
Learning Attack Strategies from Intrusion Alerts

Abstract

Understanding the strategies of attacks is crucial for security applications such as computer and network
forensics, intrusion response, and prevention of future attacks. Though time-consuming and error-prone,
manual analysis has been the dominant way to learn attack strategies from intrusion alerts. This paper
presents techniques to automatically learn attack strategies from intrusion alerts. Central to these techniques
is a model that represents an attack strategy as a graph of attacks with constraints on the attack attributes and
the temporal order among these attacks. To learn the intrusion strategy is then to extract such a graph from a
sequences of intrusion alerts. To further facilitate the analysis of attack strategies, which is essential to many
security applications such as computer and network forensics and incident handling, this paper presents
techniques to measure the similarity between attack strategies. The basic idea is to reduces the similarity
measurement of attack strategies into error-tolerant graph isomorphism problem, and measures the similarity
between attack strategies in terms of the cost to transform one strategy into another. Finally, this paper
presents some experimental results, which demonstrate thepotential of the aforementioned techniques.

1 Introduction

It has become a well-known problem that current intrusion detection systems (IDSs) produce large volumes of
alerts, including both actual and false alerts. As the network performance improves and more network-based
applications are being introduced, the IDSs are generatingincreasingly overwhelming alerts. This problem
makes it extremely challenging to understand and manage theintrusion alerts, let alone respond to intrusions
timely.

It is often desirable, and sometimes necessary, to understand attack strategies in security applications such
as computer and network forensics and intrusion responses.For example, attack strategies may be used to
profile hackers or hacking tools in computer and network forensics. As another example, it is easier to pre-
dict attacker’s next move, and reduce the damage caused by intrusions, if the attack strategy is known during
intrusion response. However, in practice, it usually requires that human users analyze the data collected dur-
ing intrusions manually to understand the attack strategy.This process is not only time-consuming, but also
error-prone. An alternative to manual analysis is to list all possible attack strategies using vulnerability analysis
tools such as attack graphs [1,36]. However, these tools require a predefined security property so that they can
use modeling checking techniques to identify possible attack sequences that may lead to the violation of the
security property.

In this paper, we present techniques to automatically learnattack strategies from intrusion alerts reported
by IDSs. Our approach is based on the recent advances in intrusion alert correlation [11, 32]. By examining
correlated intrusion alerts, our method extracts the constraints intrinsic to the attack strategy automatically.
Specifically, an attack strategy is represented as a directed acyclic graph (DAG), which we call anattack strat-
egy graph, with nodes representing attacks, edges representing the (partial) temporal order of attacks, and
constraints on the nodes and edges. These constraints represent the conditions that any attack instance must
satisfy in order to use the strategy. To cope with variationsin attacks, we use generalization techniques to hide
the differences not intrinsic to the attack strategy.

To facilitate intrusion analysis in applications such as computer and network forensics, we further develop
techniques to measure the similarity between sequences of intrusion alerts based on their attack strategies. Sim-
ilarity measurement of alert sequences is a fundamental problem in many security applications such as profiling
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hackers or hacking tools, identification of undetected attacks, attack prediction, and so on. To achieve this goal,
we harness the results on error tolerant graph/subgraph isomorphism detection in the pattern recognition field.
By analyzing the semantics and constraints in similarity measurement of alert sequences, we transform this
problem into error tolerant graph/subgraph isomorphism detection.

Our contribution in this paper is three-fold. First, we develop a model to represent attack strategies as well
as algorithms to extract attack strategies from correlatedalerts. Second, we develop techniques to measure the
similarity between sequences of alerts on the basis of the attack strategy model. Third, we perform a number
of experiments to validate the proposed techniques. Our experimental results show that our techniques can
successfully extract invariant attack strategies from sequences of alerts, measure the similarity between alert
sequences conforming to human intuition, and identify attacks possibly missed by IDSs.

The remainder of this paper is organized as follows. The nextsection presents a model to represent and
extract attack strategies from a sequence of correlated intrusion alerts. Section 3 discusses the methods to
measure the similarity between sequences of related alertsbased on their strategies. Section 4 presents the
experiments we perform to validate the proposed methods. Section 5 discusses the related work, and Section 6
concludes this paper. The appendices give details of proof,analysis, and experimental results.

2 Modeling Attack Strategies

In this section, we present a method to represent and automatically learn attack strategies from a sequence of
related intrusion alerts. Our method is developed by extending the alert correlation model by Ning, Cui, and
Reeves [32], which we call the NCR model for the sake of presentation. In the following, we first give a brief
overview of the NCR model, and then discuss our method.

2.1 An Overview of the NCR Model

The NCR model was developed to reconstruct attack scenariosfrom alerts reported by IDSs. It is based on the
observation that “most intrusions are not isolated, but related as different stages of attacks, with the early stages
preparing for the later ones” [32]. The NCR model requires the prerequisites and consequences of intrusions.
The prerequisite of an intrusion is the necessary conditionfor the intrusion to be successful. For example, the
existence of a vulnerable ftp service is the prerequisite ofa ftp buffer overflow attack against this service. The
consequence of an intrusion is the possible outcome of the intrusion. For example, gaining local access as root
from a remote machine may be the consequence of a ftp buffer overflow attack. The NCR model then correlates
two alerts if the consequence of the earlier alert prepares for the prerequisites of the later one.

The NCR model uses logical formulas, which are logical combinations of predicates, to represent the prereq-
uisites and consequences of intrusions. For example, a scanning attack may discover UDP services vulnerable
to certain buffer overflow attacks. Then the predicateUDPVulnerableToBOF(VictimIP, VictimPort) may be
used to represent this discovery.

The NCR model formally represents the prerequisites and consequences of known attacks as hyper-alert
types. Ahyper-alert typeis a triple (fact, prerequisite, consequence), where fact is a set of alert attribute
names,prerequisiteis a logical formula whose free variables are all infact, andconsequenceis a set of logical
formulas such that all the free variables inconsequenceare infact. Intuitively, a hyper-alert type encodes the
knowledge about the corresponding attacks. Given a hyper-alert type T = (fact, prerequisite, consequence),
a type T hyper-alert his a finite set of tuples onfact, where each tuple is associated with an interval-based
timestamp [begin time, endtime]. The hyper-alerth implies thatprerequisitemust evaluate to True and all the
logical formulas inconsequencemight evaluate to True for each of the tuples.

The correlation process in the NCR model is to identify theprepare-forrelations between hyper-alerts. In-
tuitively, it is to check if an earlier hyper-alertcontributesto the prerequisite of a later one. In the formal
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Figure 1: An example of hyper-alert correlation graph

model, this is performed through the notions of prerequisite and consequence sets. Consider a hyper-alert type
T = (fact, prerequisite, consequence). Theprerequisite set (or consequence set) ofT , denotedPrereq(T ) (or
Conseq(T )), is the set of all predicates that appear inprerequisite(or consequence). Moreover, theexpanded
consequence setof T , denotedExpConseq(T ), is the set of all predicates that are implied byConseq(T ).
Thus,Conseq(T ) ⊆ ExpConseq(T ). Given a typeT hyper-alerth, the prerequisite set, consequence set,
andexpanded consequence set ofh, denotedPrereq(h), Conseq(h), andExpConseq(h)), respectively, are
the predicates inPrereq(T ), Conseq(T ), andExpConseq(T ) whose arguments are replaced with the corre-
sponding attribute values of each tuple inh. Each element inPrereq(h), Conseq(h), or ExpConseq(h) is
associated with the timestamp of the corresponding tuple inh. Then hyper-alerth1 prepares forhyper-alerth2

if there existp ∈ Prereq(h2) andc ∈ ExpConseq(h1) such thatp = c andc.end time < p.begin time.

