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Summary

The segmentation and word discovery problem arises because speech does not contain any

reliable acoustic analog of the blank spaces between words of printed English. As a result,

children must segment the utterances they hear in order to discover the sound patterns of

individual words in their language. A number of computational models have been proposed to

explain how children segment speech and discover words, including ten new models in the last

five years. This paper reviews all proposed models and organizes them according to their

fundamental segmentation strategies, their processing characteristics, and the ways in which they

use memory. All proposed models are found to use one of three fundamental strategies: the

utterance-boundary strategy, the predictability strategy, or the word-recognition strategy. Selected

predictions of the models are explained, their performance in computer simulations is

summarized, and behavioral evidence bearing on them is discussed. Finally, ideas about how

these diverse models might be synthesized into one comprehensive model are offered.

Keywords: Language acquisition, computational models, segmentation, statistical models,

machine learning, natural language processing, speech processing 
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We experience speech in our native language as a sequence of discrete words. This can

lead to the impression that speech must contain some acoustic analog of the blank spaces that

appear between printed words in many languages. When listening to an unfamiliar language,

however, we generally hear a continuous stream of speech broken only by the silences at the ends

of utterances. Utterances, the units of speech that are delimited by easily recognized acoustic

boundaries, typically consist of multiple words. This dichotomy between the experiences of

hearing known and unknown languages raises two questions. First, how do speakers with native

mastery of a language effortlessly and unconsciously transform a stimulus consisting of

continuous speech into a percept consisting of a sequence of discrete words? That is, how is

knowledge of a particular language brought to bear on the problem of segmenting speech into

words? Second, how do infants and toddlers segment speech and learn new words despite their

limited knowledge of the ambient language? In particular, how do they overcome the handicap of

their regular encounters with utterances that contain one or more unfamiliar words? 

At a fundamental level, the tasks that adults and young children face are the same — 

adults sometimes encounter and learn novel words, and children often recognize familiar words

within utterances. However, adults are already familiar with a vastly larger proportion of the

words they encounter than children are. As a result, research on adult speech segmentation has

focused on questions of on-line lexical access1,2,3,4,5 and cues that may help to limit the number of

unsuccessful lexical access attempts,6,7 setting aside the issue of novel words. Research on

language learning, on the other hand, has focused primarily on cues to help limit the number of

hypothesized novel words, and is only beginning to address on-line lexical access.8 This article

reviews recent work on speech segmentation from the perspective of language learning, focusing

particularly on computational models.
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A language learner hears utterances that may contain one or more unfamiliar words, each

of which may or may not refer to some observable object, action, or property. For example, let

abcde be an utterance, where each letter stands for a perceptual unit of speech, such as a

phoneme or syllable. There are 15 sub-sequences of abcde: a, b, c, d, e, ab, bc, cd, de, abc, bcd,

cde, abcd, bcde, and abcde itself. One possible learning strategy would be to store all of these in

memory, as candidate words, in the hopes of eventually figuring out a meaning and a syntactic

function for one or more of them. However, this would impose a considerable memory burden.

Further, the problem of matching sounds up with meanings would be enormously complicated by

the presence of so many candidates for the sounds of words. From the computational perspective,

the aim of research in segmentation and word discovery is to identify mechanisms that children

use to reduce these computational burdens by reducing the number of candidate word sounds.  

The segmentation and word discovery problem has received considerable attention dating

back to the work of Roger Brown9 in the 1960's (see also Zelig Harris10). Recent years have seen

a surge of interest in this topic, leading to a number of proposed cues and strategies that children

might use. Among these are three types of phonological cues. First, some languages provide what

Cutler and colleagues have called rhythmic cues.11,12 For example, most stressed syllables in

