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Abstract 
 

We map intrusion events to known exploits in the 
network attack graph, and correlate the events through 
the corresponding attack graph distances.  From this, we 
construct attack scenarios, and provide scores for the 
degree of causal correlation between their constituent 
events, as well as an overall relevancy score for each 
scenario.  While intrusion event correlation and attack 
scenario construction have been previously studied, this is 
the first treatment based on association with network 
attack graphs.  We handle missed detections through the 
analysis of network vulnerability dependencies, unlike 
previous approaches that infer hypothetical attacks.  In 
particular, we quantify lack of knowledge through attack 
graph distance.  We show that low-pass signal filtering of 
event correlation sequences improves results in the face 
of erroneous detections.  We also show how a correlation 
threshold can be applied for creating strongly correlated 
attack scenarios.  Our model is highly efficient, with 
attack graphs and their exploit distances being computed 
offline.  Online event processing requires only a database 
lookup and a small number of arithmetic operations, 
making the approach feasible for real-time applications. 

1. Introduction 

Since intrusion detection systems generally focus on 
low-level events and report them independently, network 
administrators are often overwhelmed by large volumes 
of alerts.  This has motivated recent work in alarm 
aggregation, to reduce administrator workload and 
provide higher-level situational awareness.  Ideally, alarm 
aggregates should help one distinguish coordinated, 
multi-step attacks from isolated events.  It is also critical 
to know if one’s network is actually vulnerable to 
detected attacks, and not just from the standpoint of 
individual machines but also in the context of the overall 
network and its most critical resources. 

Various approaches have been proposed to correlate 
intrusion alarms and build attack scenarios from them.  
For building attack scenarios, a particularly effective form 
of correlation is causal correlation, which is based on 
analyzing dependencies among intrusion events. 

One approach to causal event correlation is to apply 
logical rules that chain together events based on their 
relevant attributes.  But there are several problems with 
rule-based approaches to event correlation.  It can be 
difficult for complex rule systems to keep pace with 
online streams of events, and maintaining the rule sets 
needed for constructing attack scenarios from disparate 
events can be difficult.  Also, missing events can prevent 
rules from assembling a proper attack scenario, and 
attempts at inferring hypothetical missing attacks can lead 
to irrelevant results. 

Another approach to causal correlation is to represent 
relationships among events with graphs instead of logical 
rules.  However, because this is still based on intrusion 
detection information only, it can potentially give 
irrelevant results when hypothesizing missing events.  
Also, because the attack scenario graphs are constructed 
as events occur, it may be difficult for to keep pace with 
online event streams. 

In existing approaches, the implicit assumption is that 
intrusion events are caused by the execution of attacker 
exploits.  These approaches then model intrusion events 
in terms of rules (preconditions/postconditions) for the 
implicit exploits.  But the fundamental problem with these 
approaches is they do not include network vulnerabilities 
in their model, which would provide the proper context 
for their implied exploits.  This is the source of potentially 
irrelevant scenarios or ambiguity for hypothesized 
missing events. 

In this paper, we extend previous approaches to 
building attack scenarios by explicitly including network 
vulnerability/exploit relationships (i.e., the attack graph) 
in the model.  In other words, the network attack graph is 
precisely the model component that adds the necessary 
context to the exploits implied by intrusion events.  A 
crucial design criterion is to maintain low overhead for 
online event processing.  Our online processing depends 
solely on a manageable set of pre-computed attack graph 
distances.  To process an online intrusion event, only a 
distance lookup and a small number of arithmetic 
operations are required. 

We first build a joint model of attacker exploits and 
network vulnerabilities.  The network vulnerability model 
is created either manually or automatically from the 



output of the Nessus vulnerability scanner.  From the joint 
exploit/vulnerability model, we then compute distances 
(number of steps in the shortest path) between each pair 
of exploits in the attack graph (for all possible network 
attacks).  These distances provide a concise measure of 
exploit relatedness, which we use for subsequent online 
causal correlation of intrusion detection events. 