The NCR model uses a hyper-alert correlation graph to represent a set of correlated alerts. Ahyper-alert
correlation graphCG = (N , E) is a connected directed acyclic graph (DAG), whereN is a set of hyper-alerts,
and for each pairn1, n2 ∈ N , there is a directed edge fromn1 to n2 in E if and only if n1 prepares forn2.
Figure 1 shows a hyper-alert correlation graph adapted from[32]. The numbers inside the nodes represent the
alert IDs, and the types of alerts are marked below the corresponding nodes.

Limitations of the NCR model. The NCR model can be used to construct attack scenarios, which are
represented as hyper-alert correlation graphs, from intrusion alerts. Although such attack scenariosreflect
attack strategies, they do not capture the essence of the strategies. Indeed, even with the same attack strategy,
if an attacker changes certain details during attacks, the NCR model will generate very different hyper-alert
correlation graphs. For example, an attacker may repeat (unnecessarily) one step in a sequence of attacks many
times, and the NCR model will generate a much more complex attack scenario. As another example, if an
attacker uses equivalent, but different attacks, the NCR model will generate different hyper-alert correlation
graphs as well. It’s then up to the user to figure out manually the common strategy behind two sequences of
attacks. This fact certainly increases the overhead in intrusion alert analysis.

2.2 Attack Strategy Graph

In the following, we present a model to represent and automatically extract attack strategies from correlated
alerts. The goal of this model is to capture the invariants inattack strategies that do not change across multiple
instances of attacks.

The strategy behind a sequence of attacks is indeed about howto arrange earlier attacks to prepare for the
later ones so that the attacker can reach his/her final goal. Thus, the prepare for relations between the intrusion
alerts (i.e., detected attacks) is intrinsic to attack strategies. However, in the NCR model, the prepare for
relations are between specific intrusion alerts; they do notdirectly capture the conditions that have to be met
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by related attacks. To facilitate the representation of theinvariant attack strategy, we transform the prepare for
relation into some common conditions that have to be satisfied by all possible instances of the same strategy.
In the following, we formally represent such a conditions asanequality constraint.

Definition 1 Given a pair of hyper-alert types(T1, T2), anequality constraint for(T1, T2) is a conjunction of
equalities in the form ofu1 = v1∧· · ·∧un = vn, whereu1, · · · , un are attribute names inT1 andv1, · · · , vn are
attribute names inT2, such that there existp(u1, · · · , un) andp(v1, · · · , vn), which are the same predicate with
possibly different arguments, inExpConseq(T1) andPrereq(T2), respectively. Given a typeT1 hyper-alert
h1 and a typeT2 hyper-alerth2, h1 andh2 satisfy the equality constraintif there existt1 ∈ h1 andt2 ∈ h2 such
thatt1.u1 = t2.v1 ∧ · · · ∧ t1.un = t2.vn evaluates to True.

There may be several equality constraints for a pair of hyper-alert types. However, if a typeT1 hyper-alert
h1 prepares for a typeT2 hyper-alerth2, thenh1 andh2 must satisfy at least one of the equality constraints.
Indeed,h1 preparing forh2 is equivalent to the conjunction ofh1 andh2 satisfying at least one equivalent
constraint andh1 occurring beforeh2. Assume thath1 occurs beforeh2. If h1 andh2 satisfy an equality
constraint for(T1, T2), then by Definition 1, there must be a predicatep(u1, · · · , un) in ExpConseq(T1) such
that the same predicate with possibly different arguments,p(v1, · · · , vn), is in Prereq(T2). Sinceh1 andh2

satisfy the equality constraint,p(u1, · · · , un) andp(v1, · · · , vn) will be instantiated to the same predicate in
ExpConseq(h1) and Prereq(h2). This implies thath1 prepares forh2. Similarly, if h1 prepares forh2,
there must be an instantiated predicate that appears inExpConseq(h1) andPrereq(h2). This implies that
there must be a predicate with possibly different argumentsin ExpConseq(T1) andPrereq(T2) and that this
predicate leads to an equality constraint for(T1, T2) satisfied byh1 andh2.

Example 1 Let us use an example from [32] to illustrate the notion of equality constraint. Consider the fol-
lowing hyper-alert types:SadmindPing= ({VictimIP, VictimPort}, ExistsHost(VictimIP), {VulnerableSadmind
(VictimIP)}), andSadmindBufferOverflow= ({VictimIP, VictimPort}, ExistHost(VictimIP) ∧ VulnerableSad-
mind(VictimIP), {GainRootAccess(VictimIP)}). The first hyper-alert type indicates thatSadmindPingis a type
of attacks that requires the existence of a host at theVictimIP to succeed, and as a result, the attacker may find out
that this host has a vulnerableSadmindservice. The second hyper-alert type indicates that this type of attacks re-
quires a vulnerableSadmindservice at theVictimIP, and as a result, the attack may gain root access. It is easy to
see that there is a common predicateV ulnerableSadmind in bothPrereq(SadmindBufferOverflow) and
ExpConseq(SadmindPing). Thus, we have an equality constraintV ictimIP = V ictimIP for (Sadmind-
Ping, SadmindBufferOverflow), where the firstVictimIP comes fromSadmindPing, and the secondVictimIP
comes fromSadmindBufferOverflow.

We observe in many occasions that one step in a sequence of attacks may trigger multiple intrusion alerts,
and the number of alerts may vary in different situations. This is partially due to the existing vulnerabilities
and the hacking tools. For example,unicode shell [33], which is a hacking tool against Microsoft IIS web
server, checks about 20 vulnerabilities at the scanning stage and usually triggers the same number of alerts.
As another example, in the attack scenario reported in [32],the attacker tried 3 different stack pointers and 2
commands inSadmindAmslverifyOverflowattacks for each victim host until one attempt succeeded. Even
if not necessary, an attacker may still deliberately repeatthe same step multiple times to confuse IDSs and/or
system administrators. However, such variations do not change the corresponding attack strategy. Indeed, these
variations make the attack scenarios unnecessarily complex, and may hinder manual or automatic analysis of
the attack strategy. Thus, we decide to disallow such situations in our representation of attack strategies.

In the following, an attack strategy is formally represented as an attack strategy graph.

Definition 2 Given a setS of hyper-alert types, anattack strategy graphoverS is a quadruple(N,E, T,C),
where (1)(N,E) is a connected DAG (directed acyclic graph); (2)T is a mapping that maps eachn ∈ N to
a hyper-alert type inS; (3) C is a mapping that maps each edge(n1, n2) ∈ E to a set of equality constraints
for (T (n1), T (n2)); (4) For anyn1, n2 ∈ N , T (n1) = T (n2) implies that there existsn3 ∈ N such that
T (n3) 6= T (n1) andn3 is in a path betweenn1 andn2.
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Figure 2: An example of attack strategy graph

In an attack strategy graph, each node represents a step in a sequence of related attacks. Each edge(n1, n2)
represents that a typeT (n1) attack is needed to prepare for a successful typeT (n2) attack. Each edge may
also be associated with a set of equality constraints satisfied by the intrusion alerts. These equality constraints
indicate how one attack prepares for another. Finally, as represented by condition 4 in Definition 2, the same
type of attacks should be considered as one step, unless theyare in different stages of the attacks.

Note that attack strategies may also be specified manually inlanguages such as LAMBDA [12] and STATL
[15]. However, manual specification of attack strategies requires prior knowledge of the strategies, and is also
time-consuming and error-prone. Tools based on modeling checking techniques (e.g., attack graphs [21, 36])
can certainly be used to build attack strategies from knowledge of individual types of attacks. However, these
methods require clearly identified security properties to run the model checking tools, which may not always
be available in reality. In contrast, our notion of attack strategy graph is intended to represent the strategies
extracted from correlated intrusion alerts. Based on the knowledge about individual attack types, a program can
automatically extract attack strategies from correlated intrusion alerts.

