
Anomaly Detection Using Layered Networks Based on
Eigen Co-occurrence Matrix

Mizuki Oka1, Yoshihiro Oyama2,5, Hirotake Abe3, and Kazuhiko Kato4,5

1 Master’s Program in Science and Engineering, University of Tsukuba
mizuki@osss.is.tsukuba.ac.jp

2 Graduate School of Information Science and Technology, University of Tokyo
oyama@yl.is.s.u-tokyo.ac.jp

3 Doctoral Program in Engineering, University of Tsukuba
habe@osss.is.tsukuba.ac.jp

4 Graduate School of Systems and Information Engineering, University of Tsukuba
kato@is.tsukuba.ac.jp

5 Japan Science and Technology Agency (JST) CREST

Abstract. Anomaly detection is a promising approach to detecting intruders
masquerading as valid users (called masqueraders). It creates a user profile and
labels any behavior that deviates from the profile as anomalous. In anomaly de-
tection, a challenging task is modeling a user’s dynamic behavior based on se-
quential data collected from computer systems. In this paper, we propose a novel
method, called Eigen co-occurrence matrix (ECM), that models sequences such
as UNIX commands and extracts their principal features. We applied the ECM
method to a masquerade detection experiment with data from Schonlau et al. We
report the results and compare them with results obtained from several conven-
tional methods.

Key words: Anomaly detection, User behavior, Co-occurrence matrix, PCA, Lay-
ered networks

1 Introduction

Detecting the presence of an intruder masquerading as a valid user is becoming a critical
issue as security incidents become more common and more serious. Anomaly detection
is a promising approach to detecting such intruders (masqueraders). It first creates a
profile defining a normal user’s behavior. It then measures thesimilarity of a current
behavior with the created profile and notes any behavior that deviates from the profile.
Various approaches for anomaly detection differ in how they createprofilesand how
they definesimilarity.

In most masquerade detection methods, a profile is created by modeling sequen-
tial data, such as the time of login, physical location of login, duration of user session,
programs executed, names of files accessed, and user commands issued [1]. One of the
challenging tasks in detecting masqueraders is to accurately model user behavior based
on such sequential data. This is challenging because the nature of a user’s behavior is

2

dynamic and difficult to capture completely. In this paper, we propose a new method,
called Eigen co-occurrence matrix (ECM), designed to model such dynamic user be-
havior.

One of the approaches to modeling user behavior is to convert a sequence of data
into a feature vectorby accumulating measures of either unary events (histogram) or
n-connected events (n-grams) [2–4]. However, the former approach only considers the
number of occurrences of observed events within a sequence, and thus sequential in-
formation will not be included in the resulting model. The latter approach considers
n-connected neighboring events within a sequence. Neither of them considers any cor-
relation between events that are not adjacent to each other.

Other approaches to modeling user behavior are based on converting a sequence
into a network model. Such approaches include those based on an automaton [5–8], a
Bayesian network [9], and an Hidden Markov Model (HMM) [10, 11].

The nodes and arcs in an automaton can remember short- and long-range transition
relations between events by constructing rules within a sequence of events. To construct
an automaton, we thus require well-defined rules that can be transformed to a network.
However, it is difficult to construct an automaton based on a set of user-generated se-
quences with various contexts, which does not have such well-defined rules. When an
automaton can indeed be obtained, it is computationally expensive to learn on the au-
tomaton when a new sequence is added.

A node in a Bayesian network associates probabilities of the node being in a spe-
cific state given the states of its parents. The parent-child relationship between nodes
in a Bayesian network indicates the direction of causality between the corresponding
variables. That is, the variable represented by the child node is causally dependent on
those represented by its parents. The topology of a Bayesian network must be prede-
fined, however, and thus, the capability for modeling a sequence is dependent on the
predefined topology.

An HMM can model a sequence by defining a network model that usually has a
feed-forward characteristic. The network model is created by learning both the prob-
ability of each event emerging from each node and the probability of each transition
between nodes by using a set of observed sequences. However, it is tough to build an
adequate topology for an HMM by using ad hoc sequences generated by a user. As a
result, the performance of a system based on an HMM varies depending on the topology
and the parameter settings.