As detection events occur, we map them to attack 
graph exploits, and look up the distances between pairs of 
corresponding exploits.  This allows us to correlate events 
through attack graph information, without the online 
overhead of rule execution or graph building.  We 
iteratively build event paths, with a numeric correlation 
score for each event.  Missing events are handled in a 
natural way, i.e., we quantify gaps in attack scenarios 
through attack graph distances.  Events that cannot be 
mapped to the attack graph initially can be considered in 
post-analysis and possibly merged with existing attack 
scenarios. 

Sequences of correlation scores over event paths 
indicate likely attack scenarios.  We apply a low-pass 
signal filter (the exponentially weighted moving average 
filter) to correlation sequences, which improves quality in 
the face of detection errors.  We apply a threshold to 
filtered correlations to separate event paths into attack 
scenarios, i.e., only paths with sufficient correlation 
(sufficiently small attack graph gaps) are placed in the 
same attack scenario.  We also compute an overall 
relevancy score for each resulting attack scenario, which 
measures the extent that it populates a path in the attack 
graph. 

In the next section, we review related work in this 
area.  Section 3 then describes our underlying model, and 
Section 4 gives details of our implementation of this 
model.  In Section 5, we provide experimental evidence in 
support of our approach, and in Section 6 we summarize 
this work and draw conclusions. 

2. Related Work 

Our approach extends recent work in causal 
correlation of intrusion events.  But rather than correlating 
based on dependencies among events only, we take the 
novel direction of including the interdependent network 
vulnerabilities (i.e., network attack graph) in the 
correlation model. 

In [1], the approach to causal correlation is to define 
logical rules that relate generic (network independent) 
events through preconditions/postconditions.  As events 
occur, the generic rules are instantiated with attributes 
such as time, source/destination machine, and 
vulnerability type, and evaluated via Prolog to chain 
events together.  This approach does include additional 
implication rules for handling missed attacks.  However, 
because it lacks knowledge of the network vulnerabilities, 

it is unable to narrow down hypothesized attacks to ones 
that are truly relevant.  Also, while this approach 
generates rules offline (from a set of generic exploit 
specifications), in online mode it still needs to evaluate 
the rules.  The approach in [1] does include merging of 
identical events, which is complementary to our approach.  
The event merging is accomplished through clustering 
correlation, a form of correlation that has been described 
by other authors, e.g., [2][3][4]. 

The approach in [5] is to represent relationships 
among events as a graph rather than through rules.  Such 
graphs are less complex than rule systems, and indeed we 
apply a similar graph representation in our approach.  But 
the approach in [5] does not correlate events with 
vulnerability information, as we do.  It can therefore give 
irrelevant results when hypothesizing missing events, 
because events are not grounded in real network 
vulnerabilities.  Also, the attack scenario graphs are 
constructed as events occur, making it more difficult to 
keep pace with online event streams.  In contrast, we 
capture relationships among attack graph elements in 
concise distance measurements, so that no graph 
manipulation is done online. 

Work has been done in integrating intrusion detection 
with vulnerabilities information, notably [6].  However, 
this work considers vulnerabilities in isolation, without 
considering the overall impact of combined vulnerabilities 
on a network.  Also, it does not address the critical 
problem of building attack scenarios from individual 
events.  There are actually 2 vendors (Tenable Network 
Security and Internet Security Systems) that integrate 
their respective intrusion detection and vulnerability 
scanning tools, but again this considers vulnerabilities 
only in isolation. 

On a related research front, work has been done in 
automatic construction of attack graphs from network 
vulnerability models.  Our attack graph construction is 
based on such prior work [7][8][9].  Other approaches to 
attack graph construction have been proposed, including 
logic-based [10][11] and graph-based [12][13][14] 
approaches.  These have been generally effective for 
assessing overall network security posture or hardening 
networks, although not all the proposed approaches are 
scalable.  Our attack graph representation is based on 
exploit dependencies rather than security state 
enumeration, so that we avoid combinatorial explosion.  
The basic representation was first described in [14], and 
later modified in [8][15]. 

3. Underlying Model 

Construction of network attack graphs is based on the 
application of attacker exploit rules.  These rules map the 
conditions for exploit success (preconditions) to 
conditions induced by the exploit (postconditions).  For 



example, an exploit may require user privilege on the 
attacker machine and yield root privilege on the victim 
machine.  An attack graph is constructed by finding the 
interdependencies of exploits with respect to machines on 
a network. 

