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Abstract

Anomaly-detection techniques have considerable

promise for two diÆcult and critical problems in in-

formation security and intrusion detection: detecting

novel attacks, and detecting masqueraders. One of the

best-known anomaly detectors used in intrusion detec-

tion is stide1. Developed at the University of New

Mexico, stide aims to detect attacks that exploit pro-

cesses that run with root privileges. The original work

on stide presented empirical results indicating that data

sequences of length six and above were required for ef-

fective intrusion detection. This observation has given

rise to the long-standing question, \Why six?" accom-

panied by related questions regarding the conditions un-

der which six may or may not be appropriate.

This paper addresses the \Why Six" issue by pre-

senting an evaluation framework that maps out stide's

e�ective operating space, and identi�es the conditions

that contribute to detection capability, particularly de-

tection blindness. A theoretical justi�cation explains

the e�ectiveness of sequence lengths of six and above,

as well as the consequences of using other values. In

addition, results of an investigation are presented, com-

paring stide's anomaly-detection capabilities with those

of a competing detector.

1Rather than STIDE or Stide or s-tide, we have chosen \stide"

in keeping with the way the detector was referred to in the recent
and frequently-cited paper by Warrender et al. [12].

1 Introduction

In a solid body of work inspired by the way the nat-

ural immune system distinguishes self from other, For-

rest and her colleagues at the University of New Mex-

ico [1, 2, 3] presented and analyzed the e�ectiveness

of a detection scheme aimed at enhancing the security

of computer systems. They saw computer system se-

curity as an instance of the more general problem of

distinguishing self, e.g., the normal behavior of system

programs, from other. A good example is the behavior

of a trojanized system program (other) as opposed to

the behavior of the same system program, but uncom-

promised (self).

Out of the e�orts in computer immunology, evolved

the detector that is now called \stide" (Sequence TIme-

Delay Embedding). Stide's predecessor, the original

self/other detector, was initially presented as a change-

detection algorithm applied to the detection of com-

puter viruses. It has since been applied to the task

of detecting intrusions or exploits by way of detect-

ing abnormal behavior in processes that run with root

privileges on Unix systems. Stide operates on categor-

ical data in the form of system kernel calls issued by

the running process to the kernel of the host system.

The reference to \time" in the name of the detector

re
ects the time-series nature of the categorical data

upon which the detector was deployed.

Through the series of papers that have documented

the many experiments aimed at studying the e�ective-

ness of stide with respect to the detection of exploits

and intrusions in Unix systems, the one curiosity that

has been most conspicuous due to its signi�cant impact

on the performance of the detector, has been the ques-
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tion of the \best" or most appropriate detector-window

length or sequence length (used interchangeably) re-

quired in any application of the algorithm. For stide,

this value is set a priori, and used to determine the

length of all the sequences obtained from both train-

ing and test data. In the literature, we �nd that a

sequence length of six is referred to consistently with

stide by independent investigators [9, 5] and in exper-

iments performed by the authors of the detector. For

example, although a sequence length of 10 was �nally

settled on, in the results for the experiments in [4] it

was observed that a sequence length of at least six ap-

peared to be necessary in order to detect anomalies in

all the intrusive data presented to the detector. Such

an observation naturally prompts questions regarding

the appropriate value of the detector-window parame-

ter for stide, a problem that is not at all foreign to the

community [5]; for example:

� Why does a detector-window length of six appear

to work, while lengths less than six do not?

� Is a detector-window length of six appropriate for

all data from di�ering environments?

� What is the impact on detection accuracy if an

\incorrect" detector-window length is used?

� If not by \ad hoc means" [5], how else can the

\best" detector-window length be determined?

That the value of the sequence-length parameter im-

pacts the performance of the detector has not only

been noted by the original authors, but also in sub-

sequent, independent work [4, 5, 6, 9]. Marceau [6],

noting stide's reliance on a \magic number," suggested

a way of obviating the need for a priori selection of

a �xed window length. She did not, however, address

the issues of why or how �xed lengths of certain sizes

a�ect stide's performance (nor was it her goal to do

so). Lee & Xiang [5] proposed an information theo-

retic solution to the problem of choosing the optimal

detector-window length for probabilistic anomaly de-

tectors. We address their approach in Section 5.

The question of the appropriate detector-window

length may have implications for aspects of detection

other than performance. In particular, we were in-

terested to know whether the results obtained by the

original investigators represent a serendipitous match

between the particular data sets used and the detector-

window length. In other words, is six a necessary pa-

rameter value for this kind of detector, or simply suf-

�cient for the data at hand? Answering questions of

this nature is essential if we wish to avoid deploying

detectors of this kind (anomaly detectors in general,

not just stide) in environments where they may fail or

be grossly ine�ective.

2 Problem, approach and hypothesis

A long-standing issue with stide has been one of un-

derstanding why the number six is the \magic number"

that makes stide work. People tend to dislike and dis-

trust magic numbers, because they don't know how

they are determined, and because they are not assured

that for their situation the same magic number will

e�ect the desired results. For example, Stillerman et

al. [9, pp. 68] said, \We originally used a sliding win-

dow of length six, and later experimented with shorter

window lengths. Somewhat to our surprise, a window

length of two was just as good as a window length of

six in detecting attacks." Their paper did not attempt

an explanation.

The problem addressed in this paper is that of deter-

mining why six is the magic number that makes stide

work. In addition, we take on the issue of what hap-

pens if that magic number is not set correctly in stide.

Our approach is to establish a framework of se-

quence types (rare, common and foreign), and within

this framework to show how a very speci�c kind of

anomaly, namely a minimal foreign sequence, a�ects

the detection capabilities of stide.

Our hypothesis is this: a detector window of at least

six was required to detect anomalies in all intrusive

traces in the Hofmeyr et al. [4] dataset because the

length of the smallest minimal foreign sequence present

in one of the intrusive traces was six. An experiment

is run to validate the hypothesis.