We argue that the dynamic behavior of a user appearing in a sequence can be cap-
tured by correlating not only connected events but also events that are not adjacent
to each other while appearing within a certain distance (non-connectedevents). Based
on this assumption, to model user behavior, the ECM method creates a so-calledco-
occurrence matrixby correlating an event in a sequence with any following events that
appear within a certain distance. The ECM method then creates so-calledEigen co-
occurrence matrices. The ECM method is inspired by the Eigenface technique, which
is used to recognize humans facial images. In the Eigenface technique, the main idea
is to decompose a facial image into a small set of characteristic feature images called
eigenfaces, which may be thought of as the principal components of the original im-
ages. These eigenfaces are the orthogonal vectors of a linear space. A new facial image

3

is then reconstructed by projecting onto the obtained space. In the ECM method, we
consider the co-occurrence matrix and the Eigen co-occurrence matrices analogous to a
facial image and the corresponding eigenfaces, respectively. The Eigen co-occurrence
matrices are characteristic feature sequences, and the characteristic features of a new
sequence converted to a co-occurrence matrix are obtained by projecting it onto the
space defined by the Eigen co-occurrence matrices.

In addition, the ECM method constructs the extracted features as alayerednet-
work. The distinct principal features of a co-occurrence matrix are presented as layers.
The layered network enables us to perform detailed analysis of the extracted principal
features of a sequence.

In summary, the ECM method has three main components: (1) modeling of the
dynamic features of a sequence; (2) extraction of the principal features of the resulting
model; and (3) automatic construction of a layered network from the extracted principal
features.

The reminder of the paper is organized as follows. In Section 2, the ECM method
is described in detail by using an example set of UNIX commands. Section 3 applies
the ECM method to detect anomalous users in a dataset, describes our experimental
results, and compares them with results obtained from several conventional methods.
Section 4 analyzes the computational cost involved in the ECM method. Section 5 dis-
cusses possible detection improvements in using the ECM method. Section 6 gives our
conclusions and describes our future work.

Domain Dataset

Testing Sequence

Convert to
co-occurrence

matrix (Co-mat)

Compute
Average
Co-mat

Average Co-mat

2 2 0

3 … 2

4 … 0

Compute
Difference
Co-mat

Covariance Matrix

1 0 0

-1 … 3

-2 … 0

2 -1 0

3 … 2

2 … 1

Calculate
Eigenvectors

A Set of Eigen Co-mats

0.4 -0.3

0.4 … -0.1

0.1 … 0

Feature Vectors

Inner Product

Sort
by Eigenvalue

Compute
Difference

with Average
Co-mat

0.1 … 0

0 … -0.2

0.2 … 0

…

V1 VN

Multiplication

0.4 -0.3

0.4 … -0.1

0.1 … 0

0.1 … 0

0 … -0.2

0.2 … 0

…

V1 VN

�

1
�

N

+(O1, O2)
…

+(Om-1, Om)

-(O, O2)
…

-(Om-1, Om)

1st Layer Network
(Negative)

1st Layer Network
(Positive)

+(O1, O2)
…

+(Om-1, Om)

-(O, O2)
…

-(Om-1, Om)

Nth Layer Network
(Negative)

Nth Layer Network
(Positive)

…

Convert to
co-occurrence

matrix (Co-mat)

Step 1 Step 2 Step 3 Step 4

Step 5

Construction of Layered Network

Fig. 1. Overall procedure of the ECM method

4

l length of an observation sequence
s maximum distance over which correlations between events are considered (scope size)
O set of observation events
m number of events inO
D set of sample observation sequences (domaindataset)
n number of sample sequences inD
M a co-occurrence matrix
Vi ith Eigen co-occurrence matrix
F a feature vector
fi ith component ofF
N dimension size ofF
Xi a matrix for producingith positivenetwork layer
Yi a matrix for producingith negativenetwork layer
h threshold of elements inXi (or Yi) to construct a network layer
R number of elements infiVi for constructing theith network layer
r number of nodes in a subnetwork

Table 1.Notation and terminology

−−−→
time

User1 cd ls less ls less cd ls cd cd ls

User2 emacs gcc gdb emacs ls gcc gdb ls ls emacs

User3 mkdir cp cd ls cp ls cp cp cp cp

Fig. 2. Example dataset of UNIX commands

2 The Eigen Co-occurrence Matrix (ECM) Method

The purpose of this study is to distinguish malicious users from normal users. To do so,
we first need to model a sequence of user commands and then apply a pattern classifica-
tion method. To accurately classify a sequence as normal or malicious, it is necessary to
extract its significant characteristics (principal features) and, if necessary, convert the
extracted features into a form suitable for detailed analysis. In this section, we explain
how the ECM method models a sequence, how it obtains the principal features, and how
it constructs a model for detailed analysis, namely, a network model. The overall pro-
cedure of the ECM method is illustrated in Figure 1 and the notation and terminology
used in the ECM method are listed in Table 1.