While we employ a scalable (low-order polynomial) 
attack graph representation, the cost of attack graph 
computation still prohibits online calculation per intrusion 
event.  The attack graph needs to be fully realized before 
events occur.  Once an alarm is raised, its event is mapped 
to an exploit in the attack graph.  Multiple 
precondition/postcondition dependencies between 
exploits are represented with a single graph edge, 
meaning that the “to” exploit depends on at least one 
postcondition of the “from” exploit. 

A typical scenario for network vulnerability analysis 
includes an initial attacking machine (either outside or 
inside the administered network) and a set of attack goal 
conditions (e.g., root) on one or more machines.  Given 
that an exploit’s preconditions are met, the state of the 
victim machine changes per the exploit’s postconditions.  
Upon success of an exploit, the conditions of the victim 
machine may meet other exploits launched from that 
machine.  Successful exploits launched from the victim 
machine are linked to the exploits that provide its 
preconditions.  By executing and linking exploits in this 
fashion, an attack graph is formed. 

For constructing attack scenarios, we do not base the 
attack graph on a fixed attacker/goal scenario as is 
typically done in network vulnerability analysis.  Neither 
the goal nor the attacker is known when the attack graph 
is computed, before intrusion events are actually 
considered.  The assumption is that attacks can come from 
any machine inside or outside an administered network.  
The attacker may have infiltrated the network through 
stealth attacks, or the attack may have come from an 
insider who abuses his granted privileges.  Similarly, the 
attack goal is open, since it could be any adverse 
condition (such as denial of service, root privilege, or 
unauthorized data access) on any machine.  In short, our 
model considers the full scope of possible attack paths. 

Two events that fall on a connected path in an attack 
graph are considered correlated (at least to some extent).  
Clearly, events should be fully correlated if they map to 
adjacent exploits in the attack graph, since this is the 
strongest relationship possible.  Conversely, events 
mapped to non-adjacent exploits are only partially 
correlated, as shown in Figure 1.  In this case, we 
determine the degree of event correlation through graph 
distance between corresponding exploits. 

The graph distance between a pair of exploits is the 
minimum length of the paths connecting them.  If no such 
path exists, then the distance is infinite.  Graph distance 
measures the most direct path an attacker can take 
between two exploits.  While longer paths might be 

possible between exploits, the shortest path is the best 
assumption for event correlation, and is the most efficient 
to compute.  The use of minimum path length does not 
hinder the ability to analyze longer paths, since these 
paths are constructed by assembling shorter paths.  Using 
minimum path length also resolves cycles in the attack 
graph, which would otherwise indicate redundant attack 
steps.  Our graph distances are unweighted, i.e., no 
weights are applied to graph edges between exploits. 
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Figure 1:  Partially correlated events. 

The exploit distances are pre-computed once for an 
attack graph, and then applied continuously for a real-
time stream of intrusion events.  The exploit distances 
supply the necessary information to form event paths.  An 
event is added to the end of a path if it maps to an exploit 
that has a finite distance from the exploit mapped to the 
last event in the path.  Event time is naturally accounted 
for, because events are added at the ends of paths, which 
were constructed from prior events.  If a new event is 
unreachable from all existing event paths (i.e., if the 
corresponding attack graph distances are infinite), then 
the event forms the beginning of a new path. 

In Figure 2, suppose an initial event path exists as 
Event 1, corresponding to Exploit 1.  A new Event 2 
arrives, corresponding to Exploit 3.  Since Exploit 3 is 
reachable from Event 1 with a graph distance of 2, 
Event 2 is added to the event path.  A new event may 
trigger the creation of additional independent event paths.  
Continuing with our example, suppose a new Event 3 
arrives, which corresponds to Exploit 4.  Exploit 4 is 
reachable from both Exploit 1 and Exploit 3.  Therefore, 
Event 3 can be correlated to Event 1 independently of 
Event 2.  Since Event 2 might have nothing to do with 
Event 1, a new path is created as a record of another 
potential attack scenario.  Thus we have the 2 paths 
Event 1 → Event 2 → Event 3 and Event 1 → Event 3.  In 
the figure, these 2 paths are drawn with solid lines and 
dashed lines, respectively, in the event graph. 