We begin by describing stide, and by replicating the

essential �nding of stide's creators { that six is the

magic number. Through doing this, we establish the

experimental foundation for drawing conclusions on the

same basis as did the original authors of stide. We then

address the idea, suggested by Lee and Xiang [5], that

conditional entropy can be used to determine the best

window size for probabilistic classi�ers, and its implica-

tions for stide. This is followed by a brief exposition of

a framework of sequence types, upon which a designed

experiment is based, and o�ered in the next section.

Experimental results are presented and discussed, to

include the notion of di�erent detectors being sensitive

or blind to di�erent phenomena. We then show how

minimal foreign sequences can be found in the New

Mexico data on which stide was originally run, and we

end by answering the questions posed in Section 1.

3 Brief description of stide

Stide acquires a model of normal behavior by seg-

menting training data into �xed-length sequences [12].

This is done by sliding a detector window of length

DW over the training data. Each length DW sequence

obtained from the data stream is stored in a \normal
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Data set Program Normal Data Intrusion Data

No. of No. of Name of No. of No. of

traces lines attack traces lines

1 Synthetic sendmail (UNM) 346 1,799,764 sunsendmailcp 3 1119

decode 12 3067

forwardingloops 10 2569

2 Synthetic sendmail (CERT) 294 1,576,086 syslogd 23 6504

unsuccessful intrusion sm565a 3 275

unsuccessful intrusion sm5x 8 1537

3 Synthetic ftp 8 180,315 wu.ftpd 5 1363

4 Synthetic lpr 9 2398 lprcp 1001 164,232

5 Live lpr (MIT) 2698 2,915,394 lprcp 1001 165,248

6 Live lpr (UMN) 1231 553,336 lprcp 1001 164,232

Table 1. Data sets used to replicate experiments documented in [4]; from University of New Mexico.

database" of sequences of length DW . A similarity

metric is then used to establish the degree of similarity

between the test data and the model of normal behav-

ior obtained in the previous step. Sequences of length

DW are obtained from the test data using a sliding

window, and for each length DW sequence, the simi-

larity metric simply establishes whether that sequence

exists or does not exist in the normal database. A

lengthDW sequence from the test data that is found to

exist in the normal database (where \existing" requires

that a sequence be found in the normal database that

is an identical match for the sequence obtained from

the test data), is assigned the number 0. Sequences

that do not exist in the normal database are assigned

the number 1. The decision is binary; either there is an

exact match for a sequence from the test data in the

normal database (0) or there isn't (1).

The detector's �nal response to the test data, man-

ifested as the anomaly signal, involves a parameter

known as the \locality frame". The locality frame is a

value determining the length of a temporally local re-

gion over which the number of mismatches are summed

up. For example, if the locality frame is set to 20, then

at each point of the test data the number of mismatches

in the last 20 (overlapping) sequences, including the

current sequence, is determined. The number of mis-

matches that occur within a locality frame is referred to

as the locality frame count (LFC). The locality frame

count is the �nal value that is used to determine how

anomalous the test data is. The length of the locality

frame is a user-de�ned parameter that is independent

of the length of the detector-window used to segment

both training and test data.

4 Replicating the stide experiments

Hofmeyr et al. [4], in a study of intrusion detection

using sequences of system calls, noted explicitly that

\the best sequence length to use would be 6 or slightly

larger than 6." Although a sequence length of six was

used in earlier work (e.g., [2]), it is in the Hofmeyr et al.

paper that the signi�cance of six as a sequence length

was made most explicit. The number six was obtained

empirically.

To verify that our own investigation was on solid

ground, and to ensure that our own hypotheses could

be validated using the original datasets employed in

the Hofmeyr et al. study, we began by replicating their

work. The similarity metric used in Hofmeyr et al. was

based on Hamming distances; stide employs a di�erent

metric. We used both metrics on the same data set to

show that the question of why a length-six sequence

works best remains pertinent in both cases.

The data on which the experiment was run was ob-

tained from the University of New Mexico web site [11].

The data were comprised of six separate data sets, each

containing normal and intrusion data. The data sets

were derived from several di�erent system programs.

Table 1 provides summary information about the data.

The results presented in Figure 1 show the response

of the detector that employed the Hamming-distance

similarity measure. This graph only shows the curves

associated with the sunsendmailcp and decode attacks,

and mimics the graph of results presented in [4]. (The

rest of the data are not shown, because they clutter the

graph, and obscure its message, but are otherwise simi-

lar in that they indicate anomalies at sequence lengths

less than six.) We found in our results, as the New

Mexico team did, that there was an absence of an

anomaly signal for sequence lengths of less than six

for the system calls corresponding to process ID 283
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Figure 1. Normalized Hamming-distance sim-
ilarity measure plotted against sequence
length. Note that the first nonzero response
to decode 1 occurs at sequence length six.

in the �le labeled sm-280.int (decode 1).2 We see this

phenomenon echoed in the results for stide (Figure 2),

where the decode 1 intrusion was not detectable for se-

quence lengths of less than six, either. These results

show that for both metrics, a sequence length of six or

greater was required to detect anomalies in all intrusive

traces.

The graph in Figure 1 di�ers slightly from the graph

presented in Hofmeyr et al. [4, Figure 2]. The graph in

Figure 1 plots the Hamming distance result for every

sequence length from 2 to 20. The similarity between

our graph and Hofmeyr's graph becomes apparent once

the starred data points in Figure 1 are removed. De-

spite slight di�erences in appearance, the essence of the

two graphs is the same: namely that the �rst nonzero

anomaly signal occurs at sequence length six for decode

1. The lowermost curve in Figure 1 is for decode 1, the

data set that will later be shown to be the source of

the Why-6 question. The large bullets connected by

the dotted line depict the curve from [4, Figure 2].

2Two of the University of New Mexico �les contain the origi-

nal data for the decode attack. One of these is sm-280.int, which

Hofmeyr refers to as decode 1; the other is called decode 2. Each
�le contains system calls corresponding to several PIDs.

