Laboratories in 1998 and

1999. We have twelve weeks worth of this data, but at

the time these experiments were conducted we had not yet

separated intrusions from benign behavior in one week of

the data. Some further data was supplied by Johns Hop-

kins University. Finally we discovered that we needed addi-

tional data describing the normal behavior of five programs:

sendmail, eject, in.ftpd, fdformat, and xterm,

so we collected data for this programs on our own system

and by using automatic test data generation techniques such

as those described in [21].

The data contains evidence of several kinds of attacks,

which can be divided into two broad classes: (1) probes and

denial-of-service attacks, and (2) unauthorized accesses and

unauthorized privilege elevations. Our systems are meant

to detect the second class of attacks, so we did not evaluate

them on attacks in the first class.

Furthermore, some attacks do not leave identifiable

traces in the audit data. For example, some attacks consist

of moving files to a location where they should not be. Iden-

tifying such attacks means knowing what locations are dis-

allowed; in other words, the intrusion detector must know

the details of the system’s local security policy. Our pro-

totypes currently have no knowledge of local security poli-

cies, so they do not detect such attacks. Another attack in-

volves setting up a malicious HTTP client to transfer infor-

mation off of the system using cookies. This attack does

not involve misuse of any existing programs, so (strictly

speaking) our systems cannot detect such an attack either.

In reality, such attacks are sometimes detected because of

statistical variations between the behavior of benign users

and malicious users, but we do not know how easily an in-

truder could avoid this sort of detection. Moreover, our sys-

tems are meant to detect program misbehavior, not profile

computer users. Therefore we decided that these particular

attacks are out of the intended scope of the system. As a re-

sult, just under 93% of the access and elevation-of-privilege

attacks are in the scope of our system.

There are 181 types of system calls recorded in the audit

data, and these events form the inputs to our intrusion detec-

tion system. The events are collated into sequences of audit

events generated by individual programs, and a different in-

trusion detector is trained for each program. The anomaly

score for a session is the maximum of the anomaly scores

8

for the programs in that session

The experimental data is divided into user sessions, some

of which contain intrusions. Our intrusion detectors exam-

ine all program executions that occur in a session, and the

highest anomaly score for any of these programs is used as

the anomaly score for the session.

To quantify the performance of a given system on a given

set of data, we measure how many benign sessions are

falsely marked as being intrusive, and measuring how many

intrusive sessions are overlooked. All three systems out-

put a number between � and $ describing how anomalous

a given session is, so the performance of any given system

depends on the threshold at which we raise the alarm. By

varying the threshold and plotting the percentage of false

alarms against the percentage of missed intrusions, we ob-

tain a plot similar to a receiver operating curve, which is a

convenient way to visualize the performance of the intru-

sion detectors.

We tested our approach using seven-fold cross valida-

tion. In a series of seven experiments, the system was

trained using all of the data except for one of the seven

weeks of data we had from Lincoln Laboratories. The sys-

tem was then tested using the remaining week of data, in

order to test immunity to false alarms. None of the audit

data reflecting intrusive activity was used during training,

so the systems were tested on all of the intrusive data dur-

ing each of the seven cross-validation phases.

The stide algorithm was tested with a number of differ-

ent choices for the � -gram length. In the work of [7] and

elsewhere, it was reported that six was the best choice for
� , but this is not so for the Lincoln Labs data, where the

best choice for � appears to be three (see [14, 25] for a dis-

cussion of why different choices work in different settings).

For each value of � between three and ten, we tested the

algorithm with and without vocabulary extraction.

Figure 7 shows curves comparing the performance of the

detectors with and without alarm censoring.

The best performance for both detectors was at � =3; this

value of � led to the lowest false alarm rates while still al-

lowing detection of all the attacks that are within the capa-

bilities of the detectors. At this level, the false alarm rate

was reduced from � " � � � to � " ����� , about a twenty percent

improvement.

stide with and without vocabulary extraction

stide

stide w/ vocab extraction

%attacks detected

-3%false positives x 10

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

0.00 100.00 200.00 300.00 400.00

Figure 7. The performance of � -stide with and without
vocabulary extraction. The vertical axis represents the per-
centage of attacks detected, and the horizontal axis rep-
resents the percentage of user sessions that raised false
alarms.