In our model, cycles in the event graph are unrolled.  
For example, in Figure 2, Exploit 4 can reach back to 
Exploit 1 through a distance of 3.  Event 4 occurs after 
Event 3, and is identical to Event 1, i.e., it also maps to 
Exploit 1.  For example, Exploit 4 might yield new 



privileges based on trust gained from the intervening 3 
exploits.  Thus two new paths are formed: 

1. Event 1 → Event 2 → Event 3 → Event 4 (solid lines) 
2. Event 1 → Event 3 →  Event 4 (dashed lines) 

These are shown with solid and dashed lines, respectively, 
in Figure 2. 
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Figure 2:  Creating event paths. 

For the example in Figure 2, the events correspond to 
exploits that lie within relatively close distances to each 
other.  But this may often not be the case.  Indeed, it is 
reasonable to assign events whose exploits are widely 
separated in the attack graph to separate attack scenarios.  
Since event distances greater than unity represent missed 
detection events (according to the attack graph), it is 
possible that such distances sometimes occur within a set 
of coordinated attacks, since real attacks are sometimes 
missed.  But when event distances become larger, larger 
numbers of attacks would need to be missed if they were 
really coming from a coordinated attack. 

Thus, we apply a correlation threshold that segments 
event paths into highly correlated attack scenarios.  In 
other words, a consecutive sequence of events that lies 
above the threshold defines an attack scenario.  When 
individual event paths are formed from the incoming 
stream of events, new event paths are created when a new 
event is not reachable (infinite distance) from the 
currently existing set of event paths.  In this way, event 
paths have an obvious beginning based on (non-) 
reachability.  The correlation threshold provides a way to 
end an event path when the distance to the next event is 
too large, but is still finite. 

The distances between events in an event path are 
crucial information.  But because of possible false 
detections (positive and negative), the individual distance 

values are somewhat suspect.  We could gain more 
confidence in our estimate by averaging the individual 
distance values.  While this would capture the global 
trend of the event path, local trends would be lost.  Also, 
it is convenient to invert the event distances (use their 
reciprocals), so that they lie in the range [0,1], with larger 
values representing stronger correlation.  Thus the inverse 
distances represent similarities rather than dissimilarities. 

But rather than computing the global average of 
inverse event distances, we compute a moving average, 
which has the ability to capture local trends while still 
providing error resiliency.  An unweighted moving 
average defines a data window, and treats each data point 
in the window equally when calculating the average.  
However, it is reasonable to assume the most current 
events tend to better reflect the current security state.  We 
therefore apply the exponentially weighted moving 
average, which places more emphasis on more recent 
events by discounting older events in an exponential 
manner.  It is known to be identical to the discrete first-
order low-pass signal filter. 

Let kd  be the attack graph distance between a pair of 
intrusion events.  Then the inverse event distance is 

kk dx 1= .  We then apply the exponentially weighted 
moving average filter to a sequence of these kx : 

 ( ) kkk xxx αα −+= − 11 . (1) 

The sequence of values of kx  is the filtered version of the 

original sequence of inverse event distances kx , for some 
filter constant 10 ≤≤ α .  The filtered inverse event 
distances kx  are the basic measure of event correlation in 
our model.  For convenience, we define a correlation of 
unity for the first event in a path (i.e., it is fully correlated 
with itself), even though there is no previous event to 
compare it to. 

The inverse intrusion event distances are filtered very 
efficiently through the recursive formulation in 
Equation (1).  Computation requires no storage of past 
values of x, and only one addition and 2 multiplications 
per data point are required. 

In the exponentially weighted moving average filter, 
the filter constant 10 ≤≤ α  dictates the degree of 
filtering.  As 1→α , the degree of filtering is so great that 
individual event (inverse) distances do not even 
contribute to the calculation of the average.  On the other 
extreme, as 0→α , virtually no filtering is performed, so 
that kk xx → .  Values in the range of 4.03.0 ≤≤ α  
generally work well in practice. 