Now let’s see an example of an attack strategy graph.

Example 2 Figure 2 is the attack strategy graph extracted from the hyper-alert correlation graph in Figure 1.
The hyper-alert types are marked above the corresponding nodes, and the equality constraints are labeled near
the corresponding edges. This attack strategy graph clearly shows the component attacks and the constraints
that the component attacks must satisfy.

2.2.1 Learning Attack Strategies from Correlated Intrusion Alerts

As discussed earlier, our goal is to learn attack strategiesautomatically from correlated intrusion alerts. This
requires that we extract the constraints intrinsic to attack strategy from alerts so that the same constraints apply
to all the other instances of the same strategy.

Our strategy to achieve this goal is to process the correlated intrusion alerts in two steps. First, we aggregate
intrusion alerts that belong to the same step of a sequence ofattacks into one hyper-alert. For example, in
Figure 1, alerts 002 through 005 are indeed attempts of the same attack with different parameters, and thus they
should be aggregated as one step in the attack sequence. Second, we extract the constraints between the attack
steps and represent them as an attack strategy graph. For example, after we aggregate the hyper-alerts in the
first step, we may extract the attack strategy graph shown in Figure 2.

The challenge lies in the first step. Because of the variations of attacks as well as the signatures that IDSs use
to recognize attacks, there is no clear way to identify intrusion alerts that belong to the same step in a sequence of
attacks. In the following, we first attempt to use the attack type information to do so. The notion ofaggregatable
hyper-alerts is introduced formally to clarify when the same type of hyper-alerts can be aggregated.

Definition 3 Given a hyper-alert correlation graphCG = (N,E), a subsetN ′ ⊆ N is aggregatable, if (1) all
nodes inN ′ are the same type of hyper-alerts, and (2)∀n1, n2 ∈ N ′, if there is a path fromn1 to n2, then all
nodes in this path must be inN ′.

Intuitively, in a hyper-alert correlation graph, where intrusion alerts have been correlated together, the same
type of hyper-alerts can be aggregated as long as they are notused in different stages in the attack sequence.
Condition 1 in Definition 3 is quite straightforward, but condition 2 deserves more explanation. Consider the
same type of hyper-alertsh1 andh2. If h1 prepares for a different type of hyper-alerth′ (directly or indirectly),
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Algorithm 1. ExtractStrategy
Input: A hyper-alert correlation graphCG.
Output: An attack strategy graphASG.
Method:

1. LetCG′ = GraphReduction (CG).
2. LetASG = (N, E, T, C) be an empty attack strategy graph.
3. for each hyper-alerth in CG′

4. Add a new node, denotednh, into N and setT (nh) be the type ofh.
5. for each edge(h, h′) in CG′

6. Add(nh, nh′) into E.
7. for eachpc ∈ ExpConseq(h) andpp ∈ Prereq(h′)
8. if pc = pp then
9. Add intoC(nh, nh′) the equality constraint(u1 = v1) ∧ · · · ∧ (un = vn),

whereui andvi are theith variable ofpc andpp before instantiation, respectively.
10. return ASG(N, E, T, C).

Subroutine GraphReduction
Input: A hyper-alert correlation graphCG = (N, E).
Output: An irreducible hyper-alert correlation graphCG′ = (N ′, E′).
Method:

1. Partition the hyper-alerts inN into groups such that the same type of hyper-alerts are all
in the same group.

2. for each groupG
3. if there is a pathg, n1, · · · , nk, g′ in CG such that onlyg andg′ in this path are inG then
4. DivideG into G1, G2, andG3 such that all hyper-alerts inG1 occur beforen1,

all hyper-alerts inG3 occur aftern2, and all the other hyper-alerts are inG2.
5. Repeat steps 2 to 4 until no group can be divided.
6. Aggregate the hyper-alerts in each group into one hyper-alert.
7. LetN ′ be the set of aggregated hyper-alerts.
8. for all n1, n2 ∈ N ′

9. if there exists(h1, h2) ∈ E andh1 andh2 are aggregated inton1 andn2, respectively
10. add(n1, n2) into E′.
11. return CG′ = (N ′, E′).

Figure 3: An algorithm to extract attack strategy graph froma hyper-alert correlation graph

and h′ further prepares forh2 (directly or indirectly),h1 and h2 obviously belong to different steps in the
same sequence of attacks. Thus, we shouldn’t allow them to beaggregated together. Although we have never
observed such situations, we cannot rule out such possibilities.

Based on the notion of aggregatable hyper-alerts, the first step in learning attack strategy from a hyper-alert
correlation graph is quite straightforward. We only need toidentify and merge all aggregatable hyper-alerts. To
proceed to the second step in strategy learning, we need a hyper-alert correlation graph in which each hyper-
alert represents a separate step in the attack sequence. Formally, we call such a hyper-alert correlation graph an
irreducible hyper-alert correlation graph.

Definition 4 A hyper-alert correlation graphCG = (N,E) is irreducible if for all N ′ ⊆ N , where|N ′| > 1,
N ′ is not aggregatable.

Figure 3 shows the algorithm to extract attack strategy graphs from hyper-alert correlation graphs. The
subroutineGraphReductionis used to generate an irreducible hyper-alert correlationgraph, and the rest of the
algorithm extracts the components of the output attack strategy graph. The steps in this algorithm are self-
explanatory; we do not repeat them in the text. Lemma 1 ensures that the output of algorithm 1 indeed satisfies
the constraints of an attack strategy graph. The proof of Lemma 1 can be found in Appendix A.

Lemma 1 The output of Algorithm 1 is an attack strategy graph.
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2.3 Dealing with Variations of Attacks

Algorithm 1 in Figure 3 has ignored equivalent but differentattacks in sequences of attacks. For example,
an attacker may use eitherpmapdumpor SadmindPing to find a vulnerable Sadmind service. As another
example, an attacker may use eitherSadmindBufferOverflowor TooltalkBufferOverflowattack gain remote
access to a host. Obviously, at the same stage of two sequences of attacks, if an attacker uses equivalent but
different attacks, Algorithm 1 will return two different attack strategy graphs, though the strategies behind them
are the same.

We propose to generalize hyper-alert types so that the syntactic difference between equivalent hyper-alert
types is hidden. For example, we may generalize bothSadmindBufferOverflowandTooltalkBufferOverflow
attacks intoRPCBufferOverflow.

A generalized hyper-alert type is created to hide the unnecessary difference between specific hyper-alert
types. Thus, an occurrence of any of the specific hyper-alerts should imply an occurrence of the generalized
one. This is to say that satisfaction of the prerequisite of aspecific hyper-alert implies the satisfaction of the
prerequisite of the generalized hyper-alert. Moreover, tocover all possible impact of all the specific hyper-alerts,
the consequences of all the specific hyper-alert types should be included in the consequence of the generalized
hyper-alert type. It is easy to see that this generalizationmay cause loss of information. Thus, generalization of
hyper-alert types must be carefully handled so that information essential to attack strategy is not lost.

In the following, we formally clarify the relationship between specific and generalized hyper-alert types.

Definition 5 Given two hyper-alert typesTg andTs, whereTg = (factg, prereqg, conseqg) andTs = (facts,

prereqs, conseqs), we sayTg is more general thanTs (or, equivalently,Ts is more specific thanTg) if there
exists an injective mappingf from factg to facts such that the following conditions are satisfied:

• If we replace all variablesx in prereqg with f(x), prereqs impliesprereqg, and

• If we replace all variablesx in conseqg with f(x), then all formulas inconseqs are implied byconseqg.