7 Resource Requirements

Our suffix trees are constructed using the Ukkonen al-

gorithm (see [9]) whose time and space requirements grow

linearly in the number of symbols that are inserted into the

suffix tree. The algorithm for detecting tandem repeats was

also linear in complexity. However, one notorious short-

coming of suffix trees is that they perform poorly when they

have to be stored in virtual memory. Elements of a suf-

fix tree have to be accessed in a non-localized way, so the

caching and pre-fetching heuristics of virtual memory man-

agers tend to be ineffective. Hence suffix-tree algorithms

tend to cause excessive swapping once the trees become to

large for real memory.

Another potential performance issue is the construction

of regular-expression parsers. Efficiency is of great impor-

tance during detection, so the parsers should be determinis-

tic, but the encoding of a set of tandem repeats as a regular

expression generally leads to a nondeterministic parser. We

used a standard algorithm to convert the nondeterministic

parsers to deterministic ones (see [2] for example), but this

algorithm can also be time-consuming.

In practice, we found that our suffix trees did not grow

9

into virtual memory. Our evaluations were conducted on

machines with 256M of real memory, but we did not opti-

mize the space requirement of the trees (indeed, our archi-

tecture made in convenient for implementation reasons to

store each string twice in the suffix tree structure, once ver-

batim and once in the tree itself). However, the detection

of atomic substrings requires that all audit traces for an ap-

plication be stored in a single suffix tree, and this proved

impractical unless the audit traces had already been com-

pressed by processing their tandem arrays. In other words,

practical performance considerations prevent the applica-

tion of atomic substring in isolation, though tandem array

detection can be applied by alone.

It appears that our execution traces were well-suited for

the application of suffix trees. Since there are 181 types

of symbols in our audit traces, each node in the suffix tree

could have as many as 181 children, but in practice the av-

erage number of children per node appears to be in the low

single digits due to the relatively regular behavior patterns

of the programs being monitored.

The conversion of nondeterministic regular expression

parsers into deterministic ones also was no hurdle in prac-

tice. Once again, the regular structure of the execution

traces seems to come to our aid; the set of states reachable

by non-deterministic transitions from a given state also ap-

pears to be comparatively small on average.

At the time of this writing, we do not exact timing infor-

mation, but the end-to-end processing of our training data

(which contains some twenty-five million events in 169,251

execution traces from thirty-seven applications) takes about

twenty-five minutes on a 600MHz Pentium processor.

8 Conclusion

This paper described simple methods for abstracting ir-

relevant details from the execution traces used by program-

based anomaly detectors. An empirical evaluation showed

a twenty-percent reduction in the false-alarm rate when this

technique was applied to the well-known stide algorithm.

The strength of this approach, however, is not its perfor-

mance in conjunction with stide, but the fact that it can

be applied to a large set of program-based anomaly detec-

tors. Preliminary results with several other detectors sug-

gest a comparable (or better) reduction in false alarm rates.

Vocabulary extraction can also be applied in conjunction

with different techniques for monitoring application behav-

ior, such as approach of [23], which in itself provides audit

data at a higher level of abstraction than the BSM subsystem

we used in our evaluation.

Some interesting open problems remain. One especially

pernicious source of false alarms — one that does not ap-

pear in the Lincoln Labs data because of the nature of

the Unix programs used there — is the presence of asyn-

chronous events. In many applications, certain behaviors

may occur at any time, triggered by user actions, sensors,

or communication among threads, to give just three exam-

ples. It would be beneficial to identify these asynchronous

behaviors and either censor them or process them in isola-

tion from the rest of the behavior data. This seems to be

a natural application of vocabulary extraction, and one that

we have not yet explored extensively.

References

[1] Mit lincoln labs. 1999 darpa intrusion detection evaluation,
http://www.ll.mit.edu/ist/ideval/index.html.

[2] A. V. Aho and J. D. Ullman. Principles of Compiler Design.
Addison-Wesley, 1977.

[3] J. Anderson. Computer security threat monitoring and
surveillance. Technical report, James P. Anderson Co., Fort
Washington, PA, April 1980.

[4] J. Cannady. Artificial neural networks for misuse detection.
In Proceedings of the 1998 National Information Systems
Security Conf erence (NISSC’98), pages 443–456, October
5-8 1998. Arlington, VA.

[5] P. D’haeseleer, S. Forrest, and P. Helman. An immunologi-
cal approach to change detection: Algorithms, analysis an d
implications. In IEEE Symposium on Security and Privacy,
1996.