The filtered inverse distances in Equation (1) provide 
a good local measure of event correlation.  In particular, 
they perform well for the application of the score 
threshold for segmenting event paths into attack 



scenarios.  But once an attack scenario is formed, the 
individual filtered inverse distances do not provide an 
overall measure of correlation for it.  We introduce 
another score that provides a measure of relevancy for the 
entire scenario, based on attack path occupancy by events. 

For attack scenario ks , ks  is the number of events 
in the scenario.  Next, let kl  be the cumulative distance 
between pairs of events in the scenario.  Then the attack 
scenario relevancy score kr  is 

 kkk lsr = . (2) 

Because the cumulative distance kl  is the length of the 
attack path that the scenario maps to, this relevance score 

kr  is the proportion of the attack path actually occupied 
by an attack scenario’s intrusion events. 

Our model is robust with respect to inconsistencies 
between events and vulnerabilities.  Events that cannot be 
mapped to an exploit in the attack graph simply remain as 
isolated events.  This might occur because there is no 
known mapping from a particular event to a vulnerability, 
or because a certain vulnerability was not known when 
constructing the attack graph.  The converse is that there 
are certain vulnerabilities in the attack graph that have no 
corresponding intrusion detection signature.  In this case, 
distances between events (in event paths) can be 
normalized by the expected distance between 
corresponding exploits in the attack graph. 

4. Implementation Details 

Figure 3 shows the system architecture for our 
implantation of the model described in the previous 
section.  The Attack Graph Analyzer requires a joint 
model of the network and attacker exploits.  Exploit 
Modeling is done through manual analysis of reported 
vulnerabilities and known exploits.  We have researched 
almost 2000 Nessus vulnerabilities, from which we have 
modeled about 650 exploits (a significant portion of 
Nessus vulnerabilities are irrelevant for this kind of 
modeling).  Because we usually model exploits at a 
relatively high level of abstraction (e.g., in terms of access 
type, privilege level, and network connection), this 
manual process generally proceeds quickly. 

Accurate modeling depends on sufficient information 
about vulnerabilities and exploits.  Our exploit modeling 
is supported by an extensive database, which includes 
37,000 vulnerabilities and 7,400 exploits, taken from 24 
information sources including X-Force, Bugtraq, CVE, 
CERT, Nessus, and Snort.  Network Modeling can be 
done manually, or generated automatically from Nessus 
vulnerability scanner output.  In the case of network 
models created manually, we support model specification 
in terms of vulnerable software components (OS, patch 

level, web servers, configuration files, etc.), with rules to 
map these to Nessus vulnerabilities. 
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Figure 3:  System architecture. 

From the combined network and exploit models, we 
analyze attack paths and load the resulting exploit 
distances into an Oracle database.  For efficiency, infinite 
distances (caused by some exploits not being reachable to 
others) are not recorded in the database.  Rather, they are 
represented by their absence.  In practice, a value can be 
chosen as an effective infinity, giving the distance 
computation algorithm a reasonable stopping point in 
declaring an exploit unreachable.  Once exploit distances 
are calculated, they become a static image of the attack 
graph to be correlated with intrusion events.  We can also 
store the attack graph itself for future offline attack graph 
visualization and post-analysis.  All of this processing is 
done offline, as shown by the shaded region in Figure 3. 

When Snort intrusion detection events are logged in 
the database, this triggers Oracle stored procedures in the 
Event Analyzer to process them.  For each Snort event, we 
map the Snort identifier to the corresponding Nessus 
vulnerability identifier.  In the case that a Snort identifier 
maps to multiple Nessus identifiers, we report all the 
identifiers, and conservatively select the shortest distance 
from among the candidate exploits for computing the 
correlation score.  The lookup of pre-computed attack 
graph distances is based on source and destination IP 
addresses and Nessus vulnerability identifier.  Note that 
only the distances between exploits are looked up, and no 
processing of the actual attack graph occurs online. 