English are word-initial,7 and adult speakers of English find it more natural to segment connected

speech in such a way that stressed syllables occur at the beginnings of words.13,14 Language

learners following such a strategy might eliminate candidate words containing non-initial

stressed syllables, thereby reducing the number of candidates. Indeed, Jusczyk and colleagues

have shown that 7.5-month-old (but not 10.5-month-old) American infants have diff iculty

recognizing the sound-patterns of words with non-initial stress.15 A second type of cue that

children might use is allophonic variation — the fact that some speech sounds are pronounced
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differently when they occur word-finally as opposed to word-initially.16,17,18 A third type of

phonological cue derives from the phonotactic properties of a language —  which sequences of

phonemes are common in words of the language, which are rare, and which are not permitted at

all . For example, a learner who knew that English does not allow words beginning in two stop

consonants could avoid mis-segmenting /bIgkæt/ (bigcat) into  /bI/ and /gkæt/. There is evidence

that both adults6,19 and infants20 can make use of language-particular phonotactic cues.  While

rhythmic cues have been minor players in computational models of language learning and

allophonic cues have not appeared at all , phonotactic cues in various forms have featured

prominently in several models.21,22,23

Segmentation strategies

With one exception,24 existing computational models of segmentation and word discovery do not

address the interaction between segmentation and the mapping of hypothesized word forms to

their meanings or their syntactic privileges. As a result, the input they take consists entirely of

representations of speech sounds. The term phoneme will be used to describe the fundamental

units of the input representation, since most computer simulations reported in the literature use

phonemic representations. However, many of the models described below could easily be applied

to representations based on other units, such as syllables (see Box 1).

Insert Box 1 about here

All existing models implicitl y impose a constraint against hypothesizing overlapping

words. For example, no model would hypothesize that two words, ab and bc, both occur in a

single instance of the utterance abcde. Most models also forbid embedded words. For example,

they would not hypothesize that two words, ab and abc, both occur in a single instance of the

utterance abcde. (For exceptions, see refs. 24 and 34). In addition to these structural principles,
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all existing computational models of segmentation and word discovery are based on one of three

fundamental strategies:

1. Hypothesize word boundaries after phoneme sequences that are characteristic of the ends

of utterances (utterance-boundary strategy). 

2. Hypothesize word boundaries before phonemes that would not have been predicted on the

basis of the preceding phonemes (predictability strategy).

3. Hypothesize whole words and recognize them when they occur in utterances (word-

recognition strategy).

The remainder of this section discusses each of these strategies in turn.

Computational models relying primarily on the utterance-boundary strategy have been

described by both Aslin et al.22 and Christiansen et al.23 (Table 1). 

Insert Table 1 about here

Both groups implemented this strategy using neural networks. The networks were trained to

predict, among other things, the locations of utterance boundaries in sequences of phonemes

transcribed from spontaneous speech to young children. The networks were interpreted as

predicting a word boundary when the activation on the utterance-boundary unit exceeded its

mean activation. This method is motivated by the notion that the phoneme sequences

immediately preceding utterance boundaries will bear some statistical similarity to those

immediately preceding word boundaries. This notion is plausible because the ends of utterances

are also the ends of words. As a result, phonemes or phoneme sequences that are rare at the ends

of words will also be rare at the ends of utterances. Conversely, sequences that are common at

the ends of words will also be common at the ends of utterances, provided that the words they

occur in can appear at the ends of utterances. However, the fact that /F/ occurs very often at the
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ends of words like the and a does not imply that /F/ occurs frequently at the ends of utterances,

since the words the and a are themselves extremely rare at the ends of utterances. 

The utterance-boundary strategy relies on learning and exploiting certain phonotactic

regularities of the input language — those governing the ends of words. Thus, it is a special case

of the more general class of phonotactically driven strategies. However, no models have yet been

proposed that rely primarily on learning more general phonotactic regularities.