In the following sections, we explain each procedure in the ECM method by using
a simple example of UNIX command sequences. Figure 2 shows an example dataset
of UNIX commands for three users, designated as User1, User2, and User3. Each user
issued ten UNIX commands, which are shown truncated (without their arguments) in
the interest of simplicity.

5

s = 6

cd ls less ls less cd ls cd cd ls

s = 6

312 =+Strength of Correlation :

Fig. 3. Correlation betweenls andlessfor User1



cd ls less emacs gcc gdb mkdir cp

cd 4 7 2 0 0 0 0 0
ls 7 5 3 0 0 0 0 0
less 6 4 1 0 0 0 0 0
emacs 0 0 0 0 0 0 0 0
gcc 0 0 0 0 0 0 0 0
gdb 0 0 0 0 0 0 0 0
mkdir 0 0 0 0 0 0 0 0
cp 0 0 0 0 0 0 0 0



Fig. 4. Co-occurrence matrix of User1

2.1 Modeling a sequence

The ECM method models a sequence by correlating an event with any following events
that appear within a certain distance. The strength of the correlation between two events
is defined by (a) the distance between events and (b) the frequency of their occurrence.
In other words, when the distance between two events is short, or when they appear
more frequently, their correlation becomes stronger. To model such strength of corre-
lation between events, we construct a so-calledco-occurrence matrixby counting the
occurrence of every event pair within a certain distance (scope size). Thus, the correla-
tions of both connected and non-connected events are captured for every event pair and
subsequently represented in the matrix.

We defineMX as the co-occurrence matrix of a sequenceX (= x1, x2, x3, . . . , xl) with
lengthl. We define the unique events appearing in the sequence as a set of observation
events, denoted asO (= o1,o2,o3, . . . , om). In the example dataset of Figure 2,O is cd
ls less emacs gcc gdb mkdir cp. The correlation between theith and jth events
in MX, oi and o j , is computed by counting the number of occurrences of the event-
pair within a scope size ofs. Here, we did not change the strength of the correlations
between events depending on their distance, but instead used a constant value 1 for
simplicity. Doing this for every event pair generates a matrix representing all of the
respective occurrences. Each element in the matrix represents the perceived strength of
correlation between two events. For example, as illustrated in Figure 3, the eventsls
and lessare correlated with a strength of three whens and l are defined as 6 and 10,
respectively. Figure 4 shows the matrix generated from the sequence of User1.

6

2.2 Extracting the principal features

As explained earlier, to distinguish a malicious user from a normal user, it is nec-
essary to introduce a pattern classification method. Measuring the distance between
co-occurrence matrices is considered the simplest pattern classification method. A co-
occurrence matrix is highly dimensional, however, and to make an accurate comparison,
it is necessary to extract the matrix’s principal features.

The ECM method uses principal component analysis (PCA) to extract the principal
features, so-calledfeature vectors. PCA transforms a number of correlated variables
into a smaller number of uncorrelated variables called principal components. It can thus
reduce the dimensionality of the dataset while retaining most of the original variability
within the data. The process for obtaining a feature vector is divided into the following
five steps:

(Step 1) Take a domain dataset and convert its sequences to co-occurrence matrices:
As a first step (Step 1in in Figure 1), we take a set of sample sequences, which we call
a domaindataset and denote asD, and convert the sequences into corresponding co-
occurrence matrices,M1,M2,M3, ...,Mn, wheren is the number of sample observation
sequences andM is anm×m matrix (m: number of observation events). In the current
example, the domain dataset consists of all the three users’ sequences (n = 3), andM is
an 8× 8 matrix (m = 8).