Event paths are formed in the manner described in 
the previous section, i.e., by adding new events to the 
ends of paths if the new event is reachable from the last 
event in the path, etc.  For each path of intrusion events, 
the Event Analyzer inverts the distances between events 
(converts them from dissimilarities to similarities), then 



applies the exponentially weighted moving average filter 
in Equation (1) to the inverse distances.  The correlation 
threshold is then applied, as described in the previous 
section, which segments event paths into highly correlated 
attack scenarios.  In practice, proper values of correlation 
threshold should be based on expected rates of missed 
detections. 

5. Experiments 

In this section, we demonstrate our approach through 
various experiments.  The first experiment focuses on the 
application of correlation threshold for separating event 
paths into highly-correlated attack scenarios and the 
interaction between threshold value and low-pass filter 
constant.  To instill a deeper understanding of this, we 
examine a small number of attacks in greater detail, as 
opposed to showing statistical results for large number of 
attacks.  In the second experiment, we show more clearly 
how low-pass filtering makes it easier to distinguish 
regions of similar attack behavior in the presence of 
intrusion detection errors.  The third experiment is a 
larger-scale scenario to demonstrate overall performance. 

5.1 Scenario Building via Correlation 
Threshold 

Figure 4 is a concise summary of the attack graph for 
this experiment.  The network model in this experiment is 
generated from Nessus scans of real machines.  In the 
figure, an oval between a pair of machines represents the 
set of exploits between that machine pair.  In most cases, 
there are 2 numbers for exploit sets, reflecting the fact 
that some exploits are in one direction (from one machine 
to another), and other exploits are in the opposite 
direction.  Unidirectional sets of exploits are drawn with 
directional arrowheads; for sets of exploits in both 
directions, arrowheads are omitted.  This is a variation of 
the aggregated attack graph representation described in 
[15]. 

In this experiment, only remote-to-root exploits are 
included, to make results easier to interpret.  That is, each 
exploit has preconditions of (1) execute access on the 
attacking machine and (2) a connection from the attacking 
machine to a vulnerable service on the victim machine, 
and postconditions of (1) execute access and (2) superuser 
privilege on the victim machine.  Since connections to 
vulnerable services exist in the initial network conditions, 
and each exploit directly yields superuser access on the 
victim machine, the shortest exploit distance between 
machines is always one.  In interpreting these distances 
from the figure, the actual numbers of exploits between 
pairs of machines are therefore irrelevant. 

The important information from Figure 4 is the attack 
graph distances between the 8 intrusion events, which we 

can determine directly from the figure.  The arrow beside 
“Event x” indicates the direction (source and destination 
machine) of the event.  So the distance from Event 1 (an 
exploit from machine m23 to m80) to Event 2 (an exploit 
from machine m80 to m52) is one, the distance from 
Event 2 to Event 3 is 2, etc. 

Event 1

Event 7

Event 3

Event 4

Event 5

Event 6Event 2

Event 8

Event 1

Event 7

Event 3

Event 4

Event 5

Event 6Event 2

Event 8

 
Figure 4:  Aggregated attack graph. 

Counting the distance from Event 4 to Event 5 is a bit 
more subtle.  Here one must realize that “3/2 exploits” 
means there 3 exploits from m30 to m28, one of which is 
associated with Event 4.  Then from the Event-4 exploit, 
in counting the shortest path to Event 5, there is one 
exploit from m28 to m30, one from m30 to m42, etc., for 
a total distance of 5.  Figure 5 shows the full attack graph 
for this experiment, although it is cumbersome to use this 
complex graph for visually counting event distances. 

 
Figure 5:  Non-aggregated attack graph. 



Figure 6 shows the sequence of distances for the 
events in this experiment.  Because every event is 
reachable from the previous event, only a single event 
path is generated. 
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Figure 6:  Attack graph distances for events. 

Figure 7(a) shows the inverse of the attack graph 
distances from Figure 6, filtered via Equation (1), for 
different values of filter constant α .  The vertical axis is 
the filtered inverse distance (i.e., the correlation score), 
the horizontal axis is the event number, and the axis into 
the page is 9.01.0 ≤≤ α .  We apply a correlation 
threshold value of T = 0.6, shown as a horizontal plane. 