The second segmentation strategy does not rely on utterance boundaries at all . Instead, it

relies on the fact that guessing an unknown phoneme based on adjacent phonemes in the same

word is easier than guessing on the basis of adjacent phonemes in different words. For example,

most occurrences of the phoneme /ð/ are followed by vowels, as in the very frequent words the,

this, that, and them, and this implies logically that only a small percentage are followed by other

phonemes — /m/, for instance. When /m/ does follow /ð/, as in bathe more, its very

surprisingness suggests that it is li kely to be the first phoneme of a new word. This effect forms

the basis for a number of segmentation models. For instance, Saffran and colleagues25 — 

treating syllables rather than phonemes as the fundamental units of input —  have proposed that

children might estimate the probabilit y of each syllable in the language conditioned on its

predecessor as follows:

Pr( | )
freq( )

freq( )
y x

xy

x
≈

This is the same computation that was ill ustrated informally in the /ðm/ example — the

conditional probabilit y of y given x is estimated by the proportion of x’s that have been followed

by y’s in the learner’s experience so far. This conditional probabilit y estimate is commonly called

the transitional probability.  Saffran et al. suggest that children may segment utterances at low

points of the transitional probabilit y between adjacent syllables — that is, when a syllable occurs
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that is surprising given its predecessor.

The predictabilit y strategy has also been implemented using neural networks by Elman26

and Cairns et al.27 (Table 1). In this approach the network is trained to predict the next phoneme.

The network’s prediction for each phoneme is compared to the actual phoneme. The more

surprising the actual phoneme is, in view of the network’s prediction, the more likely it is to be

word-initial.

The word-recognition strategy works by hypothesizing word-like units, storing explicit

representations of them, and attempting to recognize them when they occur in utterances. The

term word-like unit, or simply unit, is used to emphasize the fact that hypothesized units are not

necessarily actual words of the language — the hypothesis could be incorrect. When a unit that is

hypothesized to occur in a particular utterance matches a unit that has previously been

hypothesized and stored it is called a familiar unit; otherwise, it is called a novel unit. The

recognition of a familiar unit in an utterance reduces the number of potential novel units because

of the no-overlap principle. For example, if cde is recognized as an occurrence of a familiar unit

in the utterance abcde then there are only three potential new units: a, b, and ab. This is a

substantial reduction from the 15 possibiliti es when no occurrences of familiar units are

recognized in abcde.

Most recognition based segmentation algorithms 21, 24, 28, 29, 30, 34 have been cast in terms of

choosing a segmentation of the input in such a way as to optimize a set of criteria or, when they

are stated more formally, to optimize an objective function. A simple example of optimization is

fitting a straight line to a set of points in the plane, where the most commonly used objective

function is the sum of squared deviations of the points from the line. The line that minimizes the

sum of squared deviations is taken to the be the line that fits the points best. An example of the
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optimization approach to segmentation and word discovery is the INCDROP model,32,28,36 which

can be characterized qualitatively as follows. Segment each utterance in such a way as to:

1. Minimize the sum of the lengths of all hypothesized novel units in the segmentation.

2. Minimize the number of hypothesized novel units in the segmentation.

3. Maximize the product of relative frequencies of the units in the segmentation. The

relative frequency of a unit is the number of times that unit has occurred so far as a

proportion of the total number of times all units have occurred so far.

Criterion 3 favors segmentations with fewer and hence longer units, all other things being equal.

This is because each relative frequency is less than one, so multiplying more of them together

leads to a smaller product, all other things being equal. However, the criteria balance each other.

For example, analyzing every utterance as a single, long, novel unit would be favored by criterion

3, but it would be disfavored even more strongly by criterion 1. Conversely, analyzing each

utterance as a sequence of short, familiar, one-phoneme words would be favored by criteria 1 and

2, but it would be disfavored even more strongly by criterion 3.21

The INCDROP optimization criteria can be derived rigorously from a probabilistic

generative grammar. The grammar encodes the prior knowledge that sentences are constructed by

selecting words from some finite, but initially unknown, lexicon, and stringing them together.28

The INCDROP criteria also have a natural cognitive interpretation in terms of minimizing the

burden of memorizing new words (by minimizing the number and length of new words) and

minimizing the burden of accessing the memories of familiar words (by minimizing the number

of accesses and maximizing the frequencies of the words to be accessed).