Sequence length, N 
2 4 6 8 10 12 14 16 18 20 22

Ra
w 

nu
m

be
r o

f m
is

m
at

ch
es

 in
 a

 tr
ac

e 

20

40

60

80

100

120

140

160

0

sm-280.int pid 283 (Decode 1)
sm-314.int pid 317 (Decode 2)
sunsendmailcp 
fwd-loops-1.int162 
fwd-loops-1.int163 
fwd-loops-2.int170 
fwd-loops-3.int182 
fwd-loops-3.int183 
fwd-loops-4.int206 
fwd-loops-4.int207 
fwd-loops-5.int119 

Figure 2. Stide mismatch response vs. se-
quence length. A length of at least six is
required to detect anomalies in all intrusive
traces; see decode 1 trace at bottom.

5 Why 6, conditional entropy and stide

Of the work that has addressed the issues of selecting

appropriate sequence length, that of Lee and Xiang [5]

comes closest to our own. They suggested that the con-

ditional entropy of intrusive sequences could be a key

factor contributing to the use of six-symbol sequences

in the New Mexico sendmail data. They plotted condi-

tional entropy of the UNM sendmail data against se-

quence length in [5, Figure 1]; their graph shows that

as sequence length increases, conditional entropy de-

creases; in particular, there is a distinct knee in their

entropy curve corresponding to a sequence length of

seven. They said, \conditional entropy drops to very

small values after sequence length reaches 6 or 7."

They show that for probabilistically-based classi�ers,

there is a relationship between the fall o� in entropy

and the appropriate window size for the classi�er.

That conditional entropy could in
uence the selec-

tion of sequence lengths for stide seems like an appeal-

ing idea. Although Lee and Xiang [5] showed that con-

ditional entropy may be useful for selecting appropri-

ate sequence lengths for probabilistic classi�ers, they

did not attempt to extend the concept to stide. In this
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section we will show that stide does not respond to

changes in conditional entropy. We also o�er an exam-

ple suggesting that conditional entropy might not be

a universal sequence-length selection metric, even for

probabilistic classi�ers.

To show that conditional entropy does not a�ect

stide, we need to establish pairs of training and test

data that di�er only in terms of increasing irregularity

(measured as conditional entropy) and nothing else.

This means that the alphabet size, alphabet symbols

and sample size are all kept constant, while irregularity

is calculated to increase at �xed and steady intervals.

We used 11 streams of training and test data pairs

[7] that comply with these requirements. The data-

generation process does not introduce anomalous se-

quences or symbols into the test-data stream. The rea-

son for this is because introducing obviously-anomalous

phenomena into the data stream would confound the

results of the experiment; we would not know whether

the detector was responding to the 
uctuations in data

regularity or to the presence of anomalous sequences.

The data pairs are labelled 1 to 11, and each pair

di�ers from the preceding pair in terms of a measured

increase in irregularity. The training and test-data pair

labelled 1 are therefore the most regular, and the pair

labelled 11 are completely random data. For details

on the data-generation technique, which was based on

state transition matrices, see [7, Section 4.3]. Into each

of these 11 datasets is injected a single anomaly consist-

ing of a single symbol not present in the training data.

This is the simplest unequivocally anomalous event

that stide can be expected to detect. The detector-

window length for stide in this experiment was set to 2

to be consistent with the data generator in which the

probability of each element depended only on the value

of the previous element in the sequence.

Stide's locality frame count (LFC), which serves as

a �lter or smoother, was not used, because smoothing

plays no role in primary detection, i.e., the initial de-

cision as to whether an anomaly (mismatch, in stide)

has been detected or not. For stide, a hit occurs when

a mismatch is registered. In the case of our test data,

this will occur whenever the anomalous character is

within the detector window. We inject only singleton

anomalies, not clusters or groups of anomalies. A sin-

gleton anomaly consists of two consecutive mismatches

as the anomalous symbol passes through the detector

window of length 2. An anomaly or mismatch any-

where else will be regarded as a false alarm, whether

it occurs in some temporally local region or not; con-

sequently, smoothing is not needed.

Figure 3 presents experimental results in terms of

hits and false alarms. We can see that, given a situa-
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Figure 3. Hit and false-alarm rates for stide, as
training/test data increase in irregularity (i.e.,
conditional entropy increases from 0 to 1).
Note that stide’s performance is unaffected
by changes in conditional entropy.

tion in which everything was kept constant, including

the type of anomalous phenomena introduced into the

data streams, stide remained una�ected by the regu-

larity increase from one data stream to the next, and

continued to detect the anomalous symbol present in

each of the 11 test-data streams. Stide achieved 100%

hits and 0% false alarms. These results appear sen-

sible, because stide has no notion of probability, and

will only be a�ected by probability if some probabilistic

phenomenon introduces anomalous sequences into the

test data.3 If the data-generation process does not in-

troduce anomalous sequences, the 
uctuations in data

regularity itself, in isolation, make no impact on the

ability of stide to detect the anomalous symbol. If

data regularity, measured as conditional entropy, does

not a�ect the stide detector, then it is highly unlikely

that this aspect of categorical data would be the deter-

mining factor for the appropriate sequence length that

must be employed by stide.

There remains a certain curiosity about the results

of Lee and Xiang [5]. While they showed that entropy

falls o� as a function of sequence length, and further-

3Other detectors can be a�ected by regularity; see [5, 7].
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more demonstrated that this is so for the New Mexico

data, we conducted a simple experiment which shows

that the same kind of fall o� can be seen even when the

data are completely random (every alphabet symbol

has an equiprobable chance of occurring at any point

in the data stream). If the data are random, then it is

diÆcult to imagine how any classi�er could make sense

of them. Hence, this calls into question whether or

not conditional entropy can be used to establish win-

dow size, even for the probabilistically based classi�ers

discussed in [5].

