Learning Attack Strategies from Intrusion Alerts

Abstract

Understanding the strategies of attacks is crucial forsgcapplications such as computer and network
forensics, intrusion response, and prevention of futui@cks. Though time-consuming and error-prone,
manual analysis has been the dominant way to learn attaategies from intrusion alerts. This paper
presents techniques to automatically learn attack sietéigom intrusion alerts. Central to these techniques
is a model that represents an attack strategy as a grapladksitiith constraints on the attack attributes and
the temporal order among these attacks. To learn the intrgsiategy is then to extract such a graph from a
sequences of intrusion alerts. To further facilitate thalgsis of attack strategies, which is essential to many
security applications such as computer and network foceresid incident handling, this paper presents
technigues to measure the similarity between attack gieste The basic idea is to reduces the similarity
measurement of attack strategies into error-tolerantgisgpnorphism problem, and measures the similarity
between attack strategies in terms of the cost to transferenstrategy into another. Finally, this paper
presents some experimental results, which demonstrafmteatial of the aforementioned techniques.

1 Introduction

It has become a well-known problem that current intrusiclecten systems (IDSs) produce large volumes of
alerts, including both actual and false alerts. As the nétvperformance improves and more network-based
applications are being introduced, the IDSs are generaticrgasingly overwhelming alerts. This problem
makes it extremely challenging to understand and managmtitusion alerts, let alone respond to intrusions
timely.

It is often desirable, and sometimes necessary, to understi#ack strategies in security applications such
as computer and network forensics and intrusion responBSes.example, attack strategies may be used to
profile hackers or hacking tools in computer and networkrsies. As another example, it is easier to pre-
dict attacker's next move, and reduce the damage causedrhgions, if the attack strategy is known during
intrusion response. However, in practice, it usually respithat human users analyze the data collected dur-
ing intrusions manually to understand the attack stratdgys process is not only time-consuming, but also
error-prone. An alternative to manual analysis is to lispaksible attack strategies using vulnerability analysis
tools such as attack graphs [1, 36]. However, these toolsreeg predefined security property so that they can
use modeling checking techniques to identify possibleckhttzequences that may lead to the violation of the
security property.

In this paper, we present techniques to automatically lettack strategies from intrusion alerts reported
by IDSs. Our approach is based on the recent advances isiorralert correlation [11, 32]. By examining
correlated intrusion alerts, our method extracts the caimss intrinsic to the attack strategy automatically.
Specifically, an attack strategy is represented as a ditextyclic graph (DAG), which we call aattack strat-
egy graph with nodes representing attacks, edges representingptivéal) temporal order of attacks, and
constraints on the nodes and edges. These constraintseapthe conditions that any attack instance must
satisfy in order to use the strategy. To cope with variatiorettacks, we use generalization techniques to hide
the differences not intrinsic to the attack strategy.

To facilitate intrusion analysis in applications such asmpater and network forensics, we further develop
techniques to measure the similarity between sequencasasion alerts based on their attack strategies. Sim-
ilarity measurement of alert sequences is a fundamenthlgaroin many security applications such as profiling



hackers or hacking tools, identification of undetectedchipattack prediction, and so on. To achieve this goal,
we harness the results on error tolerant graph/subgrapioigdism detection in the pattern recognition field.
By analyzing the semantics and constraints in similarityasueement of alert sequences, we transform this
problem into error tolerant graph/subgraph isomorphistea®n.

Our contribution in this paper is three-fold. First, we depea model to represent attack strategies as well
as algorithms to extract attack strategies from correlateds. Second, we develop techniques to measure the
similarity between sequences of alerts on the basis of taekastrategy model. Third, we perform a number
of experiments to validate the proposed techniques. Ouergrpntal results show that our techniques can
successfully extract invariant attack strategies fronusaqes of alerts, measure the similarity between alert
sequences conforming to human intuition, and identifycktgpossibly missed by IDSs.

The remainder of this paper is organized as follows. The segtion presents a model to represent and
extract attack strategies from a sequence of correlatedsion alerts. Section 3 discusses the methods to
measure the similarity between sequences of related dlassd on their strategies. Section 4 presents the
experiments we perform to validate the proposed methodgioBeb discusses the related work, and Section 6
concludes this paper. The appendices give details of panalysis, and experimental results.

2 Modeling Attack Strategies

In this section, we present a method to represent and autaihatearn attack strategies from a sequence of
related intrusion alerts. Our method is developed by extenthe alert correlation model by Ning, Cui, and
Reeves [32], which we call the NCR model for the sake of prigiem. In the following, we first give a brief
overview of the NCR model, and then discuss our method.

2.1 An Overview of the NCR Model

The NCR model was developed to reconstruct attack scerfapimsalerts reported by IDSs. It is based on the
observation that “most intrusions are not isolated, buateel as different stages of attacks, with the early stages
preparing for the later ones” [32]. The NCR model requirespherequisites and consequences of intrusions.
The prerequisite of an intrusion is the necessary condftiothe intrusion to be successful. For example, the
existence of a vulnerable ftp service is the prerequisita ftyp buffer overflow attack against this service. The
consequence of an intrusion is the possible outcome of thesion. For example, gaining local access as root
from a remote machine may be the consequence of a ftp buféefiow attack. The NCR model then correlates
two alerts if the consequence of the earlier alert prepanethé prerequisites of the later one.

The NCR model uses logical formulas, which are logical caorations of predicates, to represent the prereg-
uisites and consequences of intrusions. For example, aiscpattack may discover UDP services vulnerable
to certain buffer overflow attacks. Then the predidd@PVulnerableToBORVictimIP, VictimPor} may be
used to represent this discovery.

The NCR model formally represents the prerequisites andampurences of known attacks as hyper-alert
types. Ahyper-alert typeis a triple fact, prerequisite, consequencavherefactis a set of alert attribute
namesprerequisiteis a logical formula whose free variables are alfant, andconsequences a set of logical
formulas such that all the free variablesconsequencare infact Intuitively, a hyper-alert type encodes the
knowledge about the corresponding attacks. Given a hypdrigpe T = (fact, prerequisite, consequence
atype T hyper-alert hs a finite set of tuples ofact, where each tuple is associated with an interval-based
timestamp pegintime, endtimg]. The hyper-aler, implies thatprerequisitemust evaluate to True and all the
logical formulas inconsequenceight evaluate to True for each of the tuples.

The correlation process in the NCR model is to identify pingpare-forrelations between hyper-alerts. In-
tuitively, it is to check if an earlier hyper-aledontributesto the prerequisite of a later one. In the formal



Stream_Do¢
Sadmind_Ping

Mstream_Zombie

Sadmind_Amslverify_Overflow Rsh

Figure 1: An example of hyper-alert correlation graph

model, this is performed through the notions of prereqeiigitd consequence sets. Consider a hyper-alert type
T = (fact, prerequisite, consequencd he prerequisite set (or consequence setyofdenotedPrereq(T) (or
Conseq(T)), is the set of all predicates that appeapirrequisite(or consequenge Moreover, theexpanded
consequence sef 7', denotedExzpConseq(T), is the set of all predicates that are implied Gynseq(T).
Thus, Conseq(T) C ExpConseq(T). Given a typ€el’ hyper-alerth, the prerequisite set, consequence, set
andexpanded consequence sehoflenotedPrereq(h), Conseq(h), and ExpConseq(h)), respectively, are

the predicates itPrereq(T), Conseq(T), and ExpConseq(T) whose arguments are replaced with the corre-
sponding attribute values of each tuplehin Each element itPrereq(h), Conseq(h), or ExpConseq(h) is
associated with the timestamp of the corresponding tupte Then hyper-alert; prepares fothyper-alerth,

if there existp € Prereq(hs) andc € ExpConseq(h1) such thap = ¢ andc.end_time < p.begin_time.