For 1.0=α  (front of page), very little filtering is 
applied, so that the filtered sequence looks very similar to 
the original sequence of inverse distances.  In this region 
of α values, for the threshold T = 0.6, the event path is 
separated into 4 short attack scenarios: 

1. Event 1 → Event 2 
2. Event 4 
3. Event 6 
4. Event 8 

The remaining events (3, 5, and 7) fall below the 
threshold and are considered isolated.  However, the more 
likely scenario is that the distances=2 for Event 3 and 
Event 7 represent missed detections, since they are in the 
region of fully-correlated events.  The distance=5 for 
Event 5 would require an unlikely high number of missed 
detections, so it is probably really is the start of a separate 
(multi-step) attack. 

The problem is that, without adequate filtering, event 
distances are not being considered in the context of the 
recent history.  One could lower the threshold to below T 
= 0.5 in this case, which would yield these most likely 
attack scenarios: 

1. Event 1 → Event 2 → Event 3 → Event 4 
2. Event 6 → Event 7 → Event 8 

However, in general values below T = 0.5 are not 
particularly strong correlations, so this is not advisable. 
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Figure 7:  Distance filtering and threshold. 

For larger values of α (going into the page), more 
filtering is applied, so that distance recent history is 
considered more strongly.  In this case, the threshold does 
separate the path into the 2 most likely attack scenarios.  
A cross section for 4.0=α  is shown in Figure 7(b).  For 
overly large values of α (e.g., in the region of 9.0=α ), 
so much filtering is applied that the entire path is 
considered a single attack scenario.  In other words, it 
misses Event 5 as the start of a new attack scenario. 



5.2 Signal Filtering for Detection Errors 

Next, we describe an experiment that more clearly 
shows the need for low-pass signal filtering for handling 
intrusion detection errors.  In particular, this experiment 
demonstrates how low-pass filtering makes it easier to 
distinguish regions of similar attack behavior through the 
application of a correlation score threshold. 

The results of this experiment are shown in Figure 8.  
Here, the horizontal axis is the event in an event path.  
The vertical axes of the 4 plots are (respectively) raw 
attack graph distance between events, global average of 
inverse event distance, filtered inverse event distance, and 
unfiltered inverse event distance. 

As a ground truth, the event path is divided into 7 
regions.  Region 1 (Events 1-7) is an uncoordinated series 
of events, i.e., one in which the events are unrelated and 
scattered across the network, so that distances between 
events are relatively long.   Region 2 (Event 8) is a pair of 
events that occur immediately together in the attack graph 
(i.e., event distance=1, fully correlated).  Region 3 
(Events 9-14) is an uncoordinated series of events.  
Region 4 (Events 15-17) is a series of fully correlated 
events, and Region 5 (Events 18-24) is an uncoordinated 
series of events. 
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Figure 8:  Filtering inverse event distances. 

Regions 6 and 7 (Events 25-36 and Events 37-48, 
respectively) are a bit more subtle.  In Region 6, the 
attack graph distances between events fluctuate between 
one and two.  This represents a series of events for a 
single (multi-step) attack, or at least the work of a fairly 
consistently successful attacker.  We could assume the 
distance=2 event pairs are from missed detections.  In 
Region 6, the attack graph distances between events 

fluctuate between 2 and 3.  In this case, it seems more 
likely to be an uncoordinated series of events that happen 
to occur more closely on the attack graph than say 
Region 1. 

In Figure 8, we include global average (2nd from top 
in the figure) as a comparison to moving average.  While 
each value captures the overall average inverse distance 
up to a given event, that does not allow us to make local 
decisions (e.g., through a correlation threshold) for 
separating the path into individual attack scenarios.  Even 
the occurrence of fully-correlated Region 4 events cannot 
be distinguished through the application of a threshold. 