(Step 2) Subtract the mean:We then take the set of co-occurrence matricesM1,M2,M3, ...,Mn

and compute its mean co-occurrence matrixMmean(Step 2in Figure 1). Here we intro-
duce two different ways to computeMmean. The first way is to compute it normally:

Mmean=
1
n

n∑

k=1

Mk. (1)

The second way is to computeMmean by taking into account the fact that a co-
occurrence matrix can be sparse. Letmmean(i, j) be theith-row jth-column element of
the mean co-occurrence matrixMmean. We then computemmean(i, j) by taking the sum
of all the values inm1(i, j),m2(i, j),m3(i, j), . . . ,mn(i, j) and dividing by the number of
those values that are non-zero. In summary,

mmean(i, j) =
1

K(i, j)

n∑

k=1

mk(i, j), (2)

wheremk(i, j) is the ith-row jth-column element of thekth co-occurrence matrix, and
K(i, j) andδ[x] are defined as

K(i, j) =

n∑

k=1

δ[mk(i, j)] (3)

and

δ[x] =


1 if x is not equal to zero

0 otherwise
, (4)

7

respectively. The mean co-occurrence matrixMmean is then subtracted from each event
co-occurrence matrix,

Ak = Mk − Mmean for k = 1,2,3, . . . , n, (5)

whereAk is thekth co-occurrence matrix with the mean subtracted.

(Step 3) Calculate the covariance matrix:We then construct the covariance matrix as

P =

n∑

k=1

ÂkÂk
T
, (6)

whereÂk is created by taking each row inAk and concatenating its elements into a single
vector (Step 3in Figure 1). The dimension of̂Ak is 1×m2. In the example dataset, the
dimension ofÂk is 1× 64.

The components ofP, denoted bypi j , represent the correlations between two event
pairsqi andq j , such as the event pairs (ls less) and (ls cd) in the example dataset. An
event pairqi (= ox,oy) can be obtained by

x = γ[(i − 1)/m] + 1
y = i − γ[(i − 1)/m] ×m, (7)

whereγ[z] is the integer part of the value. The variance of a component indicates the
spread of the component values around its mean value. If two componentsqi andq j

are uncorrelated, their variance is zero. By definition, the covariance matrix is always
symmetric.

(Step 4) Calculate the eigenvectors and eigenvalues of the covariance matrix:Since
the covariance matrixP is symmetric (its dimension ism2 × m2, or 64× 64 in the
example dataset), we can calculate an orthogonal basis by finding its eigenvalues and
eigenvectors (Step 4in Figure 1). The eigenvector with the highest eigenvalue is the
first principal component (the most characteristic feature) since it implies the highest
variance, while the eigenvector with the second highest eigenvalue is the second prin-
cipal component (the second most characteristic feature), and so forth. By ranking the
eigenvectors in order of descending eigenvalues, namely (v1, v2, ..., vm2), we can create
an ordered orthogonal basis according to significance. Since the eigenvectors belong to
the same vector space as the co-occurrence matrices,vi can be converted to anm× m
matrix (8× 8 in the example dataset). We call such a matrix anEigen co-occurrence
matrix and denote it asVi .

Instead of using all the eigenvectors, we may represent a co-occurrence matrix by
choosingN of them2 eigenvectors. This compresses the original co-occurrence matrix
and simplifies its representation without losing much information. We define theseN
eigenvectors as theco-occurrence matrix space. Obviously, the largerN is, the higher
the contribution rate of all the eigenvectors becomes. The contribution rate is defined as

contribution rate=

∑N
i=1 λi∑m2

i=1 λi

, (8)

whereλi denotes theith largest eigenvalue.

8

cp

cdls

Layer 1

Layer 2

less

cdls

Fig. 5. Positive layered network for User1

less

cdls

cp

Layer 1

Layer 2

Fig. 6. Combined positive layered network
of User1. The solid lines and dotted lines
correspond to layer 1 and 2, respectively

(Step 5) Obtain a feature vector:We can obtain thefeature vectorof any co-occurrence
matrix,M, by projecting it onto the defined co-occurrence matrix space (Step 5in Figure
1). The feature vectorFT = [f1, f2, f3, ..., fN] of M is obtained by the dot product of
vectorsvi andÂ, where fi is defined as

fi = vT
i Â for i = 1,2,3, . . . ,N (9)

The Componentsf1, f2, f3, ..., fN of F are the coordinates within the co-occurrence ma-
trix space. Each component represents the contribution of each respective Eigen co-
occurrence matrix. Any input sequence can be compressed fromm2 to N while main-
taining a high level of variance.