For our simple experiment, we created two streams

of random data. One stream contained 100,000 el-

ements; the other contained 500,000. Lee and Xi-

ang [5] had used the New Mexico data sets, speci�-

cally the sendmail data (numbers in parentheses indi-

cate sample size): bounce-1.int (293), bounce.int (818),

sendmail.int, (19526) queue.int (96330), and plus.int

(98180). The largest of these contained about 98,000

elements; our sample size of 100,000 is simply rounded

up from 98,000. Our other sample size, of 500,000,

was arbitrary, simply to have a very large data set to

compare against. Our alphabet size was 53, chosen be-

cause it was the largest alphabet size found in the UNM

data. We used sequences sized 2 to 19, and calculated

conditional entropy for each size, using the conditional-

entropy formula provided in Lee and Xiang. Plotting

conditional entropy against sequence length shows a

fall o� at sequence length six, where the curve drops to

zero. The shape of the curve, with a knee at sequence

length six, strongly resembles the curves obtained by

Lee and Xiang in their plot of the New Mexico data,

yet this curve was produced with completely random

data. Hence, conditional entropy may not be a suitable

sequence-length selection metric, even for probabilistic

detectors. A conclusive answer to this question awaits

further investigation.

6 Framework:

Sequence types and hypothesis

The strength of the stide detection algorithm lies in

its ability to detect foreign sequences { sequences not

seen in its database of normal sequences. However, fac-

tors such as the relationship between the length of the

sliding window and the length of the foreign sequence,

as well as the e�ect of sliding a window over the for-

eign sequence, can make a signi�cant impact on the

detection capabilities of stide.

In order to describe these factors, we must �rst es-

tablish a framework within which such concepts can be

expressed. Stide characterizes the normal behavior of a

monitored process in terms of a database comprised of

sequences of length DW . These sequences are obtained

by sliding a window of this length along the trace (or

traces) of system calls that have been obtained from the

monitored process in the absence of intrusions. Stide

only checks to see whether a test sequence is in the

database or not. However, the frequency of the sub-

sequences from which stide's normal-data sequences

are composed is key to understanding why stide can

be blind to certain sequences, as discussed further in

Section 8.

To inform that discussion, we must �rst provide

some de�nitions. A rare sequence is one that occurs

infrequently in the training data. We arbitrarily de�ne

as rare those sequences having a frequency of occur-

rence less than or equal to 0.5% in the normal traces.

Common sequences are those sequences occurring more

frequently than 0.5%. Foreign sequences are those that

do not occur at all in trace(s) that were used to de�ne

normal behavior. Note that a sequence can be foreign

by virtue of containing:

� foreign symbols, i.e., symbols that are not con-

tained in the alphabet set of the training data; or

� a foreign order of symbols, i.e., a sequence in which

each individual symbol within the sequence is a

member of the training-set alphabet, but where

the order of the symbols is one that does not exist

in the set of sequences obtained from the training

data; or

� combinations of both.

In this work we focus speci�cally on the second con-

dition, in which a foreign sequence is foreign by virtue

of the foreign order of its constituent symbols.

The term minimal foreign sequence is de�ned as a

foreign sequence of the second type, having the prop-

erty that all of its proper subsequences already exist in

the normal trace(s). Put simply, a minimal foreign se-

quence is a foreign sequence that contains within it no

smaller foreign sequences. An in-depth exposition of

the construction and characteristics of minimal foreign

sequences can be found in [10].

We hypothesize that a detector-window length of

at least six is required to detect all intrusive traces in

the Hofmeyr data sets, and that this minimal foreign

sequence of length six must have been composed of ei-

ther rare or common subsequences. This would explain

why neither stide nor the Hamming-distance detector

detected this anomaly for detector-window lengths of

less than six, i.e., because all the rare subsequences

that make up the minimal foreign sequence of length

six already exist in the training trace that comprised
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the normal database, and consequently will not be seen

by stide when using a window length less than six.

7 Experimental method

In this section we introduce the experimental regime

for demonstrating the e�ect of minimal foreign se-

quences on the performance of two anomaly detectors:

stide and a Markov-based detector. A detector based

on Markov models [7] will be used as a tool for com-

parison in order to help illustrate that factors a�ecting

stide may or may not a�ect another detector employing

a di�erent approach; what constitutes an anomaly for

one detector is not necessarily an anomaly for another.

We will refer to the detector based on Markov models

as the Markov detector. The Markov detector employs

conditional probabilities in its function as an anomaly

detector. Brie
y, it determines the probability of see-

ing an event, given the previous N events.

We showed in Section 5 that (ir)regularity in data,

as measured by conditional entropy, does not a�ect the

stide detection algorithm, nor can it be used to deter-

mine the appropriate detector-window length for stide.

It is our hypothesis that the sizes of minimal foreign

sequences in a given data set in
uence the appropri-

ate detector-window size for stide. The following is an

outline of the experimental procedure that we used to

show this.

� Generate training data;

� Generate background test-data stream;

� Construct and select minimal foreign sequences of

lengths 2 to 9, composed of rare subsequences,

from the training data;

� Inject the minimal foreign sequences, as anoma-

lies, into the background test-data stream to cre-

ate ground-truth test data;

� Run both anomaly detectors (stide and Markov)

on the same training and ground-truth test data,

while varying their detector-window lengths with

respect to the length of the injected anomalous

sequence; record results.

7.1 Generating the training data

The training data were constructed using a Markov-

model transition matrix. The method for generat-

ing the training data is documented in [7]. Although

numbers were used to represent the elements of the

training-data stream, the numbers were treated as cat-

egories.

The transition matrix used to generate the train-

ing data had a conditional entropy value of 0.1. This

means that at each point in the data stream, the next

element is highly predictable given the current element,

i.e., there is low uncertainty as to what the next el-

ement will be. Such a transition matrix was chosen

simply because it generated data with the following

characteristics:

� A large proportion of the data consists of a repe-

tition of the sequence 1, 2, 3, 4, 5, 6, 7, 8. Ninety-

eight percent of a one-million-element data stream,

generated with this transition matrix, will consist

of a repetition of the sequence 1, 2, 3, 4, 5, 6,

7, 8. This results in a consistent set of obviously

common sequences. A test-data stream made up

of commonly-occurring sequences is desirable for

allowing us to observe the response of a detector

to the injected anomaly without being confounded

by naturally-occurring rare or foreign sequences.