The mappingf is called thegeneralization mappingfrom Ts to Tg.

Example 3 Suppose the hyper-alert typesSadmindBufferOverflowandTooltalkBufferOverfloware specified
as follows: SadmindBufferOverflow= ({VictimIP, VictimPort}, ExistHost(VictimIP) ∧ VulnerableSadmind
(VictimIP), {GainRootAccess(VictimIP)}), andTooltalkBufferOverflow= ({VictimIP, VictimPort}, ExistHost
(VictimIP) ∧ VulnerableTooltalk(VictimIP), {GainRootAccess(VictimIP)}). Assume thatVulnerableSadmind
(VictimIP) imply VulnerableRPC(VictimIP). Intuitively, this represents that if there is a vulnerable Sadmind
service atVictimIP, then there must be a vulnerable RPC service (i.e., the Sadmind service) atVictimIP. Simi-
larly, we assumeVulnerableTooltalk(VictimIP) also impliesVulnerableRPC(VictimIP). Then we can generalize
both SadmindBufferOverflowandTooltalkBufferOverflowinto RPCBufferOverflow= ({VictimIP}, ExistHost
(VictimIP) ∧ VulnerableRPC(VictimIP), {GainRootAccess(VictimIP)}), where the generalization mapping is
f(V ictimIP ) = V ictimIP .

By identifying a generalization mapping, we can specify howa specific hyper-alert can be generalized into a
more general hyper-alert. Following the generalization mapping, we can find out what attribute values of a spe-
cific hyper-alert should be assigned to the attributes of thegeneralized hyper-alert. The attack strategy learning
algorithm can be easily modified: We first generalize the hyper-alerts in the input hyper-alert correlation graph
into generalized hyper-alerts following the generalization mapping, and then apply Algorithm 1 to extract the
attack strategy graph.

Although a hyper-alert can be generalized in different granularities, it is not an arbitrary process. In particu-
lar, if one hyper-alert prepares for another hyper-alert before generalization, the generalized hyper-alerts should
maintain the same relationship. Otherwise, the dependencybetween different attack stages, which is intrinsic
in an attack strategy, will be lost.
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The remaining challenge is how to get the “right” generalized hyper-alert types and generalization mappings.
The simplest way is to manually specify them. For example,Apache2, Back, andCrashiisare all Denial of
Service attacks. We may simply generalize all of them into one WebServiceDOS. However, there are often
different ways to generalize. To continue the above example, Apache2andBackattacks are against the apache
web servers, whileCrashiisis against the Microsoft IIS web server. To keep more information about the attacks,
we may want to generalizeApacheandBack into ApacheDOS, while generalizeCrashiisand possibly other
DOS attacks against the IIS web server intoIISDOS. Nevertheless, this doesn’t affect the attack strategy graphs
extracted from correlated intrusion alerts as long as the constraints on the related alerts are satisfied.

Automatic Generalization of Hyper-Alert Types It is time-consuming and error-prone to manually gener-
alize hyper-alert types. One way to partially automate thisprocess is to use clustering techniques to identify
the hyper-alert types that should be generalized into a common one. In our experiments, we use the bottom-
up hierarchical clustering [20] to group hyper-alert typeshierarchically on the basis of the similarity between
them, which is derived from the similarity between the prerequisites and consequences of hyper-alert types.
The method used to compute the similarity is described below.

To facilitate the computation of similarity between prerequisites of hyper-alert types, we convert each pre-
requisite into anexpanded prerequisite set, which includes all the predicates that appear or are implied by the
prerequisite. Similarly, we can get the expanded consequence set. Consider two sets of predicates, denotedS1

andS2, respectively. We adopt the Jaccard similarity coefficient[19] to compute the similarity betweenS1 and
S2, denotedSim(S1, S2). That is,Sim(S1, S2) = a

a+b+c
, wherea is the number of predicates in bothS1 and

S2, b is the number of predicates only inS1, andc is the number of predicates only inS2.

Given two hyper-alert typesT1 and T2, the similarity betweenT1 and T2, denotedSim(T1, T2), is then
computed asSim(T1, T2) = Sim(XP1,XP2) × wp + Sim(XC1,XC2) × wc, whereXP1 andXP2 are the
expanded prerequisite sets ofT1 andT2, XC1 andXC2 are the expanded consequence sets ofT1 andT2, and
wp andwc = 1 − wp are the weights for prerequisite and consequence, respectively. (In our experiments, we
usewp = wc = 0.5 to give equal weight to both prerequisite and consequence ofhyper-alert types.) We may
then set a thresholdt so that two hyper-alert types are grouped into the same cluster only if their similarity
measure is greater than or equal tot. Appendix B includes some generalization hierarchies we encountered in
our experiments.

3 Measuring the Similarity between Attack Strategies

In this section, we present techniques to measure the similarity between attack strategy graphs based on er-
ror tolerant graph/subgraph isomorphism detection, whichhas been studied extensively in pattern recogni-
tion [4,24–27]. Since the attack strategy graphs are extracted from sequences of correlated alerts, the similarity
between two attack strategy graphs are indeed the similarity between the original alert sequences in terms of
their strategies. Such similarity measurement is a fundamental problem in intrusion analysis; it has potential
applications in incident handling, computer and network forensics, and other security management areas.

We are particularly interested in two problems. First, how similar are two attack strategies? Second, how
likely is one attack strategy a part of another attack strategy? These two problems can be mapped naturally to
error tolerant graph isomorphism and error tolerant subgraph isomorphism problems, respectively.

To facilitate the later discussion, we give a brief overviewof error tolerant graph/subgraph isomorphism.
Further details can be found in the rich literature on graph/subgraph isomorphism [4,24–27].

3.1 Error Tolerant Graph/Subgraph Isomorphism

In graph/subgraph isomorphism, a graph is a quadrupleG = (N,E, T,C), whereN is the set of nodes,E is
the set of edges,T is a mapping that assigns labels to the nodes, andC is a mapping that assigns labels to the
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edges. Given two graphsG1 = (N1, E1, T1, C1) andG2 = (N2, E2, T2, C2), a bijective functionf is agraph
isomorphismfrom G1 to G2 if

• for all n1 ∈ N1, T1(n1) = T2(f(n1));

• for all e1 = (n1, n
′
1) ∈ E1, there existse2 = (f(n1), f(n′

1)) ∈ E2 such thatC(e1) = C(e2), and for all
e2 = (n2, n

′
2) ∈ E2, there existse1 = (f−1(n2), f

−1(n′
2)) ∈ E1 such thatC(e2) = C(e1).

Given a graphG = (N,E, T,C), asubgraphof G is a graphGs = (Ns, Es, Ts, Cs) such that (1)Ns ⊆ N ,
(2) Es = E ∩ (Ns × Ns), (3) for all ns ∈ Ns, Ts(ns) = T (ns), and (4) for alles ∈ Es, Cs(es) = C(es).
Given two graphsG1 = (N1, E1, T1, C1) andG2 = (N2, E2, T2, C2), an injective functionf is a subgraph
isomorphismfrom G1 to G2, if there exists a subgraphG2s of G2 such thatf is a graph isomorphism fromG1

to G2s.

As a further step beyond graph/subgraph isomorphism, errortolerant graph/subgraph isomorphism (which is
also known as error correcting graph/subgraph isomorphism) is introduced to cope with noises or distortion in
the input graphs. There are two approaches for error tolerant graph/subgraph isomorphism: graph edit distance
and maximal common graph. In this paper, we focus on graph edit distance to study the application of error
tolerant graph/subgraph isomorphism in intrusion detection.

