Related Work in Machine Learning
CFP: Data Mining, Analytics, Big Data, Data Science, and Knowledge Discovery
Books
Projects
Papers
Decisions Trees
Rules
- Learning Decision Rules by Randomized Iterative Local Search,
Chisholm, M. and Tadepalli, P.
ICML, 2002.
- Lightweight Rule Induction
S. Weiss & N. Indurkhya.
ICML, p.1135-42. 2000.
- A Simple, Fast, and Effective Rule Learner
W. Cohen & Y. Singer,
Proc. AAAI, 1999.
- Beyond Market Baskets: Generalizing Association Rules to Dependence Rules,
C. Silverstein, S. Brin & R. Motwani,
Data Mining and Knowledge Discovery, January 1998, pp. 39-68.
- Fast Effective Rule Induction
W. Cohen.
Proc. ICML, 1995.
- Fast Algorithms for Mining Association Rules,
R. Agrawal & R. Srikant
Proc. VLDB, 1994.
- Mining Associations between Sets of Items in Massive Databases
R. Agrawal, T. Imielinski and A. Swami.
Proc. SIGMOD, p207-216, 1993.
- The CN2 Induction Algorithm,
P. Clark & T. Niblett.
Machine Learning, 3(4), p261-283, 1989.
Clustering
- TraClass: Trajectory Classification Using Hierarchical Region-Based and Trajectory-Based Clustering.
J. Lee, J. Han, X. Li, H. Gonzalez.
VLDB, pp 140-149, 2008.
- Graph-Based Hierarchical Conceptual Clustering,
I. Jonyer, L. Holder & D. Cook,
J. Machine Learning Research, 2:19-43, 2001.
- LOF: Identifying Density-Based Local Outliers,
M. Breunig, H. Kriegel, R. Ng & J. Sander,
SIGMOD, pp. 93-104, 2000.
- ROCK: A Robust Clustering Algorithm for Categorical Attributes,
S. Guha, R. Rastoqi & K Shim,
Information Systems, 25(5):345-366, 2000.
- Learning to match and cluster large high-dimensional data sets for data integration,
W. Cohen & J. Richman,
KDD, 2002.
- CHAMELEON: Hierarchical Clustering Algorithm using Dynamic Modeling
G. Karypis, E. Han & V. Kumar.
IEEE Computer, 1999.
- Clustering categorical data: An approach based on dynamical systems,
D. Gibson, J. Kleinberg & P. Raghavan,
Proc. VLDB, 1998.
- An Efficient Approach to Clustering in Large Multimedia Databases with Noise,
A. Hinneburg & D. Kelm.
Proc. KDD, 1998.
Probabilistic Models
Learning Formal Languages, Automata
Cost-sensitive and imbalance class distribution
- A Fully Distributed Framework for Cost-Sensitive Data Mining,
W. Fan, h. Wang. P. Yu, S. Stolfo,
Proc. ICDCS, p. 445-446, 2002.
- Reducing multiclass to binary by coupling probability estimates, B. Zadrozny,
Advances in Neural Information Processing Systems 14 (NIPS*2001), 2001.
- Learning and Making Decisions When Costs
and Probabilities are Both Unknown, B. Zadrozny & C. Elkan,
Proc. of the Seventh Intl. Conf. on Knowledge Discovery and Data Mining, 2001.
- Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, C. Elkan,
Proceedings of the Eighteenth Intl. Conf. on
Machine Learning , 2001.
- The Foundations of Cost-Sensitive Learning, C. Elkan, Proc. of the Seventeenth Intl. Joint Conf. on Artificial Intelligence, 2001.
Outlier/Anomaly Detection
- Trajectory Outlier Detection: A Partition-and-Detect Framework.
J. Lee, J. Han, and X. Li,
ICDE, 2008.
- ROAM: Rule- and Motif-Based Anomaly Detection in Massive Moving Object Data Sets.
X. li, J. Han, S. Kim & H. Gonzalez.
SIAM Intl. Conf. Data Mining (SDM), 2007.
- Neighborhood based detection of anomalies in
high dimensional spatio-temproal sensor datasets.
N. Adam, V. Janeja & V. Atluri.
ACM Symp. on Applied Computing (SAC), pp. 576-583, 2004.
- Outlier Detection for High Dimensional Data,
C. Aggarwal & P. Yu,
SIGMOD, 2001.
- LOF: Identifying Density-Based Local Outliers,
M. Breunig, H. Kriegel, R. Ng & J. Sander,
SIGMOD, pp. 93-104, 2000.
ML and Natural Language Processing
- Grounded Spoken Language Acquisition: Experiments in Word Learning
D. Roy,
IEEE Transactions on Multimedia, 2003 (in press).