� Despite the repetition in a large portion of the data

resulting in a usable set of common sequences,

there is a small amount of unpredictability in the

probabilities that populate the matrix which en-

sures the occurrence of the rare sequences nec-

essary for selecting the constituent rare subse-

quences in a minimal foreign sequence.

The alphabet size for the training data was 8. We

note that alphabet sizes in real-world data are certainly

much higher than this; for example, there are about 243

unique kernel calls in BSM audit data. However, our

method aims to evaluate the capabilities of a detector

in detecting the higher-level concept of an anomaly.

Although alphabet size may play a role with respect to

certain aspects of the data, such as in
uencing the size

of the set of possible foreign sequences or the size of

the set of possible sequences that populate the normal

database, a foreign sequence is still a foreign sequence

regardless of the alphabet size, and the concept of a

rare sequence will also remain immutable regardless of

alphabet size. This abstraction allows us to study the

response of the detector using synthetic data, as well

as to apply the results from the synthetic environment

to real-world environments.

The aforementioned matrix was used to generate a

training-data stream of 1,000,000 elements. This sam-

ple size was an arbitrary choice, selected so that the

data set would not be insuÆciently small. There were

two parameters that were chosen arbitrarily in this ex-

periment: the sample size of 1,000,000 elements, and

the length of the minimal foreign sequence (AS), which

ranged from 2 to 9.
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7.2 Generating background test data

The background data for the test-data stream con-

sisted of the most commonly occurring sequences only,

which given the training data described above, con-

tained only repetitions of the sequence 1, 2, 3, 4, 5, 6,

7, 8. This ensured that only common sequences popu-

lated the background data. This was a desired property

primarily because our aim was to observe the response

of a detector to the speci�c minimal foreign sequence

that we were intending to introduce into the back-

ground data in the second phase of this procedure. We

therefore wanted background data that would not in-

terfere with a detector's response by containing within

it any obviously anomalous event that would constitute

noise for a particular detector, for example naturally

occurring rare or foreign sequences. To maintain con-

sistency with the training data, the background test

data was 1,000,000 elements long.

7.3 Characteristics of injected anomalies

We will be injecting an anomaly that consists of

a minimal foreign sequence of length AS, composed

of rare subsequences, into the data stream. As noted

above, a rare sequence is de�ned to be a sequence that

occurs less than or equal to 0.5% of the time in the

training data.

The decision to select rare sequences was prompted

by the expectation that the Markov detector will have

the ability to detect rare sequences. In cases where

the length of the detector-window is smaller than the

length of the anomaly AS, we encounter the situation

where the detector does not \see" all of the minimal

foreign sequence at once. Instead, the detector is rele-

gated to producing an anomaly signal based only on the

smaller subsequences that form the larger minimal for-

eign sequence. Under such situations, we would like to

observe the e�ect of the rare subsequences on the per-

formance of both a Markov-based detector and stide.

Although we already know that stide does not have the

ability to respond to rare sequences, we will neverthe-

less apply the stide detector to an anomaly with these

characteristics, primarily for the sake of charting and

comparing the performance space of both detectors in

an attempt to quantify how much more the ability to

detect rare sequences actually confers upon the detec-

tion of foreign sequences under such circumstances.

7.4 Injecting minimal foreign sequences

The minimal foreign sequences and their constituent

subsequences must now be chosen carefully so that the

injection process itself does not introduce unintended

perturbations in the background data. This is partic-

ularly signi�cant with respect to sequence boundaries,

i.e., where some elements of the injected anomalous

sequence and some elements of the background data

may combine within a detector's window to produce

sequences that a�ect the anomaly detector in unin-

tended ways. In particular, we want to avoid produc-

ing additional, undesired, foreign sequences due to the

combination of symbols from the injected sequence and

surrounding symbols from the trace.

We have determined that sequences composed by

concatenating short, rare sequences from the training

trace are likely to be foreign, simply due to the im-

probability that a substantial number of rare sequences

would appear in the training trace in the chosen or-

der. It is a simple matter to generate such sequences,

and to verify their foreignness and minimality. These

same properties complicate the problem of injecting

the anomaly, which remains somewhat of an art. Es-

sentially, the problem is one of ensuring that all of

the 2(DW � 1) sequences of length DW that can be

composed at the boundary of the injection, using con-

tiguous symbols from the anomaly and the background

trace, are actually in the database. If this is not the

case for some location in the trace, a di�erent anomaly

is produced and the process repeated until successful.

The �nal suite of evaluation data contains one

stream of training data and 8 streams of test data,

where each test-data stream contains a single mini-

mal foreign sequence whose length is selected from the

range 2 to 9. This set of 9 data streams is then used

repeatedly, once for each detector-window length of 2

to 15. Note that the length of the detector window

dictates the length of the subsequences that compose

each minimal foreign sequence. In total, we have 112

test data streams.

7.5 Running the detectors

We ran the stide and Markov based detectors on

the suite of data created in the preceding sections. For

each minimal foreign sequence being detected, we var-

ied the length of the detector window from 2 to 15. It

should be noted that for stide we ignored the locality

frame count, focusing on the indication of a match (0)

or mismatch (1). We reasoned that although further

processing can be performed on the results of the sim-

ilarity measure for purposes of smoothing away noise

or enhancing signal strength, no amount of subsequent

processing can compensate for the underlying inability

to detect a speci�c phenomenon.

The locality frame count (LFC) sums up the num-

0-7695-1543-6/02 $17.00 c
 2002 IEEE 195 Oakland 2002: Tan & Maxion



IEEE Symposium on Security and Privacy: Berkeley, California. 12-15 May 2002.

Data stream

Size of minimal foreign sequence injected: 8

F F F F F F F F++ + + +++ +

Span considered for hits and misses

Size of detector window: 5

+
F: marks the elements of the injected minimal foreign sequence

 : marks the elements of the background data influenced by the presence of the minimal foreign sequence

Figure 4. Detector’s response to sequences within incident span is used to determine hits and misses.

ber of mismatches experienced within the span of the

locality frame. Although the LFC does contribute to

the �nal anomaly signal, it only comes into play after

a sequence has been determined to be a match or mis-

match. If the detection of a foreign sequence is missed,

meaning that it does not register as a mismatch, then

no amount of applying the LFC or adjusting its length

will cause the missed anomaly to be detected.