INCDROP makes a number of behavioral predictions, including these: 

1. Utterances that contain no sequences matching stored units are analyzed as a single novel
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unit. This unit is stored for recognition in later utterances.

2. A sequence that matches a stored unit and does not overlap any other sequences that

match stored units will t end to be recognized as an instance of the stored unit, unless that

unit is both very short and very rare. The contiguous sequences that remain after the

recognized unit is extracted are segmented as though they were separate utterances.

(See ref. 32, 36 for additional predictions.) These two predictions can be derived directly from

criteria 1-3 above.31,32 The following utterances, which a mother was recorded saying to her child,

ill ustrate the predictions:

That!…Isthatforthedoggy?

INCDROP predicts that a child who did not yet know any of the words in these utterances would

treat the first utterance, that, as a single novel unit and store it for later recognition.  That would

then be extracted from Isthatforthedoggy. The remaining contiguous strings, is and forthedoggy,

would be segmented as though they were separate utterances. Not recognizing any familiar units

within them, the child would store them as novel units for later recognition. In the case of is, a

very valuable new word would be stored. Although forthedoggy is not a word, its syntactic and

semantic coherence suggest that storing it as a word would do littl e harm to a child’s lexicon.

Under the INCDROP model, learners can make good use of isolated words without

identifying isolated words as such. Instead, they assume that each utterance consists of a single

word unless there is evidence that it contains a familiar unit within it. Furthermore, isolated

words are not essential for bootstrapping segmentation. For example, if a learner with no

knowledge of relevant words heard the utterances getit? Igetit! Ican! canyou? then INCDROP

predicts the following segmentation: getit? I_getit! I_can! can_you? At the cost of mistaking

getit for a single word, the learner is predicted to extract I, can, and you without ever hearing an
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isolated word.

Empirical tests of some of the INCROP predictions, as well as some predictions of the

transitional probabilities model, are discussed below. It seems likely that testable predictions can

be extracted from other segmentations models as well, but to the best of my knowledge no

explicit behavioral predictions of other models have been published.

INCDROP and its predecessor DR Optimization21 are analytic recognition models, meaning

that they start with whole utterances as the default units and analyze them into smaller units as

the evidence warrants. All other proposed word-recognition models are synthetic, meaning that

they start with phonemes as the default units and join them into larger units as the evidence

warrants.24, 29, 30, 33, 34 Typically, synthetic algorithms only consider novel units that can be built up

by combining either two or three familiar units; an utterance that consists of more than three

phonemes but does not contain any other familiar units cannot be analyzed as a single novel unit.

The INCDROP model is incremental, meaning that it always finalizes the segmentation of

an utterance by end of that utterance, without waiting to examine the next utterance. All other

algorithms that implement the word recognition strategy using optimization are batch, meaning

that they can store an unlimited amount of input, segment utterances out of order, and revise

earlier decisions. Because humans segment each utterance as they hear it, batch algorithms are

sometimes viewed as psychologically implausible. However, that is true only if these algorithms

are interpreted as exact descriptions of cognitive models. An alternative interpretation is that

writing about batch algorithms in the context of human segmentation and word discovery

constitutes an implicit promissory note to the effect that there exists a closely related incremental

algorithm. INCDROP fulfills that promise with respect to its predecessor, DR Optimization, which

was implemented as a batch algorithm for optimizing the same criteria.
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While the incremental processing of INCDROP constitutes progress over batch algorithms,

humans segment on-line, meaning that they decide whether there is a word boundary between

two phonemes within a fixed window of time after the phonemes are heard. Further, humans

appear to use a predictive on-line algorithm, meaning that they guess at the identity of the current

word before the end of the word has been heard.1,3,5,8 Thus INCDROP, as a cognitive model, rests

on the expectation that there exists a predictive on-line algorithm that closely resembles the

current incremental implementation in both segmentation accuracy and behavioral predictions.