[6] D. Endler. Intrusion detection: Applying machine learning
to solaris audit data. In Proceedings of the 1998 Annual
Computer Security Applications Conference (ACSAC’98),
pages 268–279, Los Alamitos, CA, December 1998. IEEE
Computer Society, IEEE Computer Society Press. Scotts-
dale, AZ.

[7] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A sense of self for Unix processes. In Proceedinges of the
1996 IEEE Symposium on Research in Security and Privacy,
pages 120–128. IEEE Computer Society, IEEE Computer
Society Press, May 1996.

[8] A. Ghosh, J. Wanken, and F. Charron. Detecting anomalous
and unknown intrusions against programs. In Proceedings
of the 1998 Annual Computer Security Applications Conf
erence (ACSAC’98), December 1998.

[9] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, Cambridge, Mass., 1997.

[10] D. Gusfield and J. Stoye. Linear time algorithms for finding
and representing all the tandem repeats in a string, 1998.

[11] J. Knight, D. Gusfield, and J. Stoye. The strmat software-
package, http://www.cs.ucdavis.edu/ gus-
field/strmat.tar.gz, 1998.

10

[12] T. Lane and C. Brodley. An application of machine learning
to anomaly detection. In Proceedings of the 20th National
Information Systems Security Conf erence, pages 366–377,
October 1997.

[13] W. Lee et al. Learning patterns from Unix process execution
traces for intrusion det ection. In Proceedings of AAAI97
Workshop on AI Methods in Fraud and Risk Man agement,
1997.

[14] W. Lee and D. Xiang. Information-theoretic measures for
anomaly detection. In Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, 2001.

[15] T. Lunt. Ides: an intelligent system for detecting intrud-
ers. In Proceedings of the Symposium: Computer Security,
Threat and Count ermeasures, November 1990. Rome, Italy.

[16] T. Lunt. A survey of intrusion detection techniques. Com-
puters and Security, 12:405–418, 1993.

[17] T. Lunt and R. Jagannathan. A prototype real-time intrusion-
detection system. In Proceedings of the 1988 IEEE Sympo-
sium on Security and Privacy, April 1988.

[18] T. Lunt, A. Tamaru, F. Gilham, R. Jagannthan, C. Jalali,
H. Javitz, A. Valdos, P. Neumann, and T. Garvey. A real-
time intrusion-detection expert system (ides). Technical
Report, Computer Science Laboratory, SRI Internationnal,
February 1992.

[19] C. Marceau. Characterizing the behavior of a program using
multiple-length N-grams. In Proceedings of the 2000 new
security paradigm workshop, pages 101–110, 2000.

[20] E. M. McCreight. A space-economic suffix tree construction
algorithm. Jrnl. A.C.M., 23(2):262–272, Apr. 1976.

[21] C. C. Michael and G. E. McGraw. Generating software test
data by evolution. IEEE TSE, 27(9):1085–1110, 2001.

[22] P. Porras and P. Neumann. Emerald: Event monitoring en-
abling responses to anomalous live disturbances. In Pro-
ceedings of the 20th National Information Systems Security
Conference, pages 353–365, October 1997.

[23] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. In Proc. 2000 IEEE Symposium on Security and
Privacy, pages 144–155. IEEE Computer Society, 2000.

[24] J. Stoye and D. Gusfield. Simple and flexible detection of
contiguous repeats using a suffix tree. In Proc. 9th An-
nual Conference on Combinatorial Pattern Matching, vol-
ume 1448 of Lecture Notes in Computer Science, pages 140–
152. Springer-verlag, 1998.

[25] K. M. C. Tan and R. A. Maxion. Why 6? defining the oper-
ational limits of stide, an anomaly-based intrusion detector.
In IEEE Symposium on Security and Privacy, pages 12–15,
2002.

[26] E. Ukkonen. Constructing suffix trees on-line in linear time.
In J. van Leeuwen, editor, Proceedings of the IFIP 12th
World Computer Congress. Volume 1: Algorithms, Software,
Architecture, pages 484–492, Amsterdam, The Netherlands,
Sept. 1992. Elsevier Science Publishers.

[27] P. Weiner. Linear pattern matching algorithms. In Confer-
ence Record, IEEE �����

�
Annual Symposium on Switching

and Automata Theory, pages 1–11, 1973.

11