7.6 Detection capabilities and detection blindness

The outcomes of our experiments are expressed in

terms of hits and misses, and in terms of regions of de-

tection blindness and detection equivocality, or weak-

ness. A hit is a correct detection; a miss occurs

when the detector failed to detect an injected anomaly.

When a detector window slides over an anomaly, e.g., a

foreign sequence, at various points of its journey it will

view sequences that are composed of a combination of

the elements from the foreign sequence and elements

from the background data. Under such circumstances,

the interaction between the elements of the foreign se-

quence and the background data will cause sequence

types to arise that prompt the anomaly detector to re-

spond in one fashion or another. Regardless of how

the detector responds, the response is still in
uenced

by elements of the foreign sequence. Only when the

detector window completely clears the entire foreign

sequence (i.e., no elements within the detector window

belong to the foreign sequence), can we say that the

response of the detector is no longer in
uenced to the

foreign sequence. In other words, as long as some part

of the foreign sequence is within the span of the sliding

detector window, it can be argued that the detector's

response is due to the presence of the foreign sequence

in the data. As a result, the response of the detec-

tor in such a circumstance should also be considered in

the process of determining hits or misses. This line of

reasoning resulted in the concept of the incident span

that we use to determine hits and misses. The incident

span (see Figure 4) includes the DW�1 elements of the

background data adjacent to the anomalous sequence

on one side of the detector window, the AS elements of

the anomalous sequence, and the DW �1 events of the

background data adjacent to the anomalous sequence

on the other side of the detector window. The length of

this span is therefore AS+2(DW �1) elements. Alter-

natively, it can be said that AS +(DW � 1) sequences

of length DW are contained within the incident span.

In a situation in which only a single minimal foreign

sequence anomaly is introduced into each test stream,

and in which the detector response may range along

a continuum from 0 (indicating completely normal) to

1 (indicating maximal abnormality), we describe a de-

tector as:

� blind, in the case where the detector response is 0

for every sequence of the incident span;

� equivocal, in the case where the maximum de-

tector response registered in the incident span

is greater than 0 and less than 1, indicating

that something not unequivocally normal has been

seen;

� true, in the case where at least one detector re-

sponse of 1 was registered in the incident span.

(The term \true" connotes veridical, unambigu-

ous detection.)

Binary detectors, such as the sequence-matching

portion of stide, are only capable of generating re-

sponses of 0 or 1. Other detectors, such as the Markov

detector described in this paper, can generate equiv-

ocal, or weak, responses. Equivocal responses can be

converted to binary responses by applying a threshold

that converts below-threshold responses to 0; others to

1. For the purposes of this work, the Markov detector

was constrained by the aformentioned method to pro-

duce only a binary response, as does stide. In other
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words, the threshold for the Markov detector was set

to one so that only maximally anomalous (minimal for-

eign) sequences are registered as hits.4

8 Results

Figures 5 and 6 show the results of the experiment

described above. They map the detection capability

of the stide and Markov detectors with respect to an

injected minimal foreign sequence composed of rare se-

quences.
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Figure 5. Markov detector efficacy.

The x-axis marks the increasing length of the mini-

mal foreign sequence injected into the test-data stream,

and the y-axis charts the length of the detector win-

dow required to detect a minimal foreign sequence of

a given length. Each star marks the length of the de-

tector window required to detect a minimal foreign se-

quence whose corresponding length is marked on the

x-axis, where the term \detect" speci�cally means that

a maximum anomalous response occurred in the inci-

dent span. The areas that are absent of a star indicate

that the detector was unable to detect the foreign se-

4Detection thresholds are often used to determine \alarm-

worthy" events. The most-anomalous detector response will

always register as an alarm, regardless of where the detection

threshold is set. An anomalous phenomenon generating such

a response will never \disappear" or become a miss when the
detection threshold is raised or lowered.

quence whose corresponding length is marked on the x-

axis, where unable to detect means that the maximum

anomalous response recorded along the entire incident

span was 0, signifying completely normal.

Since the Markov detector is based on the Markov

assumption, i.e., that the next state is dependent only

upon the current state, the smallest window length pos-

sible is 2. This means that the next expected, sin-

gle, categorical element is dependent only on the cur-

rent, single, categorical element. As a result, the y-axis

marking the detector-window lengths in Figure 5 be-

gins at 2. Although it is possible to run stide using a

detector window of length 1, doing so would produce

results that do not include the sequential ordering of

events, a property that comes into play with all the

detector-window lengths that are larger than 1. This,

together with the fact that there is no equivalent on

the side of the Markov detector, argued against run-

ning stide with a window of 1.
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Figure 6. Stide detector efficacy.

The x-axis also begins at 2. This is because the type

of anomalous event upon which the detectors are being

evaluated requires that a foreign sequence be composed

of rare sequences. A foreign sequence of length 1, there-

fore, would contain a single element that must be both

foreign and rare at the same time, and this is not pos-

sible. As a consequence, both Figures 5 and 6 show an

unde�ned region corresponding to the detector-window

and anomaly length of 1.
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The results show that although the stide and

Markov-based detectors both use the concept of a slid-

ing window, and are both expected to be able to detect

foreign sequences, their di�ering similarity metrics sig-

ni�cantly a�ect their detection capabilities. There are

three main points to note from the results. First, for

stide, the detector-window length parameter must be

greater than or equal to the length of the foreign se-

quence. The minimum length of the detector window

required to detect each minimal foreign sequence is the

size of the minimal foreign sequence itself. As can be

seen from diagonal line in the results, the correlation

between detector-window length and anomaly length is

strong: y = x.