2.3 Constructing a layered network

Once a feature vectorF is obtained from a co-occurrence matrix, the ECM method
converts it to a so-calledlayered network(shown asconstruction of layered networkin
Figure 1) . Theith layer of a network is constructed from the correspondingith Eigen
co-occurrence matrixVi multiplied by theith coordinatefi of F. In other words, theith
layer of the network represents theith principal feature of the original co-occurrence
matrix.

The layered network can be obtained from equation (9). Recall that this equation
for obtaining a componentfi (for i = 1,2,3, . . . ,N) of a feature vector is

fi = vT
i Â for i = 1,2,3, . . . ,N,

whereÂ is the vector representation ofA = (M − Mmean). We can obtain an approxima-
tion to the original co-occurrence matrixM′ with the meanMmeansubtracted from the
original co-occurrence matrixM by isolatingÂ from equation (9). In summary,

(M − Mmean) '
N∑

i=1

fiVi = M′, (10)

9

emacs

ls

Layer 1

Layer 2

gdb gcc

emacs

lsgdb gcc

Fig. 7. Negative layered network for User1

emacs

lsgdb gcc

Layer 1

Layer 2

Fig. 8. Combined negative layered network
for User1. The solid and dotted lines corre-
spond to layers 1 and 2, respectively

where fiVi can be considered an adjacency matrix labeled by the set of observation
eventsO. The ith network layer can be constructed by connecting the elements in the
obtained matrixM′.

Each layer of the network constructed byfiVi (for i = 1,2,3, . . . ,N) provides the
distinct characteristic patterns observed in the approximated co-occurrence matrix. We
can also express such characteristicsin relation to the average co-occurrence matrixby
separating it as

N∑

i=1

fiVi =

N∑

i=1

(Xi + Yi) =

N∑

i=1

Xi +

N∑

i=1

Yi (11)

whereXi (or Yi) denotes an adjacency matrix whose elements are determined by the
corresponding positive (or negative) elements infiVi . The matrixXi (or Yi) represents
the principal characteristic ofM′ in terms of frequency (or rarity) in relation to the
average co-occurrence matrix. We call the network obtained fromXi (or Yi) a positive
(or negative) network.

There may be elements inXi (or Yi) that are too small to serve as principal charac-
teristics ofM′. Thus, instead of using all the elements ofXi (or Yi), we set a threshold
h and choose elements that are larger (or smaller) thanh (or −h) in order to construct
theith layer of thepositive(or negative) network. Assigning a higher value toh reduces
the number of nodes in the network and consequently creates a network with a different
topology.

Figure 5 shows the first and second layers of the positive networks, obtained for
User1 in the example dataset withh assigned to 0. We can combine these two layers
to describe User1’s overall patterns of principal frequent commands. The combined
network is depicted in Figure 6, which indicates strong relations between the commands
ls, cd, andless. This matches our human perception of the command sequence of
User1 (i.e.,cd ls less ls less cd ls cd cd ls).

Similarly, the first and second layers of the negative network and the combined net-
work obtained for User1 are shown in Figures 7 and 8, respectively. These negative
networks indicate the rarely observed command patterns in the command sequence of
User1 relative to the average observed command patterns. We can observe strong cor-

10

Training data

1 2 3 … 50 … 150

sequence

Test data

User

1

2

…

50

Fig. 9. Composition of the experimental dataset

relations in the commandsgdb, gcc, ls, andemacs. These relations did not appear in
the command sequence.

3 Application of the ECM Method

3.1 Overview of the experimental data

We applied the ECM method to a dataset for masquerade detection provided by Schon-
lau et al. [12]. The dataset consists of 50 users’ commands entered at a UNIX prompt,
with 15,000 commands recorded for each user. Due to privacy arguments, the dataset
includes no reporting of flags, aliases, arguments, or shell grammar. The users are des-
ignated as User 1, User 2, and so on. The first 5000 commands are entered by the
legitimate user, and the masquerading commands are inserted in the remaining 10,000
commands. All the user sequences were decomposed into a sequence length of 100
commands (l = 100). Figure 9 illustrates the composition of the dataset.

3.2 Creation of a user profiles (offline)

For each user, we created a profile representing his normal behavior. Each decom-
posed sequence was converted into a co-occurrence matrix with a scope size of six
(s = 6). We did not change the strength of the correlations between events on depend-
ing on their distance but instead used a constant value 1 for simplicity. We took all of
the users’ training dataset, consisting of 2500 (50 sequences× 50 users) decomposed
sequences, and defined it as thedomaindataset (n = 2500). The set of observation
events (O = o1,o2,o3, . . . , om) was determined by the unique events appearing in the
domaindataset, which accounted for 635 commands (m = 635). We took 50 Eigen
co-occurrence matrices (N = 50), whose contribution rate was approximately 90%, and
defined this as the co-occurrence matrix space.