The NCR model uses a hyper-alert correlation graph to reptes set of correlated alerts. Wyper-alert
correlation graphC'G = (N, F) is a connected directed acyclic graph (DAG), whatés a set of hyper-alerts,
and for each paifi1,ns € N, there is a directed edge from to ny in E if and only if n; prepares fomns.
Figure 1 shows a hyper-alert correlation graph adapted f8%h The numbers inside the nodes represent the
alert IDs, and the types of alerts are marked below the quoreting nodes.

Limitations of the NCR model. The NCR model can be used to construct attack scenarioshveine
represented as hyper-alert correlation graphs, fromsmrualerts. Although such attack scenarrefiect
attack strategies, they do not capture the essence of dtegies. Indeed, even with the same attack strategy,
if an attacker changes certain details during attacks, @G& Model will generate very different hyper-alert
correlation graphs. For example, an attacker may repeae@@ssarily) one step in a sequence of attacks many
times, and the NCR model will generate a much more compleclatcenario. As another example, if an
attacker uses equivalent, but different attacks, the NCRehwill generate different hyper-alert correlation
graphs as well. It's then up to the user to figure out manuallydommon strategy behind two sequences of
attacks. This fact certainly increases the overhead insian alert analysis.

2.2 Attack Strategy Graph

In the following, we present a model to represent and autiocait extract attack strategies from correlated
alerts. The goal of this model is to capture the invarianttiack strategies that do not change across multiple
instances of attacks.

The strategy behind a sequence of attacks is indeed aboutchaxsange earlier attacks to prepare for the
later ones so that the attacker can reach his/her final gbak, The prepare for relations between the intrusion
alerts {.e., detected attacks) is intrinsic to attack strategies. Hewen the NCR model, the prepare for
relations are between specific intrusion alerts; they dadirettly capture the conditions that have to be met



by related attacks. To facilitate the representation ofritiariant attack strategy, we transform the prepare for
relation into some common conditions that have to be saligfjeall possible instances of the same strategy.
In the following, we formally represent such a conditionsaagquality constraint

Definition 1 Given a pair of hyper-alert typgd, 7>), anequality constraint fo7},73) is a conjunction of
equalities in the form ofiy = v1 A- - - Au,, = v, Whereuq, - - -, u,, are attribute names ify andvy, - - -, v,, are
attribute names iff,, such that there exig{(u,, - - -, u,,) andp(vy, - - - , v, ), which are the same predicate with
possibly different arguments, iBxpConseq(T;) and Prereq(T3), respectively. Given a typ&; hyper-alert
hy and a typéls hyper-alerth,, hy andhs satisfy the equality constraifitthere existt; € hy andts € hs such
thatti.uy = t9.01 A -+ - At1.u, = t9.v, evaluates to True.

There may be several equality constraints for a pair of hgpent types. However, if a typ#, hyper-alert
hy prepares for a typ&s hyper-alerths, thenh; andhy must satisfy at least one of the equality constraints.
Indeed,h, preparing forh, is equivalent to the conjunction @f; and h, satisfying at least one equivalent
constraint andh; occurring beforehs. Assume that; occurs beforehs. If hy and hs satisfy an equality
constraint for(7y, T3 ), then by Definition 1, there must be a predicate;, - - -, u,) in ExpConseq(T1) such
that the same predicate with possibly different argumestts,, - - - , vy, ), is in Prereq(T3). Sinceh; andhq
satisfy the equality constraint(uy,---,u,) andp(vy,-- -, v,) will be instantiated to the same predicate in
ExzpConseq(hy) and Prereq(hse). This implies thath, prepares forh,. Similarly, if 4, prepares forhs,
there must be an instantiated predicate that appeaf&cifConseq(h1) and Prereq(hs). This implies that
there must be a predicate with possibly different argumentscpConseq(Th) and Prereq(T3) and that this
predicate leads to an equality constraint féy, 7) satisfied byh; andhs.

Example 1 Let us use an example from [32] to illustrate the notion ofadity constraint. Consider the fol
lowing hyper-alert typesSadmindPing= ({ VictimIP, VictimPor}, ExistsHostVictimIP), {VulnerableSadmind
(VictimIP)}), and SadmindBufferOverflow ({VictimIP, VictimPor}, ExistHost(VictimIP) A VulnerableSad-
mind (VictimIP), { GainRootAcces@/ictimIP)}). The first hyper-alert type indicates tfadmindPings a type

of attacks that requires the existence of a host avitt@nlPto succeed, and as a result, the attacker may find out
that this host has a vulnerat&admindservice. The second hyper-alert type indicates that tpis ¢f attacks re-
quires a vulnerabl8admindservice at th&/ictimlIP, and as a result, the attack may gain root access. Itis easy to
see that there is a common predicBt@lnerableSadmind in both Prereq(SadmindBuf ferOver flow) and
ExzpConseq(SadmindPing). Thus, we have an equality constraiiictimI P = VictimI P for (Sadmind-
Ping, SadmindBufferOverflgwwhere the firsiictimlP comes fromSadmindPingand the secondfictimIP
comes fromSadmindBufferOverflow

We observe in many occasions that one step in a sequencedksathay trigger multiple intrusion alerts,
and the number of alerts may vary in different situationsisTh partially due to the existing vulnerabilities
and the hacking tools. For example)i code_shel | [33], which is a hacking tool against Microsoft IS web
server, checks about 20 vulnerabilities at the scanningestad usually triggers the same number of alerts.
As another example, in the attack scenario reported in [B2]attacker tried 3 different stack pointers and 2
commands irSadmindAmslverifyOverflowattacks for each victim host until one attempt succeedednEv
if not necessary, an attacker may still deliberately refieatsame step multiple times to confuse IDSs and/or
system administrators. However, such variations do natgh#he corresponding attack strategy. Indeed, these
variations make the attack scenarios unnecessarily carmgatel may hinder manual or automatic analysis of
the attack strategy. Thus, we decide to disallow such gitusiin our representation of attack strategies.

In the following, an attack strategy is formally represends an attack strategy graph.

Definition 2 Given a setS of hyper-alert types, aattack strategy graphoverS is a quadruplé N, E, T, C),
where (1)(V, E) is a connected DAG (directed acyclic graph); ©2)s a mapping that maps eaehe N to

a hyper-alert type i5; (3) C is a mapping that maps each edge, n2) € E to a set of equality constraints
for (T'(n1),T(n2)); (4) For anyny,ne € N, T(n1) = T(ng) implies that there existas € NN such that
T(n3) # T(n1) andng is in a path between; andn,.
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Figure 2: An example of attack strategy graph

In an attack strategy graph, each node represents a stepduerse of related attacks. Each elgg n9)
represents that a typE(n,) attack is needed to prepare for a successful #jpe,) attack. Each edge may
also be associated with a set of equality constraints satibfy the intrusion alerts. These equality constraints
indicate how one attack prepares for another. Finally, peseented by condition 4 in Definition 2, the same
type of attacks should be considered as one step, unlesarinay different stages of the attacks.