The edit distance method assumes a set of edit operations (e.g., deletion, insertion and substitution of nodes
and edges) as well as the costs of these operations, and defines the similarity of two graphs in terms of the least
cost sequence of edit operations that transforms one graph into the other. We denote the edited graph after a
sequence of edit operations∆ as∆(G). Consider two graphsG1 andG2. ThedistanceD(G1, G2) fromG1 to
G2 w.r.t. graph isomorphismis theminimumsum of edit costs associated with a sequence of edit operations∆
onG1 that leads to a graph isomorphism from∆(G1) to G2. Similarly, thedistanceDs(G1, G2) fromG1 to G2

w.r.t. subgraph isomorphismis theminimumsum of edit costs associated with a sequence of edit operations∆ on
G1 that leads to asubgraphisomorphism from∆(G1) to G2. An error tolerant graph/subgraph isomorphism
from G1 to G2 is a pair (∆, f ), where∆ is a sequence of edit operations onG1, andf is a graph/subgraph
isomorphism from∆(G1) to G2.

It is well known that subgraph isomorphism detection is an NP-complete problem [17]. Error tolerant sub-
graph isomorphism detection, which involves subgraph isomorphism detection, is also in NP and generally
harder than exact subgraph isomorphism detection [25]. Nevertheless, error tolerant subgraph isomorphism has
been widely applied in image processing and pattern recognition [4, 24–27]. In our application, all the attack
strategy graphs we have encountered are small graphs with less than 10 nodes. We argue that it is very unlikely
to have very large attack strategy graphs in practice. Thus,we believe error tolerant graph/subgraph isomor-
phism can be applied to measure the similarity between attack strategy graphs with reasonable response time.
Indeed, we did not observe any noticeable delay in our experiments.

3.2 Working with Attack Strategy Graphs

To successfully use error tolerant graph/subgraph isomorphism detection techniques, we need to answer at least
the following three questions. What are the edit operationson an attack strategy graph? What are reasonable
edit costs of these edit operations? What is the right similarity measurement between attack strategy graphs?

All the edit operations on a labeled graph are applicable to attack strategy graphs. Specifically, anedit
operationon an attack strategy graphASG = (N,E, T,C) is one of the following:

1. Inserting a noden: $ → n. This represents adding a stage into an attack strategy. This edit operation is
only needed for error-tolerant graph isomorphism.

2. Deleting a noden: n → $. This represents removing a stage from an attack strategy. Note that this
implies deleting all edges adjacent withn.
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3. Substituting the hyper-alert type of a noden: T (n) → t, wheret is a hyper-alert type. This represents
changing the attack at one stage of the attack strategy.

4. Inserting an edgee = (n1, n2): $ → e, wheren1, n2 ∈ N . This represents adding dependency (i.e.,
prepare for relation) between two attack stages.

5. Deleting an edgee = (n1, n2): e → $. This represents removing dependency (i.e., prepare for relation)
between two attack stages.

6. Substituting the label of an edgee = (n1, n2): C(e) → c, wherec is a set of equality constraints. This
represents changing the way in which two attack stages are related to each other. (Note thatc is not
necessarily a set of equality constraints for(T (n1), T (n2)).)

These edit operations do not necessarily transform one attack strategy graph into another attack strategy
graph. Indeed, a labeled graph must satisfy some constraints to be an attack strategy graph. For example, all the
equality constraints in the label associated with(n1, n2) must be valid equality constraints for(T (n1), T (n2)).
It is easy to see that the edit operations may violate some of these constraints.

One may suggest these constraints be enforced throughout the transformation of attack strategy graphs. As
an additional benefit, this can be used to reduce the search space required for graph/subgraph isomorphism.
However, this approach may not find the least expensive sequence of edit operations, and may even fail to find a
transformation from one attack strategy graph to (the subgraph of) another. Indeed, editing distance is one way
to measure the difference between attack strategy graphs; it is not necessary to require that all the intermediate
edited graphs are attack strategy graph. As long as the final edited graph is isomorphic to an attack strategy
graph, it is guaranteed to be an attack strategy graph. Thus,we do not require the intermediate graphs during
graph transformation be attack strategy graphs.

Assignment of edit costs to the edit operations is a criticalstep in error tolerant graph/subgraph isomorphism.
The actual costs are highly dependent on the domain in which these techniques are applied. In our application,
there are multiple reasonable ways to assign the edit costs.In the following, we attempt to give some constraints
that the cost assignment must satisfy.

In an attack strategy graph, a node represents a stage in an attack strategy, while an edge represents the causal
relationship between two steps in the strategy. Obviously,changing the stages in an attack strategy affects the
attack strategy significantly more than modifying the causal relationships between stages. Thus, the edit costs
of node related operations should be significantly more expensive than those of the edge related operations.

Inserting or deleting a node implies having one more or fewerstep in the strategy, while substituting a node
type implies to replace the attack in one step in the strategy. Thus, inserting or deleting a node has at least the
same impact on the strategy as substituting the node type. Moreover, deleting a node and inserting a node are
both manipulations of a stage; there is no reason to say one operation has more impact than the other. Therefore,
they should have the same cost. Both inserting and deleting an edge changes the causal relationship between
two attack stages, and they should have the same impact on theattack strategy. However, substituting the label
of an edge is just to change the way in which two attack stages are related. Thus, it should have less cost than
edge insertion and deletion. In summary, we can derive the following constraint in edit cost assignments.

Constraint 1 Costn→$ = Cost$→n ≥ CostT (n)→t >> Cost$→e = Coste→$ ≥ CostC(e)→c.

The labels in an attack strategy graph is indeed a set of equality constraints. As a result, labels are not
entirely independent of each other. This further implies that edit costs for edge label substitution should not
be uniformly assigned. For example, substituting an edge label {A,B} for {A,C} should have less cost than
substituting{A,B} for {C,D}. This observation leads to another constraint.

Constraint 2 Assume that the edit operationC(e) → c replacesC(e) = cold with cnew. The edit cost
CostC(e)→c should be smaller whencold andcnew have more equality constraints in common.
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Here we give a simple way to accommodate Constraint 2. We assume there is a maximum edit cost for label
substitution operation, denoted asMaxCostC(e)→c. The edit cost of a label substitution is thenCostC(e)→c =

MaxCostC(e)→c ×
|cold∩cnew|
|cold∪cnew| , wherecold andcnew are the labels (i.e., sets of equality constraints) before and

after the operation.

Error tolerant graph/subgraph isomorphism detection techniques can conveniently give a distance between
two labeled graphs, which is measured in terms of edit cost. As we discussed earlier, we use these techniques
to help answer two questions: (1) How similar are two sequences of attacks in terms of their attack strategy?
(2) How likely does one sequence of attacks use a part of attack strategy in another sequence of attacks? In the
following, we transform the edit distance measures into more direct similarity measures.

Consider an attack strategy graphASG. We refer to the distance fromASG to an empty graph as the
reductive weight ofASG, denoted asWr(ASG). Similarly, we refer to the distance from an empty graph to
ASG as theconstructive weight ofASG, denotedWc(ASG).

Definition 6 Consider two attack strategy graphsASG1 andASG2. Thesimilarity betweenASG1 andASG2

w.r.t. (attack) strategyis Sim(ASG1, ASG2) = Sim(ASG1→ASG2)+Sim(ASG2→ASG1)
2 , whereSim(ASGx →

ASGy) = 1 −
D(ASGx,ASGy)

Wr(ASGx)+Wc(ASGy) .

Definition 7 Consider two attack strategy graphsASG1 andASG2. Thesimilarity betweenASG1 andASG2

w.r.t. (attack) sub-strategyis SimSub(ASG1, ASG2) = 1 − Ds(ASG1,ASG2)
Wr(ASG1)+Wc(ASG2) .