The profile of a user was created by using his training dataset. We first converted
all of his training sequences to co-occurrence matrices and obtained the corresponding
feature vectors by projecting them onto the defined co-occurrence matrix space. Each
feature vector was then used to reconstruct an approximated original co-occurrence ma-
trix. This co-occurrence matrix was finally converted into apositive(or negative) lay-
ered network with a threshold of 0 (h = 0). We only used thepositivelayered network
to define each user’s profile.

11

3.3 Recognition of anomalous sequences (online)

When a sequenceseqi of the Useru was to be tested, we followed this procedure:

1. Construct a co-occurrence matrix fromseqi .
2. Project the obtained co-occurrence matrix on the co-occurrence matrix space and

obtain its feature vector.
3. Multiply the feature vector by the Eigen co-occurrence matrices to obtain a layered

network.
4. Compare the layered network with the profile of Useru.
5. Classify the testing sequence as anomalous or normal based on a thresholdεu.

To classify a testing sequenceseqi as anomalous or normal, we computed the sim-
ilarity between each network layer ofseqi and each networks layer in the user profile,
where we chose the largest value as the similarity. If the computed similarity ofseqi
was under a thresholdεu for the Useru, then the testing sequence was classified as
anomalous; otherwise, it was classified as normal. We defined the similarity between
the networks of two sequences,seqi andseqj , as,

Sim(seqi , seqj) =

N∑

k=1

Γ(Tk(i),Tk(j)), (12)

whereTk(i) is the obtained network at thekth layer of seqi andΓ(Tk(i),Tk(j)) is the
number of subnetworks thatTk(i) and Tk(j) have in common. We extracted the 30
largest values to form a network (R = 30) and employed 3 connected nodes as the
unit of a subnetwork (r = 3).

3.4 Results

The results illustrate the trade-off between correct detection (true positives) and false
detection (false positives). A receiver operation characteristic curve (ROC curve) is of-
ten used to represent this trade-off. The percentages of true positives and false positives
are shown on the y-axis and x-axis of the ROC curve, respectively. Any increase in
the true positive rate will be accompanied by an increase in the false positive rate. The
closer the curve follows the left-hand border and then the top border of the ROC space,
the more accurate the results are, since they indicate high true positive rates and, corre-
spondingly, low false positive rates.

Figure 10 shows the resulting ROC curve obtained from our experiment with the
ECM method. We have plotted different correct detection rates and false detection rates
by changingα in the expression:

ε
opt
u + α,

whereεopt
u is the optimal threshold for Useru. The optimal thresholdεopt

u is defined
by finding the largest correct detection rate with a false detection rate of less thanβ%.
We setβ to 20 in this experiment and used the same values ofεu throughout all the
test sequences (no updating). As a result, the ECM method achieved a 72.3% correct
detection rate with a 2.5% false detection rate.

12

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% Flase Detection Rate

%
 C

or
re

ct
 D

et
ec

tio
n

R
at

e

Fig. 10.ROC curves for the ECM method

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% False Detection Rate

%
 C

or
re

ct
 D

et
ec

tio
n

R
at

e

ECM

 Bayes One-Step Markov, 6.7% False Detection

 Naive Bayes, no updating, 4.6% False Detection

Naive Bayes, updating, 1.3% False Detection

 Hybrid Multi-Step Markov, 3.2% False Detection

 IPAM, 2.7% False Detection

 Uniqueness, 1.4% False Detection

 Sequence-Match, 3.7% False Detection

 Compression, 5.0% False Detection

ECM, 2.5% False Detection

Fig. 11. ROC curve for the ECM method with the best results from other methods shown for
comparison

13

Schonlau et al. [12] and Maxion et al. [13] have applied a number of masquerade de-
tection techniques, including Bayes 1-Step Markov, Hybrid Multi-Step Markov, IPAM,
Uniqueness, Sequence-Match, Compression, and Naive Bayes, to the same dataset used
in this study. (See refs. [12] and [13] for detailed explanations of each technique.) Their
results are shown in Figure 11 along with our results from the ECM method. As one
can be seen from the data, the ECM method achieved one of the best scores among the
various approaches.