Note that attack strategies may also be specified manuaiynguages such as LAMBDA [12] and STATL
[15]. However, manual specification of attack strategiegiires prior knowledge of the strategies, and is also
time-consuming and error-prone. Tools based on modelieglkihg techniquese(g, attack graphs [21, 36])
can certainly be used to build attack strategies from kndgdeof individual types of attacks. However, these
methods require clearly identified security propertiesuto the model checking tools, which may not always
be available in reality. In contrast, our notion of attadkatgy graph is intended to represent the strategies
extracted from correlated intrusion alerts. Based on tleeviedge about individual attack types, a program can
automatically extract attack strategies from correlatgdision alerts.

Now let’s see an example of an attack strategy graph.

Example 2 Figure 2 is the attack strategy graph extracted from the rgieet correlation graph in Figure 1.
The hyper-alert types are marked above the correspondidgshand the equality constraints are labeled near
the corresponding edges. This attack strategy graph glshdws the component attacks and the constraints
that the component attacks must satisfy.

2.2.1 Learning Attack Strategies from Correlated Intrusion Alerts

As discussed earlier, our goal is to learn attack strategigsmatically from correlated intrusion alerts. This
requires that we extract the constraints intrinsic to atsategy from alerts so that the same constraints apply
to all the other instances of the same strategy.

Our strategy to achieve this goal is to process the corgklateusion alerts in two steps. First, we aggregate
intrusion alerts that belong to the same step of a sequenattamks into one hyper-alert. For example, in
Figure 1, alerts 002 through 005 are indeed attempts of the sdétack with different parameters, and thus they
should be aggregated as one step in the attack sequencaedSeeocextract the constraints between the attack
steps and represent them as an attack strategy graph. Foplexafter we aggregate the hyper-alerts in the
first step, we may extract the attack strategy graph showigimé 2.

The challenge lies in the first step. Because of the variatidattacks as well as the signatures that IDSs use
to recognize attacks, there is no clear way to identify sitra alerts that belong to the same step in a sequence of
attacks. In the following, we first attempt to use the attggetinformation to do so. The notion afjgregatable
hyper-alerts is introduced formally to clarify when the satype of hyper-alerts can be aggregated.

Definition 3 Given a hyper-alert correlation graghz = (N, E), a subsefV’ C N is aggregatableif (1) all
nodes inN’ are the same type of hyper-alerts, andy2),n, € N’, if there is a path fromm; to ns, then all
nodes in this path must be iW'.

Intuitively, in a hyper-alert correlation graph, whererugion alerts have been correlated together, the same
type of hyper-alerts can be aggregated as long as they argsedtin different stages in the attack sequence.
Condition 1 in Definition 3 is quite straightforward, but dition 2 deserves more explanation. Consider the
same type of hyper-alerts, andhs. If hy prepares for a different type of hyper-aléft(directly or indirectly),
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Algorithm 1. ExtractStrategy
Input: A hyper-alert correlation grapfG.
Output: An attack strategy grapASG.
Method:
1. LetCG = GraphReduction@G).
2. LetASG = (N, E, T, C) be an empty attack strategy graph.
3. for each hyper-alet in CG’
4. Add a new node, denoteq,, into N and sefl’(n;,) be the type of.
5. for each edgéh, h') in CG’
6. Add (nh,nh/) into E.
7.  for eachp. € ExpConseq(h) andp, € Prereq(h’)
8. if p. = pp then
9. Add intoC(ny,, np/) the equality constrair(u; = vi) A+ A (un = vy),
whereu; andv; are theith variable ofp. andp, before instantiation, respectively,
10.return ASG(N,E, T, C).

Subroutine GraphReduction
Input: A hyper-alert correlation grapfG = (N, E).
Output: An irreducible hyper-alert correlation grapgtG’ = (N', E).
Method:
1. Partition the hyper-alerts i into groups such that the same type of hyper-alerts are all
in the same group.
2. for each group=
3. ifthereisapatly,ny,---,nk, ¢ in CG such that only andg’ in this path are ir7 then
4. Divide G into G1, G, andGj such that all hyper-alerts i@¥; occur beforeny,
all hyper-alerts inGs occur aftems, and all the other hyper-alerts are(h.
5. Repeat steps 2 to 4 until no group can be divided.
6. Aggregate the hyper-alerts in each group into one hylegt-a
7. Let N’ be the set of aggregated hyper-alerts.
8.for allny,ny € N’
9. if there existghi, ho) € E andh; andh, are aggregated inte; andn., respectively
10. add(ny,ns) into E'.
11.return CG’ = (N', E’).

Figure 3: An algorithm to extract attack strategy graph fihyper-alert correlation graph

and »/ further prepares fohs (directly or indirectly), h; and hy obviously belong to different steps in the
same sequence of attacks. Thus, we shouldn't allow them &mteegated together. Although we have never
observed such situations, we cannot rule out such posigibili

Based on the notion of aggregatable hyper-alerts, the faptia learning attack strategy from a hyper-alert
correlation graph is quite straightforward. We only neealemtify and merge all aggregatable hyper-alerts. To
proceed to the second step in strategy learning, we needea-higrt correlation graph in which each hyper-
alert represents a separate step in the attack sequenosalipwe call such a hyper-alert correlation graph an
irreducible hyper-alert correlation graph.

Definition 4 A hyper-alert correlation grapfiG = (N, E) is irreducibleif for all N’ C N, where|N'| > 1,
N’ is not aggregatable.

Figure 3 shows the algorithm to extract attack strategy ligdpom hyper-alert correlation graphs. The
subroutineGraphReductions used to generate an irreducible hyper-alert correlaraph, and the rest of the
algorithm extracts the components of the output attackegtyagraph. The steps in this algorithm are self-
explanatory; we do not repeat them in the text. Lemma 1 eashed the output of algorithm 1 indeed satisfies
the constraints of an attack strategy graph. The proof ofrharh can be found in Appendix A.

Lemma 1 The output of Algorithm 1 is an attack strategy graph.



2.3 Dealing with Variations of Attacks

Algorithm 1 in Figure 3 has ignored equivalent but differamtacks in sequences of attacks. For example,
an attacker may use eithpmapdumpor SadmindPing to find a vulnerable Sadmind service. As another
example, an attacker may use eitf8admindBufferOverflowr TooltalkBufferOverflowattack gain remote
access to a host. Obviously, at the same stage of two segquehagtacks, if an attacker uses equivalent but
different attacks, Algorithm 1 will return two differenttatk strategy graphs, though the strategies behind them
are the same.