Appendix C gives a simple analysis of the impact of edit costson the similarity measurements. In summary,
when the number of edges are not substantially more than the number of nodes, and the number of edge
operations are not substantially more than the number of node operations, the similarity measure is mainly
determined by the number of nodes and node operations ratherthan the edit costs.

4 Experiments

We have performed a series of experiments to study the techniques proposed in this paper. In our experiments,
we used the implementation of the NCR model, the NCSU Intrusion Alert Correlator [31], to correlate intrusion
alerts. Following their example, we also used GraphViz [2] to visualize graphs. In addition, we usedGUB [24],
A Toolkit for Graph Matching, to perform error tolerant graph/subgraph isomorphism detection and compute
distances between attack strategy graphs. We used Snort [35] as our IDS sensor.

Our test data sets include the 2000 DARPA intrusion detection scenario specific data sets [28]. The data sets
contain two scenarios: LLDOS 1.0 and LLDOS 2.0.2. In LLDOS1.0, the sequence of attacks includes IPsweep,
probes of sadmind services, breakins through sadmind exploits, installations of DDoS programs, and finally the
DDoS attack. LLDOS 2.0.2 is similar to LLDOS 1.0; however, the attacks in LLDOS 2.0.2 are more stealthy
than those in LLDOS 1.0. In addition to the DARPA data sets, wealso performed three sequences of attacks in
an isolated network. In all these three attack sequences, the attacker started with nmap [16] scans of the victim.
Then, in the first sequence, the attacker sent malformed urls[8] to the victim’s Internet Information Services
(IIS) to get a cmd.exe shell. In the second sequence, the attacker took advantage of the flaws of IP fragment
reassembly on Windows 2000 [7] to launch a DoS attack. In the third sequence, the attacker launched a buffer
overflow attack against the Internet Printing Protocol accessed via IIS 5.0 [5,9]. Further details of these attack
sequences are included in Appendix D. We also used the alert sets provided along with the Intrusion Alert
Correlator [31]. These alerts were generated by RealSecureNetwork Sensor [18] on the 2000 DARPA data
sets, too. We label their alert sets withRealSecure, while label ours withSnortto distinguish between them.
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n1: FTP_Syst

n2: Sadmind_Ping

{n1.DestIP=n2.DestIP}

n3: Sadmind_Amslverify_Overflow

{n1.DestIP=n3.DestIP}

{n2.DestIP=n3.DestIP}

n5: Rsh

{n3.DestIP=n5.SrcIP}

n6: Mstream_Zombie

{n3.DestIP=n6.SrcIP}

{n5.SrcIP=n6.SrcIP}

n7: Stream_DoS

{ }

n4: Email_Almail_Overflow

{n4.DestIP=n5.SrcIP}

{n4.DestIP=n6.SrcIP}

(a) LLDOS1.0 inside dataset (RealSecure)

n1: RPC portmap request sadmind

n2: RPC sadmind UDP PING

{n1.DestIP=n2.DestIP}

n3: TELNET access

{n2.DestIP=n3.SrcIP}

n4: RSERVICES rsh root

{n2.DestIP=n4.SrcIP}

{n3.SrcIP=n4.SrcIP}

n5: DDOS shaft client to handler

{n3.SrcIP=n5.SrcIP}

{ n4.SrcIP=n5.SrcIP }

(b) LLDOS1.0 inside dataset (Snort)

n1: Sadmind_Amslverify_Overflow

n3: FTP_Put

{n1.DestIP=n2.DestIP}

n4: Mstream_Zombie

{n1.DestIP=n2.SrcIP}

{n3.DestIP=n2.SrcIP}

n5: Stream_DoS

{ }

n2: Email_Almail_Overflow

{n2.DestIP=n3.DestIP}

{n2.DestIP=n4.SrcIP}

(c) LLDOS2.0.2 inside dataset (RealSecure)

n1: TELNET access

n2: DDOS shaft client to handler

{ n1.SrcIP=n2.SrcIP}

(d) LLDOS2.0.2 inside dataset (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: SCAN namp TCP

{n1.DestIP=n3.DestIP}

n4: SCAN namp XMAS

{n1.DestIP=n4.DestIP}

n5: WEB-IIS unicode directory traversal attempt

{n2.DestIP=n5.DestIP}

n6: WEB-IIS cmd.exe access

{n2.DestIP=n6.DestIP} {n3.DestIP=n5.DestIP}{n3.DestIP=n6.DestIP}{n4.DestIP=n5.DestIP}{n4.DestIP=n6.DestIP}

n7: ATTACK RESPONSES http dir listing

{n5.DestIP=n7.SrcIP}{n6.DestIP=n7.SrcIP}

(e) WEB-IIS unicode exploits (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: (spp_frag2) Oversized fragment, probable Dos

{n2.DestIP=n3.DestIP}

(f) jolt2 DoS attack (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: SCAN namp TCP

{n1.DestIP=n3.DestIP}

n4: SCAN namp XMAS

{n1.DestIP=n4.DestIP}

n5: WEB-IIS ISAPI .printer access

{n2.DestIP=n5.DestIP} {n3.DestIP=n5.DestIP} {n4.DestIP=n5.DestIP}

(g) WEB-IIS ISAPI .printer access (Snort)

Figure 4: Attack Strategy Graphs Extracted from Our Experiments
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4.1 Learning Attack Strategies from Correlated Intrusion Alerts

Our first goal is to evaluate the effectiveness of our approach on extracting the attack strategies. Figure 4 shows
all of the attack strategy graphs extracted from the test data sets. The label inside each node is the node ID
followed by the hyper-alert type of the node. The label of each edge describes the set of equality constraints for
the hyper-alert types associated with the two end nodes.

The attack strategy graphs we extracted from LLDOS 1.0 (inside part) are shown in Figure 4(a) and 4(b).
Comparing them with the description of the data set [28], we know that both Figures 4(a) and 4(b) have cap-
tured most of the attack strategy. The missing parts are due to the attacks missed by the IDSs. Since we
didn’t generalize variations of hyper-alert types, these graphs still have syntactic differences despite of their
common strategy. (Note that the “RPC sadmind UDP PING” alertreported by Snort is indeed the “Sad-
mind Amslverify Overflow” alert by RealSecure, and the “RPC portmap sadmind request UDP” alert by Snort
is the “SadmindPing” alert by RealSecure.) Moreover, false alerts are alsoreflected in the attack strategy
graphs. For example, the hyper-alert types “EmailAlmail Overflow” and “FTPSyst” in Figure 4(a) do not
belong to the attack strategy, but they are included becauseof the false detection.

The attack strategies extracted from LLDOS 2.0.2 are shown in Figures 4(c) and 4(d). Compared with the
five phases of attack scenarios [28], it is easy to see that Figure 4(c) reveals most of the adversary’s strategy.
However, Figure 4(d) reveals two steps fewer than Figure 4(c). Our further investigation indicates that this is
because one critical attack step, the buffer overflow attacks against sadmind service, was completely missed by
Snort. Figures 4(e), 4(f), and 4(g) show the attack strategies extracted from the three sequences of attacks we
performed. By comparing with the attacks, which are described in Appendix D, we can see that the stages as
well as the constraints intrinsic to these attack strategies are mostly captured by these graphs.

Though showing some potential, these experimental resultsalso reveal a limitation of the attack strategy
learning method: That is, our method depends on the underlying IDSs as well as the alert correlation method.
If the hyper-alert correlation graphs do not reveal the entire attack strategy, or include false alerts, the attack
strategy graphs generated by our method will not be perfect.Nevertheless, our technique is intended to automate
the analysis process typically performed by human analysts, who may make the same mistake if no other
information is used. More research is clearly needed to mitigate the impact of imperfect IDS and correlation.