Second, the results show that the similarity met-

ric used by each detector signi�cantly a�ects detection

performance. In stide's case, even though we know that

there is a foreign sequence present in the data stream,

this foreign sequence is only visible if the length of the

detector window is at least as large as the length of the

foreign sequence. The similarity measure employed by

stide appears to have a weakness in that it is unable

to detect minimal foreign sequences composed of rare

subsequences under conditions where DW < AS. As

a result, there are no guarantees that stide will detect

faults even if they do manifest as foreign sequences in

the data. The Markov detector, on the other hand, ap-

pears to have no such weakness. The minimal foreign

sequence in the data stream is visible to the Markov

detector, even when the length of the detector win-

dow is smaller than the length of the minimal foreign

sequence. This suggests that there are factors in this

data stream favoring detectors that employ conditional

probabilities. These factors, however, appear to have

no e�ect on the sequence-matching approach employed

by stide.

Finally, by charting the performance of stide and

the Markov detector with respect to the detection of

minimal foreign sequences, we are able to observe the

nature of the gain achieved in detection performance

between an algorithm that employs conditional prob-

abilities and one that employs the sequence-matching

scheme used by stide. This gain in detection ability,

due to the use of conditional probabilities, is signi�-

cant and is illustrated by the blind region marked out

in Figure 6.

These results provide evidence that shows a strong

relationship between the length of the minimal foreign

sequence and the length of the detector window re-

quired to detect such a phenomenon. It appears that

the appropriate sequence length for stide is in
uenced

by the length and composition of the minimal foreign

sequences present in the data.

9 Minimal foreign sequences in data

In Section 4 we saw that something about the

decode 1 intrusive trace caused both stide and the

Hamming-distance-based detector to completely miss

the anomalies present in the decode 1 intrusive trace

when detector-window lengths of less than six were em-

ployed. In experiments with synthetic data, we found

that such behavior is typical of both detectors in the

presence of minimal foreign sequences composed of rare

or common subsequences. Here we tie these observa-

tions together, and propose that the solution to the

\why six" problem lies in the presence of a length-six

minimal foreign sequence, composed of rare or common

subsequences, in the decode 1 intrusive trace. Since no

minimal foreign sequences exist in the decode 1 trace

with lengths less than six, unlike all the other intrusive

traces, no anomalies could be detected in the decode

1 trace when detector-window lengths of less than six

were used. This meant that a detector-window length

of six was necessary in order to detect anomalies in all

intrusive traces, including decode 1.

Our task at this point is to identify the minimal for-

eign sequences that are present in the Hofmeyr data.

We wish to elucidate characteristics, such as their con-

stituent subsequences, and their various lengths. This

serves several purposes:

� to show that the anomalous phenomenon (minimal

foreign sequence) identi�ed in this work actually

exist in real-world data;

� to show that regardless of the data, i.e., synthetic

or real-world, when the performance of a detector

has been established with respect to the anomaly

types described in [8], the performance results for

a detector are immutable, and will persist reliably

across datasets;

� to verify that, in the case of stide, it is the pres-

ence of minimal foreign sequences in the data

stream that dictates the appropriate detector-

window length;

� to solve the \why six" problem.

Table 2 lists the length and number of minimal for-

eign sequences present in intrusive traces decode 1,

decode 2, sunsendmailcp and forwardingloops; these

intrusive traces correspond to the synthetic sendmail

(UNM) data set 1 of Table 1. Due to space constraints,

Table 2 does not include all of the data sets shown in

Table 1. Furthermore, results based on those data all

show minimal foreign sequences of less than size six,

and would hence be redundant. The point we wish

0-7695-1543-6/02 $17.00 c
 2002 IEEE 198 Oakland 2002: Tan & Maxion



IEEE Symposium on Security and Privacy: Berkeley, California. 12-15 May 2002.

Length dec.1 dec.2 snsndmailcp 
ps-1.162 
ps-1.163 
ps-2.170 
ps-3.182 
ps-3.183 
ps-4.206 
ps-4.207 
ps-5.119

1

2 2 10 7 4 3 8 3 6 4 3

3 1 13 7 2 1 8 1 8 2 1

4 4 1 4 2 2 1 4

5 2 2 2 2

6 1 1

7 2 2 1 2

8 1

9 1 1 1 1

10

11 1 1 1

12

13

14

15

16

17

18

19

20 1

Table 2. Number of minimal foreign sequences (MFS) of lengths 1 to 20 for each named intrusive
trace in the UNM sendmail data. Empty cells indicate that no MFS of that length could be found in
the trace. Note the single length-six MFS in the dec.1 (decode 1) column. The smallest MFS in every
other trace is length 2. For stide to detect all intrusive traces in these data, a detector window of
length at least six is required.

to emphasize is that decode 1 is the only intrusive

trace that does not contain minimal foreign sequences

of length less than six (see Table 2). This means that

stide required a detector-window length of six in or-

der to detect that single anomaly in decode 1, because

there were no minimal foreign sequence anomalies of

lengths less than six to detect in that intrusive trace.

Upon further analysis of the single minimal foreign se-

quence in decode 1, we �nd that it is actually a minimal

foreign sequence of length six, composed of rare subse-

quences. Its precise identi�cation is:

Filename: sm-280.int283.

Start line number: 79

End line number: 84

Actual Sequence: 2, 95, 6, 6, 95, 5

Translated to system calls:

fork, connect, close, close, connect, open

10 Discussion and conclusions

From the series of experiments described above, we

have con�rmed our hypothesis that a detector window

with length at least six was required to detect anoma-

lies in all intrusive traces used in [4], because the length

of the smallest minimal foreign sequence present in one

of the intrusive traces was six. We found that the in-

trusive trace labeled decode 1 contained a single size-

six minimal foreign sequence, composed of rare subse-

quences. The rare subsequences meant that only when

the detector-window was large enough to see the entire

minimal foreign sequence could that sequence register

as an anomaly.

We showed the e�ect of minimal foreign sequences,

composed of rare subsequences, on stide's performance,

and how their presence undermines the claim that stide

will detect foreign or \unusual" sequences that occur in

a stream of data. We have identi�ed conditions under

which stide is completely unable to detect the presence

of foreign sequences in a data stream. Identifying min-

imal foreign sequences, and establishing their e�ect on

stide, enabled us to provide a solution to the question of

the \best" or most appropriate detector-window length

to select in any application of the stide algorithm.