We propose to generalize hyper-alert types so that the dynidifference between equivalent hyper-alert
types is hidden. For example, we may generalize [8atdmindBufferOverflovand TooltalkBufferOverflow
attacks intaRPCBufferOverflow

A generalized hyper-alert type is created to hide the urssecyg difference between specific hyper-alert
types. Thus, an occurrence of any of the specific hypersagould imply an occurrence of the generalized
one. This is to say that satisfaction of the prerequisite gpecific hyper-alert implies the satisfaction of the
prerequisite of the generalized hyper-alert. Moreoverpicer all possible impact of all the specific hyper-alerts,
the consequences of all the specific hyper-alert types dhmmuincluded in the consequence of the generalized
hyper-alert type. It is easy to see that this generalizatay cause loss of information. Thus, generalization of
hyper-alert types must be carefully handled so that inftionaessential to attack strategy is not lost.

In the following, we formally clarify the relationship bed&n specific and generalized hyper-alert types.

Definition 5 Given two hyper-alert type$, andT, whereT, = (facty, prereqq, conseqy) andTy = (facts,
prereqs, conseqs), we sayT, is more general thaffs (or, equivalently,T is more specific thafT}) if there
exists an injective mapping from fact, to fact, such that the following conditions are satisfied:

e If we replace all variables in prereg, with f(z), preregs impliesprereq,, and

e If we replace all variables in conseq, with f(z), then all formulas irconseq, are implied byconseq,.
The mappingf is called thegeneralization mappinfrom 7 to T},.

Example 3 Suppose the hyper-alert typ&admindBufferOverflowmnd TooltalkBufferOverflonare specified
as follows: SadmindBufferOverflow ({VictimIP, VictimPor, ExistHost(VictimIP) A VulnerableSadmind
(VictimIP), {GainRootAcces$VictimIP)}), and TooltalkBufferOverflow= ({VictimIP, VictimPor}, ExistHost
(VictimIP) A VulnerableTooltall(VictimIP), {GainRootAccesgvictimIP)}). Assume thaVulnerableSadmind
(VictimIP) imply VulnerableRPQVictimIP). Intuitively, this represents that if there is a vulnem8admind
service aVictimlIP, then there must be a vulnerable RPC servigg, the Sadmind service) &ctimIP. Simi-
larly, we assum&ulnerableTooltalk VictimIP) also impliesvulnerableRPQVictimIP). Then we can generalize
both SadmindBufferOverflowand TooltalkBufferOverfloninto RPCBufferOverflow= ({VictimIP}, ExistHost
(VictimIP) A VulnerableRPQ\VictimIP), {GainRootAccesévictimIP)}), where the generalization mapping is
f(VictimIP) = VictimIP.

By identifying a generalization mapping, we can specify lzogpecific hyper-alert can be generalized into a
more general hyper-alert. Following the generalizatioppitag, we can find out what attribute values of a spe-
cific hyper-alert should be assigned to the attributes oftreeralized hyper-alert. The attack strategy learning
algorithm can be easily modified: We first generalize the hgberts in the input hyper-alert correlation graph
into generalized hyper-alerts following the generalmatmapping, and then apply Algorithm 1 to extract the
attack strategy graph.

Although a hyper-alert can be generalized in different glanities, it is not an arbitrary process. In particu-
lar, if one hyper-alert prepares for another hyper-aleftigegeneralization, the generalized hyper-alerts should
maintain the same relationship. Otherwise, the dependeaiyeen different attack stages, which is intrinsic
in an attack strategy, will be lost.



The remaining challenge is how to get the “right” generalibgper-alert types and generalization mappings.
The simplest way is to manually specify them. For exampBigache2, Backand Crashiisare all Denial of
Service attacks. We may simply generalize all of them inte \bebServiceDOXHowever, there are often
different ways to generalize. To continue the above examglacheZandBackattacks are against the apache
web servers, whil€rashiisis against the Microsoft IIS web server. To keep more infdromeabout the attacks,
we may want to generalizApacheandBackinto ApacheDOSwhile generalizeCrashiisand possibly other
DOS attacks against the 1IS web server iIRB®DOS Nevertheless, this doesn't affect the attack strategyigra
extracted from correlated intrusion alerts as long as tinstcaints on the related alerts are satisfied.

Automatic Generalization of Hyper-Alert Types It is time-consuming and error-prone to manually gener-
alize hyper-alert types. One way to partially automate pingecess is to use clustering technigues to identify
the hyper-alert types that should be generalized into a camome. In our experiments, we use the bottom-
up hierarchical clustering [20] to group hyper-alert typérarchically on the basis of the similarity between

them, which is derived from the similarity between the pgeiisites and consequences of hyper-alert types.
The method used to compute the similarity is described below

To facilitate the computation of similarity between prarsites of hyper-alert types, we convert each pre-
requisite into arexpanded prerequisite sethich includes all the predicates that appear or are imgliethe
prerequisite. Similarly, we can get the expanded conseguset. Consider two sets of predicates, densted
and.S,, respectively. We adopt the Jaccard similarity coeffic[@@} to compute the similarity betwee$y and
S, denotedSim/(Sy, S2). That is,Sim(S1,.S2) = ﬁ wherea is the number of predicates in bath and
So, b is the number of predicates only i1, andc is the number of predicates only 3.

Given two hyper-alert type%; and 75, the similarity betweer?} and 75, denotedSim(T},T3), is then
computed asim (T, T>) = Sim(X P, X Py) x w, + Sim(XCy, XCs) X w., whereX P; and X P, are the
expanded prerequisite setsBf andTy, XC; and X C, are the expanded consequence seff and7;, and
w, andw, = 1 — w, are the weights for prerequisite and consequence, regglgct(in our experiments, we
usew, = w, = 0.5 to give equal weight to both prerequisite and consequentgmdr-alert types.) We may
then set a threshold so that two hyper-alert types are grouped into the sameeclosily if their similarity
measure is greater than or equat.tdppendix B includes some generalization hierarchies vomentered in
our experiments.

3 Measuring the Similarity between Attack Strategies

In this section, we present techniques to measure the sityilzetween attack strategy graphs based on er-
ror tolerant graph/subgraph isomorphism detection, whiak been studied extensively in pattern recogni-
tion [4,24-27]. Since the attack strategy graphs are eeigfcom sequences of correlated alerts, the similarity
between two attack strategy graphs are indeed the sinjilagtiween the original alert sequences in terms of
their strategies. Such similarity measurement is a fundéah@roblem in intrusion analysis; it has potential
applications in incident handling, computer and networlefsics, and other security management areas.

We are particularly interested in two problems. First, hamilsr are two attack strategies? Second, how
likely is one attack strategy a part of another attack siséteThese two problems can be mapped naturally to
error tolerant graph isomorphism and error tolerant sysigisomorphism problems, respectively.

To facilitate the later discussion, we give a brief overviefrerror tolerant graph/subgraph isomorphism.
Further details can be found in the rich literature on graybgraph isomorphism [4, 24-27].

3.1 Error Tolerant Graph/Subgraph Isomorphism

In graph/subgraph isomorphism, a graph is a quadrGpte (N, E,T,C), whereN is the set of nodesy is
the set of edged is a mapping that assigns labels to the nodes,@igla mapping that assigns labels to the



edges. Given two graphs, = (N, Ey,T1,C) andGy = (No, By, Ts, C5), a bijective functionf is agraph
isomorphismfrom G to G if

o foralln, € Ny, Ti(n1) = To(f(n1));

e foralle; = (n1,n)) € Fy, there existgy = (f(n1), f(n})) € E2 such thatC(e;) = C(e2), and for all
ez = (ng,nh) € Fy, there existe; = (f~(nz), f~1(n})) € E; such thaC(ey) = C(ey).