- An unsupervised algorithm for segmenting categorical timeseries into episodes
P. Cohen and B. Heeringa and N. Adams,
Proc. IEEE Intl Conf. Data Mining, 2002.
- Learning Words and Syntax for a Visual Description Task
D. Roy,
Computer Speech and Language, 16(3), 2002.
- Learning Visually Grounded Words and Syntax of
Natural Spoken Language
D. Roy,
Evolution of Communication 4(1), p33-56, 2000/01.
- An efficient, probabilistically sound algorithm for segmentation and word discovery, M. Brent.
Machine Learning, 34(1):71-106, 1999.
- Speech segmentation and word discovery: A
computational perspective, M. Brent.
Trends in Cognitive Science, 3:294-301, 1999.
- Similarity-Based Models of Word Cooccurrence
Probabilities,
I. Dagan, L. Lee & F. Pereira,
Machine Learning, 34(1):43-69, 1999.
- A maximum entropy approach to
natural language processing
A. Berger, S. Pietra, and V. Pietra,
Computational Linguistics, 22(1), 1996.
- Good bigrams,
C. Johansson,
In Proceedings of COLING-96,
pages 592--597, 1996.
- Parsing a Natural Language Using Mutual Information Statistics
D. Magerman & M. Marcus,
AAAI,
p984-989, 1990.
ML and Time Series (Temporal Data)
- Estimating the number of segments in time series data using permutation tests,
K. Vasko & H. Toivonen,
ICDM, 2002.
- An Online Algorithm for Segmenting Time Series, E. Keogh, S. Chu, D. Hart, & M. Pazzani.
IEEE Intl. Conf. Data Mining, p289-296, 2001.
- Event Detection from Time Series Data
V. Guralnik & K. Srivastava
KDD, 1999.
- Clustering Time Series with Hidden Markov Models and Dynamic Time Warping, T. Oates, L. Firoiu & P. Cohen.
IJCAI Workshop on Sequence Learning, 1999.
- Minimum Message Length Segmentation,
J. Oliver.
PAKDD, p222-233, 1998.
- Learning to Classify Sensor Data,
S. Manganaris.
IJCAI Workshhop on Machine Learning in Engineering, 1995.
- Learning Time Series for
Intelligent Monitoring
S. Manganaris & D. Fisher.
Third Intl. Symp. on AI, Robotics, and Automation for Space
p71-74, 1994.
Process models
- Discovering ecosystem models from time-series data, George, D., Saito, K., Langley, P., Bay, S., & Arrigo, K, Proceedings of the Sixth Intl. Conf. on Discovery Science.
- Robust induction of process models from time-series data., Langley, P., George, D., Bay, S., & Saito, K. ,
Proceedings of the Twentieth Intl. Conf. on Machine Learning (pp. 432-439), 2003.
Statistics
- Selecting the Right Interestingness Measure for Association Patterns,
P. Tan, V. Kumar & J. Srivastava, Proc of the Eighth ACM SIGKDD
(KDD-2002)
- Zipf, Power-laws, and Pareto - a ranking tutorial,
L. Adamic,
Xerox PARC, 2000.
- Interestingness Measures for Association Patterns,
P. Tan & V. Kumar,
KDD 2000 Workshop on Postprocessing in Machine Learning and Data Mining.
- Efficient Bayesian Parameter Estimation
in Large Discrete Domains, N. Friedman & Y. Singer,
NIPS, 1999.
- An empirical study of smoothing techniques
for language modeling
S. Chen & J. Goodman,
Proceedings of the 34th Meeting of the Association for
Computational Linguistics, pp 310--31, 1996.
TR version: TR-10-98, Computer Science Group, Harvard University, 1998.
- Good-Turing Smoothing Without Tears
W. Gale, 1994.
[W. Gale & G. Sampson, Good-Turing frequency estimation without tears,
Journal of Quantitative Linguistics 2:217-37, 1995]
- What's Wrong with Adding One?,
W. Gale and K. Church,
In N. Oostdijk and P. de Haan (eds.),
Corpus-Based Research into Language: In honour of Jan
Aarts, Rodopi, Amsterdam, pp. 189-200, 1994.
- The zero frequency problem: estimating
the probabilities of novel events in adaptive text compression
I. Witten and T. Bell, CS Tech Report:
1989-347-09, Univ. of Calgary, 1989. [also in IEEE Trans. on
Info. Theory, 37(4):1085-1094, 1991]
Information Theory
Philip Chan, pkc@cs.fit.edu
Last modified: Thu Jun 5 15:31:22 EDT 2008