Another observation is that alerts from heterogeneous IDSscan help complete the attack strategies. For
example, combining Figures 4(c) and 4(d), we know that an attacker may launch buffer overflow attacks against
sadmind service and then use telnet to access the victim machine.

Note that we do not give a quantitative performance evaluation of attack strategy extraction (i.e., the false
positive and false negative of the extracted attack strategies). This is because such measures are indeed deter-
mined by the underlying intrusion alert correlation algorithm. As long as correlation is performed correctly, our
method can always extract the strategy reflected by the correlated alerts.

4.2 Measuring the Similarity between Alert Sequences

We performed some experiments to measure the similarity between the previously extracted seven attack strat-
egy graphs. To hide the unnecessary differences between alert types, we generalized similar alert types. Due to
space reasons, we do not redraw the attack strategy graphs. The generalization details are given in Appendix
D. We assume the edit costs for node operations are all 10, andthe edit costs for the edge operations are all 1.

Tables 1 and 2 show the similarity measurements between eachpair of attack strategy graphs w.r.t. attack
strategy and attack sub-strategy, respectively. Each subscript in the tables denotes the graph it represents. We
notice thatSimSub(Gi, Gj) may not necessarily be equal toSimSub(Gj , Gi).

Table 1 indicates that Figure 4(a) is more similar to Figures4(b), and 4(c) to the other graphs. In addition,
Figure 4(g) is more similar to Figures 4(e) and 4(f) than the other graphs. Based on the description of these
attack sequences, we can see these similarity measures conform to human perceptions.
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Table 1: The similarity w.r.t. attack strategy between attack strategy graphs in Figure 4

G4(a) G4(b) G4(c) G4(d) G4(e) G4(f) G4(g)

G4(a) / 0.72 0.73 0.21 0.29 0.31 0.25
G4(b) 0.72 / 0.66 0.55 0.25 0.25 0.29
G4(c) 0.73 0.66 / 0.40 0.34 0.38 0.30
G4(d) 0.21 0.55 0.40 / 0.21 0.40 0.38
G4(e) 0.29 0.25 0.34 0.21 / 0.48 0.74
G4(f) 0.31 0.25 0.38 0.40 0.48 / 0.61
G4(g) 0.25 0.29 0.30 0.38 0.74 0.61 /

Table 2: The similarity w.r.t. attack sub-strategy betweenattack strategy graphs in Figure 4

G4(a) G4(b) G4(c) G4(d) G4(e) G4(f) G4(g)

G4(a) / 0.72 0.66 0.31 0.53 0.31 0.43
G4(b) 0.89 / 0.67 0.55 0.61 0.38 0.51
G4(c) 0.90 0.68 / 0.40 0.61 0.38 0.52
G4(d) 0.89 1.00 0.86 / 0.79 0.60 0.73
G4(e) 0.51 0.58 0.58 0.21 / 0.48 0.26
G4(f) 0.72 0.65 0.65 0.40 0.91 / 0.89
G4(g) 0.59 0.51 0.48 0.27 0.93 0.61 /

Table 2 shows the similarity between attack strategy graphsw.r.t. attack sub-strategy. We can see that Figures
4(b), 4(c), and 4(d) are very similar to a sub-strategy of Figure 4(a). In addition, Figure 4(d) is exactly a sub-
strategies of Figure 4(b). Similarly, Figures 4(g) and 4(f)are both similar to sub-strategies of Figure 4(e), and
Figure 4(f) is also similar to a sub-strategy of Figure 4(g).Comparing these measure values with these attack
sequences, we can see these measures also conform to human perceptions.

The experiments also reveal some remaining problems that haven’t been addressed by our techniques. First,
the similarity measures make sense in terms of their relative values. However, we still do not understand what
a specific similarity measure represents. Second, false alerts generated by IDSs have a negative impact on the
measurement. It certainly requires further research to address these issues.

4.3 Identification of Missing Detections

Our last set of experiments is intended to study the possibility to apply the similarity measurement method to
identify attacks missed by IDSs. For the sake of presentation, we first introduce two terms: precedent set and
successive set. Intuitively, theprecedent setof a noden in an attack strategy graph is the set of nodes from
which there are paths ton, while thesuccessive setof n is the set of nodes to whichn has a path. In the
following, we show two examples we encountered in our experiments.

Example 4 The attack strategy graph in Figure 4(c) has no network probephase, but Figure 4(a) does. The
similarity measurementSimSub(G4(c), G4(a)) = 0.90 andSim(G4(c), G4(a)) = 0.73 indicate that these two
strategies are very similar and it’s very likely that Figure4(c) is a sub-strategy of Figure 4(a). Thus, it is possible
that some probe attacks are missed by the IDS when the IDS detected the attacks corresponding to Figure 4(c).
Indeed, this is exactly what happened in LLDOS 2.0.2. The adversary uses some stealthy attacks (i.e., HINFO
query to the DNS server) to get the information about the victim host.

Example 5 Consider Figures 4(d) and 4(b). We haveSimSub(G4(d), G4(b)) = 1.0. Thus,G4(d) is exactly a
sub-strategy ofG4(b). By checking the LLDOS2.0.2 alerts reported by Snort, we know that there are also “RPC
portmap sadmind request UDP” alerts as in Figure 4(b). However, since Snort did not detect the later buffer
overflow attack, these “RPC portmap sadmind request UDP” alerts aren’t correlated with the later alerts.
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We then perform the following steps, trying to identify attacks possibly missed in LLDOS 2.0.2. We pick
noden1 in Figure 4(d), and find its corresponding noden3 in Figure 4(b), which is mapped ton1 by the
subgraph isomorphism. It is easy to see that in Figure 4(b), the precedent set ofn3 is {n1 n2}, andn1 has the
type “RPC portmap sadmind request UDP”. We then go back to LLDOS 2.0.2 alerts, and find “RPC portmap
sadmind request UDP” alerts before “TELNET ACCESS”. By comparing the precedent set ofn1 in Figure 4(d)
and the precedent set ofn3 in Figure 4(b), we suspect that “RPC sadmind UDP PING” (whichcorresponds
to noden2 in Figure 4(b)) has been missed in LLDOS 2.0.2. If we add such an alert, we may correlate it
with “RPC portmap sadmind request UDP” and further with “TELNET access” in Figure 4(d). Indeed, “RPC
sadmind UDP PING” is the buffer overflow attack missed by Snort in LLDOS 2.0.2.

The later part of example 5 is very similar to the abductive correlation proposed in [11]. The additional
feature provided by the similarity measurement is the guidelines about what attacks may be missed. In this
sense, the similarity measurement is complementary to the abductive correlation. Moreover, these examples
are provided to demonstrate the potential of identifying missed attacks through measuring similarity of attack
sequences. It is also possible that the attacker didn’t launch those attacks. Additional research is necessary to
improve the performance and reduce false identification rate.

5 Related Work

Our work in this paper is closely related to the recent results in intrusion alert correlation. In particular, our
attack strategy model can be considered as an extension to [11] and [32]. In addition to correlating alerts
together based on their relationships, we further extract the attack strategy used in the attacks, and use them to
measure the similarity between sequences of alerts.