Given a graplG = (N, E, T, C), asubgraphof G is a graphGs = (N, Es, Ts, Cs) such that (1)V, C N,

(2) Es = EN (Ng x Ny), (3) for all ng € Ny, Ts(ns) = T(ns), and (4) for alle; € E;, Cs(es) = Cles).
Given two graphs7, = (N1, E1,T1,Cq) andGy = (N, Ey, Th, Cs), an injective functionf is a subgraph
isomorphisnfrom G to G, if there exists a subgraphs; of G2 such thatf is a graph isomorphism fro;
to Ggs.

As a further step beyond graph/subgraph isomorphism, erlenant graph/subgraph isomorphism (which is
also known as error correcting graph/subgraph isomorphisitroduced to cope with noises or distortion in
the input graphs. There are two approaches for error talgraph/subgraph isomorphism: graph edit distance
and maximal common graph. In this paper, we focus on graphdediance to study the application of error
tolerant graph/subgraph isomorphism in intrusion dedecti

The edit distance method assumes a set of edit operagampsdgletion, insertion and substitution of nodes
and edges) as well as the costs of these operations, andsdbiéngimilarity of two graphs in terms of the least
cost sequence of edit operations that transforms one graplihe other. We denote the edited graph after a
sequence of edit operatiodsasA(G). Consider two graph&; andGs. ThedistanceD (G4, G2) from G to
G w.r.t. graph isomorphisns theminimumsum of edit costs associated with a sequence of edit opesakio
on (G that leads to a graph isomorphism frakiG, ) to G. Similarly, thedistanceD, (G4, G2) from Gy to Gs
w.r.t. subgraph isomorphism theminimumsum of edit costs associated with a sequence of edit opesakion
G that leads to aubgraphisomorphism fromA(G) to G,. An error tolerant graph/subgraph isomorphism
from G; to G, is a pair (A, f), whereA is a sequence of edit operations G, and f is a graph/subgraph
isomorphism fromA (G ) to Go.

It is well known that subgraph isomorphism detection is andgfplete problem [17]. Error tolerant sub-
graph isomorphism detection, which involves subgraph apimism detection, is also in NP and generally
harder than exact subgraph isomorphism detection [25]eMlesless, error tolerant subgraph isomorphism has
been widely applied in image processing and pattern retiogrié, 24—27]. In our application, all the attack
strategy graphs we have encountered are small graphs wétlHan 10 nodes. We argue that it is very unlikely
to have very large attack strategy graphs in practice. Tivashelieve error tolerant graph/subgraph isomor-
phism can be applied to measure the similarity betweenlkaiiaategy graphs with reasonable response time.
Indeed, we did not observe any noticeable delay in our exyssris.

3.2 Working with Attack Strategy Graphs

To successfully use error tolerant graph/subgraph isohigmrpdetection technigues, we need to answer at least
the following three questions. What are the edit operatmmsn attack strategy graph? What are reasonable
edit costs of these edit operations? What is the right siityileneasurement between attack strategy graphs?

All the edit operations on a labeled graph are applicablettxlka strategy graphs. Specifically, adit
operationon an attack strategy graphSG = (NN, E, T, C) is one of the following:

1. Inserting a node: $ — n. This represents adding a stage into an attack strategy. €fiiti operation is
only needed for error-tolerant graph isomorphism.

2. Deleting a node:: n — $. This represents removing a stage from an attack strategye tHat this
implies deleting all edges adjacent with



3. Substituting the hyper-alert type of a nodeT'(n) — t, wheret is a hyper-alert type. This represents
changing the attack at one stage of the attack strategy.

4. Inserting an edge = (n1,n2): $ — e, whereny,ny € N. This represents adding dependenicg.,(
prepare for relation) between two attack stages.

5. Deleting an edge = (n1,n2): e — $. This represents removing dependerioy.(prepare for relation)
between two attack stages.

6. Substituting the label of an edge= (n1,n2): C(e) — ¢, wherec is a set of equality constraints. This
represents changing the way in which two attack stages &tedeto each other. (Note thatis not
necessarily a set of equality constraints f&Xn;), T'(n2)).)

These edit operations do not necessarily transform onekastaategy graph into another attack strategy
graph. Indeed, a labeled graph must satisfy some consttaibe an attack strategy graph. For example, all the
equality constraints in the label associated with, no) must be valid equality constraints f6F (n1), T'(n2)).

It is easy to see that the edit operations may violate songegktconstraints.

One may suggest these constraints be enforced througletratisformation of attack strategy graphs. As
an additional benefit, this can be used to reduce the seaad® spquired for graph/subgraph isomorphism.
However, this approach may not find the least expensive sequi edit operations, and may even fail to find a
transformation from one attack strategy graph to (the sigof) another. Indeed, editing distance is one way
to measure the difference between attack strategy graghsiat necessary to require that all the intermediate
edited graphs are attack strategy graph. As long as the filiteldegraph is isomorphic to an attack strategy
graph, it is guaranteed to be an attack strategy graph. Teidp not require the intermediate graphs during
graph transformation be attack strategy graphs.

Assignment of edit costs to the edit operations is a cristgp in error tolerant graph/subgraph isomorphism.
The actual costs are highly dependent on the domain in whigbettechniques are applied. In our application,
there are multiple reasonable ways to assign the edit dodfse following, we attempt to give some constraints
that the cost assignment must satisfy.

In an attack strategy graph, a node represents a stage itaek sirategy, while an edge represents the causal
relationship between two steps in the strategy. Obviowsiginging the stages in an attack strategy affects the
attack strategy significantly more than modifying the causlationships between stages. Thus, the edit costs
of node related operations should be significantly more esige than those of the edge related operations.

Inserting or deleting a node implies having one more or festep in the strategy, while substituting a node
type implies to replace the attack in one step in the strat€gus, inserting or deleting a node has at least the
same impact on the strategy as substituting the node typeedver, deleting a node and inserting a node are
both manipulations of a stage; there is no reason to say @ratyn has more impact than the other. Therefore,
they should have the same cost. Both inserting and deletireflge changes the causal relationship between
two attack stages, and they should have the same impact attdick strategy. However, substituting the label
of an edge is just to change the way in which two attack stagesetated. Thus, it should have less cost than
edge insertion and deletion. In summary, we can derive ti@fimg constraint in edit cost assignments.

Constraint 1 Cost,,_g = Costg_,,, > Costp(y)—; >> Costg_., = Cost,_.g > Coslo(e)—e-

The labels in an attack strategy graph is indeed a set of igg@ahnstraints. As a result, labels are not
entirely independent of each other. This further impliest #dit costs for edge label substitution should not
be uniformly assigned. For example, substituting an edgel g4, B} for { A, C'} should have less cost than
substituting{ A, B} for {C, D}. This observation leads to another constraint.