We have also shown that the performance character-

istics established for stide on synthetic data remained

pertinent across datasets. In this case, even when the

detector was deployed on real-world data, we were able

to explain its performance behavior using the lessons

learnt for that detector on synthetic data.

We now return to the questions posed in Section 1.
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Why does a detector-window length of six ap-

pear to work, while lengths less than six do not?

Lengths less than six were not large enough to see the

single minimal foreign sequence (MFS) of size six in the

decode 1 intrusive trace. That sequence was composed of

subsequences that did not appear to stide to be anoma-

lous, and so stide was unable to detect them. Note that if

the data from decode 1 had been, for example, appended

to the data from decode 2, then a window of length 2

would have suÆced for alarming on the intrusive behav-

ior, because decode 2 contains minimal foreign sequences

of length 2 (see Table 2). If the MFS in decode 1 had

been larger than six, then stide's detector window would

have had to be concomitantly larger to detect it, and in

this case, stide's magic number would have been di�erent.

Is a detector-window length of six appropriate

for all data from di�ering environments?

A detector-window length of six is not necessarily ap-

propriate for data from di�ering environments. Minimal

foreign sequences, whose lengths have been shown to

a�ect the selection of the appropriate detector-window

length for stide, can be of any size. Stillerman et al. [9],

for example, found that a window length of 2 was suÆ-

cient to detect anomalies in all of their intrusive data. The

magic number six, for stide, arose as an artifact of two

circumstances: the selection of stide as a detector (blind

to rare sequences), and the particular data sets studied

in the Hofmeyr et al. [4] work (the presence of a size-six

minimal foreign sequence in one data set). If decode 1

hadn't been part of the New Mexico data environment,

six would not have been the magic number.

What is the impact on detection accuracy if an

incorrect detector-window length is used?

The term \incorrect" can mean two di�erent things.

It can mean that the window length is too short to detect

a minimum foreign sequence of a particular size. In this

case, such a sequence would be misclassi�ed as normal

instead of anomalous, resulting in a missed detection and

inaccuracy in the detection results. The severity of this

would depend on how many misses were incurred and on

how serious the missed attacks were.

\Incorrect" can also mean that the window length is

too long; that it perhaps far exceeds the length of the

longest minimum foreign sequence. The consequence of

this would be that more computing power is required to

run the detection apparatus, but detection accuracy would

not be a�ected.

If not by \ad hoc means" [5], how else can the

\best" detector-window length be determined?

In regard to the work of Hofmeyr et al. [4], the \best"

detector-window length is that length which results in at

least one anomaly being detected in each intrusive trace.

For stide, an anomaly is a foreign sequence. The size of

a particular type of foreign sequence, a minimal foreign

sequence, directly determines the \best" detector-window

length for stide.

For a given set of data, the best detector-window

length would be the largest of the set of smallest minimal

foreign sequences in each intrusive trace. For example,

in Table 2, there are 11 intrusive traces. The smallest

minimal foreign sequence is length 2 in all of the intrusive

traces except one. That exception was for decode 1, in

which the size of the smallest minimal foreign sequence

is six. The size-six minimal foreign sequence in decode

1 can be described as the largest of the set of smallest

minimal foreign sequences obtained from each intrusive

trace.

The best detector-window length is dependent on the

size of the relevant foreign sequence. Foreign sequences

are found only in test data (not training data { normal

data has no foreign sequences), so it may not be possible,

in stide's case, to determine the best detector-window

length a priori based only on normal data.

As a �nal note, we remind the reader that we are

assuming that the minimal foreign sequences we en-

countered in the real-world data actually are the man-

ifestations of the intrusions of interest. We are cur-

rently not aware of any analysis that has established

that the anomalies (minimal foreign sequences) present

in the intrusive traces are directly attributable to the

attacks that were deployed, rather than being due to

some other event that occurred while data were be-

ing collected. This makes it hard to determine if the

alarms raised upon detection of those minimal foreign

sequences were hits or false alarms. It is possible that

the single minimal foreign sequence of size six in the

decode 1 trace was the result of insuÆcient training

data.

These speculations raise a more general issue. To

what extent can we establish a link between detectable

anomalies and intrusive behaviors? How can we de-

cide, a priori, what kind of a sensor stream is appro-

priate and what detector characteristics are likely to

be well matched to the stream. For example, the de-

code 1 intrusion is characterized, in the UNM data,

by exactly one minimal foreign sequence of length six.

We have shown that stide, with a window size of less

than six, cannot detect this particular incident. Are

there intrusive scenarios that would produce minimal
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foreign sequences with greater lengths? In a similar

vein, given knowledge of the detector and the working

de�nition of normal, i.e., the database, is it possible

to either modify an attack so that its trace appears to

contain only normal sequences, or so that it contains

only minimal foreign sequences of length greater than

the size of the detector window? We are beginning to

investigate these questions, and preliminary results in-

dicate that escaping detection in these ways is possible

for stide-like detectors. We would like to extend these

investigations to other anomaly-detection schemes.

In closing, we would like to acknowledge many peo-

ple's observation that the stide algorithm is very sim-

ple. However, it is noteworthy that, despite its sim-

plicity, it's performance characteristics have been little

understood, and it was not known how to set its pa-

rameters. Interestingly, systems more complex than

stide have not exhibited substantial performance bene-

�ts over stide, concomitant with their complexity [12].

Hence, it is worthy of study, particularly if what is

learned will contribute to the knowledge of the more

complex algorithms that are likely to be used in future

intrusion-detection systems.

We repeat a remark from Lee and Xiang [5], because

it states our sentiments as well as we could state them

ourselves. \Although one may argue that our results

are simple, obvious and unsurprising, we feel that it

is very important to develop a formal framework, even

just for stating and validating the obvious, so that the

�eld of intrusion detection can progress more rapidly

and rigorously."
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