There are other alert correlation techniques. The techniques in [10, 13, 37, 40] correlate alerts on the basis
of the similarities between the alert attributes. The Tivoli approach correlates alerts based on the observation
that some alerts usually occur in sequence [14]. M2D2 correlates alerts by fusing information from multiple
sources besides intrusion alerts, such as the characteristics of the monitored systems and the vulnerability
information [29], thus having a potential to result in better results than those simply looking at intrusion alerts.
The mission-impact-based approach correlates alerts raised by INFOSEC devices such as IDS and firewalls
with the importance of system assets [34]. The alert clustering techniques in [22,23] use conceptual clustering
and generalization hierarchy to aggregate alerts into clusters. Alert correlation may also be performed by
matching attack scenarios specified by attack languages. Examples of such languages include STATL [15],
LAMBDA [12], and JIGSAW [38].

Our approach to similarity measurement of attack strategies is based on error-tolerant graph/subgraph iso-
morphism techniques [3, 6, 24, 25, 39]. The early work about graph/subgraph isomorphism was presented
in [3, 6, 39]. The traditional methods are A* based approaches [30]. The more efficient algorithms proposed
recently include decomposition-based approaches [24–26]and decision tree-based approaches [24,27].

6 Conclusion

In this paper, we developed techniques to extract attack strategies from correlated intrusion alerts based on
the recent advances in intrusion alert correlation [11, 32]. Our contributions include a model to represent and
algorithms to extract attack strategies from intrusion alerts. Moreover, to accommodate variations in attacks
that are not intrinsic to attack strategies, we propose to generalize different types of intrusion alerts to hide
the unnecessary difference between them. Finally, we developed techniques to measure the similarity between
sequences of attacks based on their strategies. Our experimental results have shown that our techniques can
successfully extract invariant attack strategies from sequences of alerts, measure the similarity between alert
sequences in a way conforming to human intuition, and has a potential to identify attacks missed by IDSs.
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A Proof Sketch of Lemma 1

We first prove the output of the subroutineGraphReductionis an irreducible hyper-alert correlation graph by
contradiction. Consider the outputCG′ = (N ′, E′) of GraphReduction. Suppose there existsNs ⊆ N ′, where
|Ns| > 1, such thatNs is aggregatable. Thus, all nodes inNs are the same type of hyper-alerts, and for any
two different nodesn1, n2 ∈ Ns, if there is a path fromn1 to n2, then all nodes in the path are inNs. Since
CG′ is aggregated from the input hyper-alert correlation graph, for all pairs of nodesn′

1 andn′
2, wheren′

1 and
n′

2 are aggregated inton1 andn2, respectively, if there exists a path fromn′
1 to n′

2 in the input graph, all the
nodes in the path must be in the group of nodes aggregated intothe nodes inNs. According to steps 3 and 4
in GraphReduction, they should have been kept in the same group and aggregated into one node inCG′. This
leads to a contradiction to the assumption thatn′

1 andn′
2 are aggregated inton1 andn2, respectively.

Now we prove the output of Algorithm 1 is an attack strategy graph. Consider the output of Algorithm 1
ASG = (N,E, T,C). It is easy to see thatT is a mapping that maps eachn ∈ N to a hyper-alert type, andC is
a mapping that maps each edgee ∈ E to a set of equality constraints. In addition, because the input hyper-alert
correlation graph is a DAG,(N,E) must be a directed graph. Suppose there is a cyclen1, n2, · · · , n1 in (N,E).
There must exist two nodesn11, n12, andn21 in the input hyper-alert correlation graph such thatn11 andn12

are aggregated inton1, n21 is aggregated inton2, and there exists a pathn11, · · · , n21, · · · , n12. However,
according to the subroutineGraphReduction, n11 andn12 should have been put into two separate groups. Thus,
(N,E) cannot have any cycle. Finally, for anyn1, n2 ∈ N , since the output ofGraphReductionis irreducible,
if T (n1) = T (n2), then there must existn3 ∈ N in a path betweenn1 andn2 such thatT (n3) 6= T (n1).

B Automatic Generalization of Hyper-Alert Types

This appendix shows some examples for automatic generalization of hyper-alert types. Figure 5 shows the
results we obtained for the hyper-alert types in the 2000 DARPA data sets. Here the string inside the non-leaf
node meansGeneralization Typefollowed by an ID. From Figure 5(b), we know thatFTP Put andRshcan be
generalized to the same type. These results were used in our later experiments when we computed the similarity
measures between attack strategy graphs.

C Analysis of the Edit Cost Influence to Similarity Measurement

Suppose we have two graphGa and Gb, which havena and nb nodes, andea and eb edges, respectively.
Suppose we perform an error tolerant graph isomorphism fromGa to Gb, the node operations have the same
costCN , and edge operations have the same costCE, whereCN � CE . In the sequence of edit operations,
suppose there areNN node operations, andNE edge operations. Then the similarity measure can be simplified
as follows:
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Figure 5: Generalization hierarchies for the hyper-alert types in DARPA 2000 dataset. Thresholdt = 0.5.

Sim(Ga, Gb) = 1 −
D(Ga, Gb)

Wr(Ga) + Wc(Gb)
= 1 −

CN × NN + CE × NE

CN × (na + nb) + CE × (ea + eb)

Further letea + eb = k × (na + nb), andNE = s × NN . Then we have

Sim(Ga, Gb) = 1 −
CN × NN + CE × s × NN

CN × (na + nb) + CE × k × (na + nb)
= 1 −

NN × (CN + CE × s)

(na + nb) × (CN + CE × k)

Whenk ands are not large, sinceCN � CE , the formula can be further simplified below:

Sim(Ga, Gb) = 1 −
NN

na + nb

Thus, under the above assumptions, the similarity is approximately determined by the proportion of the
number of edited nodes to the total number of nodes.

D Further Details of The Experiments

Attack Sequences in Our Experiments. Here we describe the three sequences of attacks performed inour
experiments. Since the descriptions of the attacks in the DARPA datasets are available on-line [28], we don’t
repeat them in this paper.

In the first sequence of attacks (Figure 4(e)), the attacker first uses nmap [16] to scan the victim machine.
(Nmap supports ping sweeps, port scans, and operating system detection.) After knowing that the OS of the
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Figure 6: Additional generalizations of hyper-alert typesin our experiments

victim may be windows 2000 and port 80 is open, the attacker runs a Perl script which includes 20 different
malformed urls [8] against the victim machine’s Internet Information Services (IIS). The output of the Perl
script is a list of malformed urls to which the victim IIS is vulnerable. The attacker then selects one of the
vulnerabilities to perform the actual attack and gets a cmd.exe shell on the victim machine. The attacker then
uses interactive commands to list and delete some files, and finally exit the command shell. Figure 4(e) reveals
this strategy.

In the second sequence of attacks (Figure 4(f)), the attacker uses nmap to scan the victim machine. However,
after knowing that the OS of the victim may be windows 2000, the attacker ran a “jolt2” Perl script, which
would create a DoS attack to the victim machine. (Jolt2 is a DoS attack which can take advantage of the flaws
of IP fragment reassembly on Windows 2000 [7].) Figure 4(f) reveals this strategy, and because of the limitation
of the Snort’s signatures, it can only tell administrators “(spp frag2) Oversized fragment, probable DoS”.

In the third sequence of attacks (Figure 4(g)), the attackeruses nmap to scan the victim machine. After
knowing the OS of the victim may be windows 2000 and the port 80is open, the attacker sets up a netcat
listening port on his machine, and runs a program “iis5hack”buffer overflow attack, which may result in a
buffer overflow on the Internet Printing Protocol accessed via IIS 5.0 [5, 9]. Following a successful iishack
attack, the attaker’s machine would get a reverse cmd.exe shell on the netcat listening port, and the attacker can
do whatever he/she wants on the victim machine, such as listing and deleting files. In Figure 4(g), the netcat
command shell attack is missing, because Snort cannot detect such attacks.

Generalization of Hyper-alert Types. The generalizations of hyper-alert types in our experiments include
those in Figure 5 as well as additional ones in Figure 6.
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