Constraint 2 Assume that the edit operatiafi(e) — c replacesC(e) = cyq With c¢pe. The edit cost
Costc(e)—. Should be smaller whem,; and c,.,, have more equality constraints in common.
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Here we give a simple way to accommodate Constraint 2. Werasthere is a maximum edit cost for label
substitution operation, denoted &8z Costc(.)—.. The edit cost of a label substitution is th€st (). =

MazxCostg(e)—e ¥ [CotaNenew] wherec,q ande,,,, are the labelsife., sets of equality constraints) before and

¢ ‘colducnew‘ !

after the operation.

Error tolerant graph/subgraph isomorphism detectionrigeies can conveniently give a distance between
two labeled graphs, which is measured in terms of edit costwé discussed earlier, we use these techniques
to help answer two questions: (1) How similar are two seqgeemt attacks in terms of their attack strategy?
(2) How likely does one sequence of attacks use a part ofkastaategy in another sequence of attacks? In the
following, we transform the edit distance measures intoamtrect similarity measures.

Consider an attack strategy grapghtbG. We refer to the distance frod.SG to an empty graph as the
reductive weight ofASG, denoted asV, (ASG). Similarly, we refer to the distance from an empty graph to
ASG as theconstructive weight aflSG, denotedV,.(ASG).

Definition 6 Consider two attack strategy grapASGl andASG,. Thesimilarity betweemdSG; and ASG,
W.rt. (attack) strategys Sim(ASGy, ASGy) = SmASC12ASC)ISimASC2ASCY) \yhereSim(ASG, —

D(ASG+,ASGy
ASGy) =1- W,,.(A(SGw)Jch(AS)Gy)'

Definition 7 Consider two attack strategy grapAs' G, and ASG-. Thesimilarity betweem SG;, and ASGo

w.r.t. (attack) sub-strategig Simg,,(ASG1, ASGe) =1 — Wﬁ{’é@‘j )Gﬁéj%)%).

Appendix C gives a simple analysis of the impact of edit costthe similarity measurements. In summary,
when the number of edges are not substantially more thanuheber of nodes, and the number of edge
operations are not substantially more than the number o mgetrations, the similarity measure is mainly
determined by the number of nodes and node operations thtrethe edit costs.

4 Experiments

We have performed a series of experiments to study the gebsiproposed in this paper. In our experiments,
we used the implementation of the NCR model, the NCSU Indrusilert Correlator [31], to correlate intrusion
alerts. Following their example, we also used GraphViz¢2lisualize graphs. In addition, we usétlB[24],

A Toolkit for Graph Matching, to perform error tolerant gregubgraph isomorphism detection and compute
distances between attack strategy graphs. We used Snpaq8bir IDS sensor.

Our test data sets include the 2000 DARPA intrusion deteca@nario specific data sets [28]. The data sets
contain two scenarios: LLDOS 1.0 and LLDOS 2.0.2. In LLDO% the sequence of attacks includes IPsweep,
probes of sadmind services, breakins through sadmind igxplustallations of DDoS programs, and finally the
DDoS attack. LLDOS 2.0.2 is similar to LLDOS 1.0; howeveg thttacks in LLDOS 2.0.2 are more stealthy
than those in LLDOS 1.0. In addition to the DARPA data setsalse performed three sequences of attacks in
an isolated network. In all these three attack sequencestthcker started with nmap [16] scans of the victim.
Then, in the first sequence, the attacker sent malformed&]rte the victim’s Internet Information Services
(I1S) to get a cmd.exe shell. In the second sequence, thekattéook advantage of the flaws of IP fragment
reassembly on Windows 2000 [7] to launch a DoS attack. Inttind sequence, the attacker launched a buffer
overflow attack against the Internet Printing Protocol ased via IIS 5.0 [5, 9]. Further details of these attack
sequences are included in Appendix D. We also used the afrtpsovided along with the Intrusion Alert
Correlator [31]. These alerts were generated by RealSédeitwork Sensor [18] on the 2000 DARPA data
sets, too. We label their alert sets wRlealSecurewhile label ours witiSnortto distinguish between them.
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Figure 4: Attack Strategy Graphs Extracted from Our Experita
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4.1 Learning Attack Strategies from Correlated Intrusion Alerts

Our first goal is to evaluate the effectiveness of our apgrascextracting the attack strategies. Figure 4 shows
all of the attack strategy graphs extracted from the test dets. The label inside each node is the node ID
followed by the hyper-alert type of the node. The label oheatge describes the set of equality constraints for
the hyper-alert types associated with the two end nodes.

The attack strategy graphs we extracted from LLDOS 1.0degart) are shown in Figure 4(a) and 4(b).
Comparing them with the description of the data set [28], wevkthat both Figures 4(a) and 4(b) have cap-
tured most of the attack strategy. The missing parts are auket attacks missed by the IDSs. Since we
didn't generalize variations of hyper-alert types, thesmphs still have syntactic differences despite of their
common strategy. (Note that the “RPC sadmind UDP PING” agpbrted by Snort is indeed the “Sad-
mind_Amslverify_Overflow” alert by RealSecure, and the “RPC portmap sadmeégdest UDP” alert by Snort
is the “SadmindPing” alert by RealSecure.) Moreover, false alerts are edflected in the attack strategy
graphs. For example, the hyper-alert types “Eofdihail_Overflow” and “FTRSyst” in Figure 4(a) do not
belong to the attack strategy, but they are included beafube false detection.

The attack strategies extracted from LLDOS 2.0.2 are showrigures 4(c) and 4(d). Compared with the
five phases of attack scenarios [28], it is easy to see tharé&yc) reveals most of the adversary’s strategy.
However, Figure 4(d) reveals two steps fewer than Figurg 40ar further investigation indicates that this is
because one critical attack step, the buffer overflow agtagainst sadmind service, was completely missed by
Snort. Figures 4(e), 4(f), and 4(g) show the attack strategktracted from the three sequences of attacks we
performed. By comparing with the attacks, which are desdriim Appendix D, we can see that the stages as
well as the constraints intrinsic to these attack strategie mostly captured by these graphs.

Though showing some potential, these experimental reaidtsreveal a limitation of the attack strategy
learning method: That is, our method depends on the undgrifiSs as well as the alert correlation method.
If the hyper-alert correlation graphs do not reveal thererditack strategy, or include false alerts, the attack
strategy graphs generated by our method will not be perfémtertheless, our technique is intended to automate
the analysis process typically performed by human analyst® may make the same mistake if no other
information is used. More research is clearly needed tqatiti the impact of imperfect IDS and correlation.

Another observation is that alerts from heterogeneous I&®shelp complete the attack strategies. For
example, combining Figures 4(c) and 4(d), we know that achktr may launch buffer overflow attacks against
sadmind service and then use telnet to access the victimingach

Note that we do not give a quantitative performance evalnadf attack strategy extractiond,, the false
positive and false negative of the extracted attack stiegegThis is because such measures are indeed deter-
mined by the underlying intrusion alert correlation algfum. As long as correlation is performed correctly, our
method can always extract the strategy reflected by thelatedealerts.