For the unfiltered inverse distances (bottom of Figure 
8), we can correctly distinguish the isolated pair of fully 
correlated events in Region 2, as well as the unbroken 
path of fully correlated events in Region 4.  But there are 
problems for Region 6.  This is the region in which fully 
correlated events are mixed with distance=2 events.  This 
could be expected in a real sequence of attacks, when 
some of the attacks go undetected.  Here, the unfiltered 
correlations fluctuate strongly, causing problems for 
setting a threshold for segmenting event paths into likely 
scenarios.  At the threshold shown of 0.55, this region is 
segmented into multiple very small attack scenarios. The 
threshold could be lowered (to below 05), but that would 
cause problems for Region 7.  Here, distance=2 and 
distance=3 event pairs are occurring.  In this case, it is 
much less likely a coordinated attack is occurring.  It 
would mean one or 2 attacks are repeatedly being missed, 
with no fully correlated events occurring.  Lowering the 
threshold to handle Region 6 would cause Region 7 to be 
segmented into multiple very small scenarios. 

In contrast, when the threshold is applied to the 
filtered version of the inverse event distances (2nd from 
bottom in Figure 8), this correctly forms attack scenarios 
corresponding to Regions 1 through 7.  When filtering is 
applied, the distance for a new event takes into account 
the recent history of events, so that distances occurring 
after shorter distances tend to become shorter and 
distances occurring after longer distances tend to become 
longer.  The degree of this effect is controlled by the filter 
constant α . 

5.3 Performance 

This experiment demonstrates overall performance 
for the implementation of our approach (see Section 4 for 
implementation details), using a large number of network 
attacks.  In particular, we apply our implementation to a 
network of 9 victim machines, separated into 3 subnets, as 
shown in Figure 9. 

In this experiment, subnet x.x.100.0 services internet 
traffic with a web server and an FTP server.  Subnet 
x.x.128.0 supports administrative servers and an Oracle 
database server.  Subnet x.x.200.0 is for administrative 



purposes.  Traffic between subnets is filtered as shown in 
Figure 9.  Traffic within each subnet is unfiltered, so that 
there is full connectivity to vulnerable services among 
machines in a subnet. 
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Figure 9:  Network connectivity for third 

experiment. 

The attack graph in this experiment contains 105 
(machine-dependent) exploits.  While there are 
1052=11025 possible distances between 105 exploits, the 
exploits leading from the internet are not reachable from 
the remaining exploits, and such infinite distances are not 
recorded (using an adjacency list representation).  In 
particular, there are 10,395 recorded exploit distances. 

We then injected 10,000 intrusion events, mixed with 
random traffic.  We included isolated events as well as 
multi-step attacks.  Using a filter constant of 4.0=α  and 
a correlation threshold of 0.55, we correctly distinguished 
the multi-step attacks from the isolated events. 

In online mode, it takes less than 4 minutes to process 
10,000 events (about 24 milliseconds per event).  This is 
on a machine with a 2-GHz processor, 1 megabyte of 
main memory, and two 100-gigabyte 15,000 RPM SCSI 
disk drives.  Neither memory nor disk traffic showed 
more than 30% load. 

6. Summary and Conclusions 

In this paper, we extend previous approaches to 
attack scenario building by explicitly including the 
network attack graph in the model.  The attack graph 
provides the necessary context for intrusion events, and 
provides the graph distances upon which our correlations 
are based.  Our online event processing depends on pre-

computed attack graph distances only, and requires only a 
lookup and 4 arithmetic operations. 

To compute attack graph distances (offline), we build 
a model of attacker exploits and network vulnerabilities.  
We can create the network vulnerability model 
automatically from output of the Nessus vulnerability 
scanner.  We then compute the distance of the shortest 
path between each pair of exploits in the attack graph.  
These distances are a concise measure of exploit 
relatedness, which we use for subsequent online causal 
correlation of intrusion detection events. 

From the online stream of intrusion events, we build 
individual event paths based on attack graph reachability.  
The inverse distance between each event in a path is a 
measure of correlation.  We apply a low-pass filter to 
sequences of inverse distances to provide resiliency 
against detection errors.  The application of a threshold to 
the filtered distances separates event paths into highly 
correlated attack scenarios.  We also compute an overall 
relevancy score for each resulting attack scenario. 

We demonstrate our approach through several 
experiments.  The results show that the approach 
generates attack scenarios with a high degree of causal 
correlation.  We demonstrate the effectiveness of 
correlation thresholding, and well as its relationship to 
degree of applied filtering.  We demonstrate real-time 
performance, processing an event every 24 milliseconds. 
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