4 Computational Cost

The ECM method has two computational phases, the offline and online phases. For the
offline phase, the required computation processes are the following: transforming a set
training sequences of lengthw to co-occurrence matrices, calculating theN eigenvec-
tors of the covariance matrix, projecting co-occurrence matrices onto the co-occurrence
matrix space to obtain feature vectors, constructing layered networks withR nodes in
each layer, and generating a lookup table containing subnetworks withr connected
nodes.

We used the Linux operating system (RedHat 9.0) for our experiments. We im-
plemented the conversion of a sequence to a co-occurrence matrix in Java SDK 1.4.2
[14] and the remaining processes in Matlab Release 13 [15]. The hardware platform
was a Dell Precision Workstation 650 (Intel(R) Xeon (TM) CPU 3.20GHz, 4GB main
memory, 120GB hard disk). With this environment, for the online phase, it took 26.77
minutes to convert all the user training sequences (l = 100,s = 6) to the co-occurrence
matrices (average of 642 ms each), 23.60 minutes to compute the eigenvectors (N = 50),
6.76 minutes to obtain all the feature vectors (average of 162 ms each), 677.1 minutes
to construct all the layered networks with 30 nodes in each layer (average of 16.25 s for
each feature vector), and 106.5 minutes to construct the lookup table (r = 3).

For the online phase, the required computations are the following: transforming a
sequence to a co-occurrence matrix, projecting the obtained co-occurrence matrix to the
set ofN Eigen co-occurrence matrices, obtaining the feature vector of the co-occurrence
matrix, constructing a layered network withR nodes, generating subnetworks withr
connected nodes, and comparing the obtained layered network with the corresponding
user profile. For one testing sequence, using the same environment described above, it
took 642 ms to convert the sequence (l = 100,s = 6) to the co-occurrence matrix, 162
ms to obtain the feature vector (N = 50), 16.25 s to construct the layered network (R =

30), 2.60 s to generate the subnetworks (r = 3), and 2.48 s to compare the subnetworks
with the profile. In total, it took 22.15 s to classify a testing sequence as normal or
anomalous.

5 Discussion

As noted above, we have achieved better results than the conventional approaches by
using the ECM method. Modeling a user’s behavior is not a simple task, however, and
we did not achieve very high accuracy with false positive rates near to zero. There is

14

O set of observation events.
l length of sequence to be tested.
s scope size
D domain dataset.

Table 2.Changeable parameters in obtaining a feature vector

h threshold of elements inXi (or Yi) for constructing a network.
R number of elements infiVi for constructing theith network layer
r number of nodes in a subnetwork.

Table 3.Changeable parameters in obtaining a layer of network

room to improve the performance by varying the parameters of the ECM method, as
shown in Tables 2 and 3.

Table 2 lists the parameters that can be changed when computing a feature vector
from a co-occurrence matrix. The parameterO determines the events for which correla-
tions with other events are considered. If we took a larger number of events (i.e., UNIX
commands), the accuracy of the results would become better but the computational cost
cost would increase. Thus, the number of events represents a trade-off between accuracy
and computational cost.

Changing the parameterl results in a different length of test sequence. Although we
setl to 100 in our experiment in order to compare the results with those of conventional
methods, it could be changed by using a time stamp, for example. The parameters
determines the distance over which correlations between events are considered. If we
assigned a larger value tos, two events separated by a longer time interval could be
correlated. In our experiment, we did not consider the time in determining the values
of l and s, but instead utilized our heuristic approach, as the time was not included
in the dataset. Moreover, we did not change the strength of the correlations between
events depending on their distance for simplicity. Considering the aspect of dividing the
number of occurrences by the distance between events, for example, would influence
the results.

Choosing more sequences for thedomaindatasetD would result in extracting of
more precise features from each sequence, as in the case of the Eigenface technique.
This aspect could be used to update the profile of each user: updating thedomaindataset
would automatically update its extracted principal features, since they are obtained by
using Eigen co-occurrence matrices.

Table 3 lists the parameters that can be changed in constructing a network layer
from a co-occurrence matrix. In our experiment, we seth = 0 and chose the largest 30
elements (R = 30) to construct a positive network. Nevertheless, the optimal values of
these parameters are open for discussion.