4.2 Measuring the Similarity between Alert Sequences

We performed some experiments to measure the similaritydmt the previously extracted seven attack strat-
egy graphs. To hide the unnecessary differences betwegygles, we generalized similar alert types. Due to
space reasons, we do not redraw the attack strategy grapksgeheralization details are given in Appendix
D. We assume the edit costs for node operations are all 1Gharetlit costs for the edge operations are all 1.

Tables 1 and 2 show the similarity measurements betweenpeachf attack strategy graphs w.r.t. attack
strategy and attack sub-strategy, respectively. Eaclcgpbs the tables denotes the graph it represents. We
notice thatSimg,;,(G;, Gj) may not necessarily be equal$omgs.,,(G;, G;).

Table 1 indicates that Figure 4(a) is more similar to Figuigs, and 4(c) to the other graphs. In addition,
Figure 4(g) is more similar to Figures 4(e) and 4(f) than ttieeographs. Based on the description of these
attack sequences, we can see these similarity measuresrodiefhuman perceptions.

13



Table 1: The similarity w.r.t. attack strategy betweendkttstrategy graphs in Figure 4

Gaa) | Gaw) | Gage) | Gaga) | Gage) | Gagp) | Gagg)
Guay | ! | 072 073]021] 029 031 0.25
Guw | 072 1 | 0.66 | 055 | 0.25 | 0.25 | 0.29
Guo | 073 066 | J/ | 040 | 0.34 | 0.38 | 0.30
Guia) | 021 055 | 040 | / | 0.21 | 0.40 | 0.38
Gueo | 029 | 025 | 034 | 021 | [ | 048 | 0.74
Gy | 031 025 | 038 | 040 | 048 | |/ 0.61
Gi, | 025 029 030 | 038 | 0.74 | 0.61 | [

Table 2: The similarity w.r.t. attack sub-strategy betwatack strategy graphs in Figure 4

Gaw) | Ga) | Gae) | Gaw) | Gage) | Gay | Gagg)
Guay | ! | 072] 066 ] 031 ] 053 | 0.31 | 0.43
Gy | 089 7 | 067 055 061 | 0.38 | 0.51
Gy | 090 | 068 | J | 040 | 0.61 | 0.38 | 052
G | 089 | 100 | 0.86| 7/ | 0.79 | 0.60 | 0.73
Gy | 051 058 058 | 021 | / | 048] 0.26
Gy | 072 065 ] 0.65| 040 | 091 | / | 0.89
Giy | 059 | 051 048 | 0.27 | 0.93 | 061 |

Table 2 shows the similarity between attack strategy graptis attack sub-strategy. We can see that Figures
4(b), 4(c), and 4(d) are very similar to a sub-strategy otiFegd(a). In addition, Figure 4(d) is exactly a sub-
strategies of Figure 4(b). Similarly, Figures 4(g) and 4f® both similar to sub-strategies of Figure 4(e), and
Figure 4(f) is also similar to a sub-strategy of Figure 4@pmparing these measure values with these attack
sequences, we can see these measures also conform to hueptipes.

The experiments also reveal some remaining problems tahhdeen addressed by our techniques. First,
the similarity measures make sense in terms of their relatues. However, we still do not understand what
a specific similarity measure represents. Second, falsts generated by IDSs have a negative impact on the
measurement. It certainly requires further research toesddhese issues.

4.3 ldentification of Missing Detections

Our last set of experiments is intended to study the po#yilhd apply the similarity measurement method to
identify attacks missed by IDSs. For the sake of presemati@ first introduce two terms: precedent set and
successive set. Intuitively, th@recedent sedf a noden in an attack strategy graph is the set of nodes from
which there are paths to, while thesuccessive seif n is the set of nodes to which has a path. In the
following, we show two examples we encountered in our expenis.

Example 4 The attack strategy graph in Figure 4(c) has no network pphtase, but Figure 4(a) does. The
similarity measuremen$img.,(Gy(c), Gaq)) = 0.90 and Sim(Gy(c), Ga(q)) = 0.73 indicate that these two
strategies are very similar and it's very likely that Figd(e) is a sub-strategy of Figure 4(a). Thus, it is possible
that some probe attacks are missed by the IDS when the ID&teétine attacks corresponding to Figure 4(c).
Indeed, this is exactly what happened in LLDOS 2.0.2. Theeeshry uses some stealthy attadles.,(HINFO
guery to the DNS server) to get the information about thamittost.

Example 5 Consider Figures 4(d) and 4(b). We ha¥8n.5,,(G4(a), Gay) = 1.0. Thus,Gy(g) is exactly a
sub-strategy o). By checking the LLDOS2.0.2 alerts reported by Snort, wexkttwat there are also “RPC
portmap sadmind request UDP” alerts as in Figure 4(b). Hewesince Snort did not detect the later buffer
overflow attack, these “RPC portmap sadmind request UDPtsadeen’t correlated with the later alerts.
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We then perform the following steps, trying to identify atta possibly missed in LLDOS 2.0.2. We pick
nodenl in Figure 4(d), and find its corresponding nod& in Figure 4(b), which is mapped tol by the
subgraph isomorphism. It is easy to see that in Figure 4fb)ptecedent set af3 is {n1 n2}, andnl has the
type “RPC portmap sadmind request UDP”. We then go back to@QB[2.0.2 alerts, and find “RPC portmap
sadmind request UDP” alerts before “TELNET ACCESS”. By canimg the precedent set ot in Figure 4(d)
and the precedent set o8B in Figure 4(b), we suspect that “RPC sadmind UDP PING” (wldohresponds
to noden2 in Figure 4(b)) has been missed in LLDOS 2.0.2. If we add suclalart, we may correlate it
with “RPC portmap sadmind request UDP” and further with “TNEET access” in Figure 4(d). Indeed, “RPC
sadmind UDP PING” is the buffer overflow attack missed by $mokLLDOS 2.0.2.

The later part of example 5 is very similar to the abductiveredation proposed in [11]. The additional
feature provided by the similarity measurement is the dunde about what attacks may be missed. In this
sense, the similarity measurement is complementary tolilactive correlation. Moreover, these examples
are provided to demonstrate the potential of identifyingsad attacks through measuring similarity of attack
sequences. It is also possible that the attacker didn'tclatimose attacks. Additional research is necessary to
improve the performance and reduce false identification rat

5 Related Work

Our work in this paper is closely related to the recent resmltintrusion alert correlation. In particular, our
attack strategy model can be considered as an extensiorij@ft [32]. In addition to correlating alerts
together based on their relationships, we further extracattack strategy used in the attacks, and use them to
measure the similarity between sequences of alerts.

There are other alert correlation techniques. The teclesidu [10, 13, 37, 40] correlate alerts on the basis
of the similarities between the alert attributes. The Tiagproach correlates alerts based on the observation
that some alerts usually occur in sequence [14]. M2D2 cateslalerts by fusing information from multiple
sources besides intrusion alerts, such as the characerdtthe monitored systems and the vulnerability
information [29], thus having a potential to result in betsults than those simply looking at intrusion alerts.
The mission-impact-based approach correlates alertsdrdig INFOSEC devices such as IDS and firewalls
with the importance of system assets [34]. The alert clugjgechniques in [22, 23] use conceptual clustering
and generalization hierarchy to aggregate alerts intatenisis Alert correlation may also be performed by
matching attack scenarios specified by attack languageamples of such languages include STATL [15],
LAMBDA [12], and JIGSAW [38].

Our approach to similarity measurement of attack straseigidbased on error-tolerant graph/subgraph iso-
morphism techniques [3, 6, 24, 25, 39]. The early work abaaply/subgraph isomorphism was presented
in [3, 6,39]. The traditional methods are A* based approadB8]. The more efficient algorithms proposed
recently include decomposition-based approaches [24x#6Hecision tree-based approaches [24, 27].

6 Conclusion

In this paper, we developed techniques to extract attaeltegfies from correlated intrusion alerts based on
the recent advances in intrusion alert correlation [11, 8r contributions include a model to represent and
algorithms to extract attack strategies from intrusiorrtaleMoreover, to accommodate variations in attacks
that are not intrinsic to attack strategies, we propose teigdize different types of intrusion alerts to hide
the unnecessary difference between them. Finally, we dpedltechniques to measure the similarity between
sequences of attacks based on their strategies. Our exgrdaimesults have shown that our techniques can
successfully extract invariant attack strategies fronmusages of alerts, measure the similarity between alert
sequences in a way conforming to human intuition, and hasempal to identify attacks missed by IDSs.
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A Proof Sketch of Lemma 1

We first prove the output of the subroutiGraphReductions an irreducible hyper-alert correlation graph by
contradiction. Consider the outpGtG’ = (N’, E’) of GraphReductionSuppose there exisfé; C N’, where
|Ns| > 1, such thatN, is aggregatable. Thus, all nodesin are the same type of hyper-alerts, and for any
two different nodesi;, no € Nj, if there is a path fromu, to no, then all nodes in the path are ;. Since
CG' is aggregated from the input hyper-alert correlation gréphall pairs of nodes; andnf, wheren) and

nf, are aggregated into; andng, respectively, if there exists a path framh to n}, in the input graph, all the
nodes in the path must be in the group of nodes aggregatethmtoodes inV,. According to steps 3 and 4
in GraphReductionthey should have been kept in the same group and aggregébenhie node irC’'G’. This
leads to a contradiction to the assumption tifaandn/, are aggregated inte; andns, respectively.

Now we prove the output of Algorithm 1 is an attack strateggpi. Consider the output of Algorithm 1
ASG = (N,E,T,C). ltis easy to see thdt is a mapping that maps eaghe N to a hyper-alert type, and is
a mapping that maps each edge E to a set of equality constraints. In addition, because thetihyper-alert
correlation graph is a DAG/V, E) must be a directed graph. Suppose there is a eycles, - - -, ny in (N, E).
There must exist two nodes; 1, n12, andns; in the input hyper-alert correlation graph such that andns
are aggregated intaq, no; iS aggregated intams, and there exists a pattyq,---,n91,---,n12. However,
according to the subrouti@raphReductioyn; andn, should have been put into two separate groups. Thus,
(N, E) cannot have any cycle. Finally, for any, n, € N, since the output oBraphReductioris irreducible,
if T'(n1) = T'(n2), then there must exist; € N in a path between; andny such thatl'(ng) # T'(n1).

B Automatic Generalization of Hyper-Alert Types

This appendix shows some examples for automatic gendrahizaf hyper-alert types. Figure 5 shows the
results we obtained for the hyper-alert types in the 2000 PARata sets. Here the string inside the non-leaf
node means§eneralization Typéollowed by an ID. From Figure 5(b), we know thiaT P_Put andRshcan be
generalized to the same type. These results were used iateuekperiments when we computed the similarity
measures between attack strategy graphs.

C Analysis of the Edit Cost Influence to Similarity Measurement

Suppose we have two gragh, and G, which haven, andn;, nodes, ant, ande, edges, respectively.
Suppose we perform an error tolerant graph isomorphism f&gnto G, the node operations have the same
costC'y, and edge operations have the same €gstwhereCy > Cg. In the sequence of edit operations,
suppose there at¥y node operations, anz edge operations. Then the similarity measure can be sieglifi
as follows:
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Figure 5: Generalization hierarchies for the hyper-algres in DARPA 2000 dataset. Threshole: 0.5.

. D(Gq,Gh) Cn X Ny + Cg x Ng
Sim(Ga, Gy) = 1 — —1-
Zm( b) Wr(Ga) + Wc(Gb) ON X (na + nb) + CE' X (ea + eb)

Further lete, + e, = k x (ng + np), andNg = s x Ny. Then we have

Sim(Ga,Gp) =1 — Cn X Ny + Cp x s x Ny _,__ Nnx(Cy+Cpxs)
@I T T O X (e + 1) + Cp X kX (Ra+m)  (ng +mp) x (Cn + Cpg x k)

Whenk ands are not large, sinc€'y > Cg, the formula can be further simplified below:

Ny
Ng + Ny

Sim(Ga, Gy) = 1 —

Thus, under the above assumptions, the similarity is apmately determined by the proportion of the
number of edited nodes to the total number of nodes.

D Further Details of The Experiments

Attack Sequences in Our Experiments. Here we describe the three sequences of attacks perfornad in
experiments. Since the descriptions of the attacks in thRP\datasets are available on-line [28], we don't
repeat them in this paper.

In the first sequence of attacks (Figure 4(e)), the attacksruses nmap [16] to scan the victim machine.
(Nmap supports ping sweeps, port scans, and operatingrsyistection.) After knowing that the OS of the
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Figure 6: Additional generalizations of hyper-alert tyr@sur experiments

victim may be windows 2000 and port 80 is open, the attackes euPerl script which includes 20 different
malformed urls [8] against the victim machine’s Internefolmation Services (1IS). The output of the Perl
script is a list of malformed urls to which the victim IIS ismerable. The attacker then selects one of the
vulnerabilities to perform the actual attack and gets a emedshell on the victim machine. The attacker then
uses interactive commands to list and delete some files, aalti/fexit the command shell. Figure 4(e) reveals
this strategy.

In the second sequence of attacks (Figure 4(f)), the attardess nmap to scan the victim machine. However,
after knowing that the OS of the victim may be windows 200@, #ittacker ran a “jolt2” Perl script, which
would create a DoS attack to the victim machine. (Jolt2 is & Bttack which can take advantage of the flaws
of IP fragment reassembly on Windows 2000 [7].) Figure &¥eals this strategy, and because of the limitation
of the Snort’s signatures, it can only tell administrataisph frag2) Oversized fragment, probable DoS”.

In the third sequence of attacks (Figure 4(g)), the attagkess nmap to scan the victim machine. After
knowing the OS of the victim may be windows 2000 and the poris86pen, the attacker sets up a netcat
listening port on his machine, and runs a program “iisShdmkffer overflow attack, which may result in a
buffer overflow on the Internet Printing Protocol accessidINs 5.0 [5, 9]. Following a successful iishack
attack, the attaker’s machine would get a reverse cmd.etkahthe netcat listening port, and the attacker can
do whatever he/she wants on the victim machine, such asdistid deleting files. In Figure 4(g), the netcat
command shell attack is missing, because Snort cannott detelt attacks.

Generalization of Hyper-alert Types. The generalizations of hyper-alert types in our experimamtiude
those in Figure 5 as well as additional ones in Figure 6.
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