15

Additionally, the detection accuracy would be increased by computing the mean
co-occurrence matrixM0 by using equation (2) instead of equation (1), since each orig-
inal co-occurrence matrix is sparse. Moreover, normalization ofΓ(Tk(i),Tk(j)) by the
number of arcs (or nodes) in bothTk(i) andTk(j) may improve the accuracy: let|Tk(i)|
be the number of arcs (or nodes) in networkTk(i). Then the normalizedΓ(Tk(i),Tk(j))
would be simply obtained byΓ(Tk(i),Tk(j))/(|Tk(i)||Tk(j)|).

6 Conclusions and Future Work

Modeling user behavior is a challenging task, as it changes dynamically over time and
a user’s complete behavior is difficult to define. We have proposed the ECM method to
accurately model such user behavior. The ECM method is innovative in three aspects.
First, it models the dynamic natures of users embedded in their event sequences. Sec-
ond, it can discover principal patterns of statistical dominance. Finally, it can represent
such discovered patterns via layered networks, with not only frequent (positive) proper-
ties but also rare (negative) properties, where each layer represents a distinct principal
pattern.

Experiments on masquerade detection by using UNIX commands showed that the
ECM method achieved better results, with a higher correct detection rate and a lower
false detection rate, than the results obtained with conventional approaches. This sup-
ports our assumption that not only connected events but also non-connected events
within a certain scope size are correlated in a command sequence. It also shows that
the principal features from the obtained model of a user behavior are successfully ex-
tracted by using PCA, and that detailed analysis by using layered networks can provide
sufficient, useful features for classification.

Although we used the layered networks to classify test sequences as normal or ma-
licious in our experiment, we should also investigate classification by using only the
feature vectors. Furthermore, we need to conduct more experiments by varying the
method’s parameters, as described in Section 5, in order to improve the accuracy for
masquerade detection. We must also try using various matching network algorithms to
increase the accuracy.

References

1. Lunt, T.F.: A survey of intrusion detection techniques. Computers and Security12 (1993)
405–418

2. Ye, N., Li, X., Chen, Q., Emran, S.M., Xu, M.: Probablistic Techniques for Intrusion Detec-
tion Based on Computer Audit Data. IEEE Transactions on Systems Man and Cybernetics,
Part A (Systems & Humans)31 (2001) 266–274

3. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion Detection using Sequences of System
Calls. Journal of Computer Security6 (1998) 151–180

4. Lee, W., Stolfo, S.J.: A framework for constructing features and models for intrusion detec-
tion systems. ACM Transactions on Information and System Security (TISSEC)3 (2000)
227–261

16

5. Sekar, R., Bendre, M., Bollineni, P.: A Fast Automaton-Based Method for Detecting Anoma-
lous Program Behaviors. In: Proceedings of the 2001 IEEE Symposium on Security and
Privacy, Oakland (2001) 144–155

6. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: Proceedings of the 2001
IEEE Symposium on Security and Privacy, Oakland (2001) 156–168

7. Abe, H., Oyama, Y., Oka, M., Kato, K.: Optimization of Intrusion Detection System Based
on Static Analyses (in Japanese). IPSJ Transactions on Advanced Computing Systems (2004)

8. Kosoresow, A.P., Hofmeyr, S.A.: A Shape of Self for UNIX Processes. IEEE Software14
(1997) 35–42

9. DuMouchel, W.: Computer Intrusion Detection Based on Bayes Factors for Comparing
Command Transition Probabilities. Technical Report TR91, National Institute of Statistical
Sciences (NISS) (1999)

10. Jha, S., Tan., K.M.C., Maxion, R.A.: Markov Chains, Classifiers and Intrusion Detection.
In: Proc. of 14th IEEE Computer Security Foundations Workshop. (2001) 206–219

11. Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting Intrusions Using System Calls: Al-
ternative Data Models. In: IEEE Symposium on Security and Privacy. (1999) 133–145

12. Schonlau, M., DuMouchel, W., Ju, W.H., Karr, A.F., Theus, M., Vardi, Y.: Computer intru-
sion: Detecting masquerades. In: Statistical Science. (2001) 16(1):58–74

13. Maxion, R.A., Townsend, T.N.: Masquerade Detection Using Truncated Command Lines.
In: Prof. of the International Conference on Dependable Systems and Networks (DSN-02).
(2002) 219–228

14. (Java) http://java.sun.com/.
15. (Matlab) http://www.mathworks.com/.