One proposed model, PARSER,33 is based on the word-recognition strategy but not on

optimization. Starting from the beginning of the input, PARSER repeatedly segments out

(recognizes) the longest section of input that matches a stored unit. This longest-match approach,

which is used instead of choosing the segmentation that maximizes the product of relative

frequencies, makes PARSER nearly on-line. However, it seems likely that this approach will

impair segmentation accuracy when PARSER is applied to natural language input. Nonetheless,

PARSER is interesting because it is the only recognition-based model that was designed around

psychological principles like on-line processing, decay of memory traces, and interference among

similar memory traces. PARSER challenges to modelers starting from mathematical principles to

fulfill the promise of on-line algorithms and to address the limitations of human memory.

No currently proposed model of segmentation and word discovery has been implemented

as a predictive on-line algorithm. However, the algorithms based on the utterance-boundary

strategy and the predictability strategy are conservative on-line, meaning that they are on-line but

do not guess at the identity of the current word while it is still being read in. On the one hand,

these algorithms are a step closer to the predictive on-line behavior of humans than INCDROP, and

that constitutes a significant achievement. On the other hand, predictive on-line segmentation
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requires stored representations of hypothesized words,2,4 so utterance-boundary and predictability

algorithms cannot be made predictive without, in effect, making them recognition algorithms

(though not necessarily optimization algorithms). Recognition algorithms do have stored

representations of hypothesized words and hence they can, in principle, be adapted to do

predictive on-line segmentation.

Memory use in computational models

In the theory of computation, a fundamental distinction is made between bounded

memory systems, which can use only a fixed amount of memory regardless of the input, and

unbounded memory systems, whose use of memory can grow as needed with no fixed limit.

Proposed algorithms based on the utterance-boundary and predictability strategies have bounded

memory, while those based on recognizing hypothesized words use more memory as they

hypothesize more words (Table 1). In human languages the number of distinct words

encountered appears to grow without limit as more input is processed, since new words are

continually being coined, so the word-recognition strategy will use more memory to store the

new words as more input is processed. Of course, a bounded-memory system with a large enough

memory could store all the words that one individual is likely to encounter in his or her lifetime.

Proposed segmentation models also differ in terms of what is represented in memory

(Table 1). All currently proposed bounded-memory algorithms work primarily by representing

sub-lexical units. Algorithms that are based on neural networks store implicit, distributed,

connectionist-style representations, while the rest store explicit statistics about the frequency of

individual phonemes and pairs of phonemes. Recognition-based models represent hypothesized

units explicitly.

Different models also differ in whether their stored representations are stable or subject to



Brent, Segmentation and Word Discovery                                                                                 14

interference and/or decay (Table 1). This is important from the perspective of psychological

plausibilit y, since human memory appears to be subject to interference and decay under certain

conditions. All currently proposed models that use neural networks are subject to interference

when their memory load approaches capacity.  Models based on feed forward networks (e.g., ref.

22) are not subject to decay that depends only on time, but those based on recurrent networks

(e.g., ref. 23, 26, and 27) can experience memory decay with time. The algorithms that store

explicit representations, including the local statistics stored by transitional-probabilit y models

and the lexical representations stored by word-recognition systems, generally use stable memory.

The exception is PARSER,33 a word-recognition model with explicit representations of phoneme-

strings that are subject to both interference and decay calculated according to explicit functions.

The development of new memory models for recognition-based algorithms is a promising

avenue of research. While recognition-based algorithms use an unbounded amount of memory,

reducing the rate at which memory usage grows by introducing forgetting mechanisms might

enhance the psychological plausibilit y of these models.

Implementations and simulations

In principle, any fact about children’s discovery of the sound patterns of words, including

the types of errors they make, is relevant to deciding among alternative segmentation models.

However, very littl e reliable, reproducible data about children’s segmentation errors is available.

But one fact is truly robust: Children eventually succeed at segmenting speech and acquiring a

lexicon. Computer simulations have therefore focused on investigating the degree to which

competing segmentation models can explain this central fact.

Computer simulations using phonemic transcripts of spontaneous, child-directed speech

have been reported for a number of the algorithms described above. In the most extensive
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published comparison to date, I found that MBDP-1, an implementation of the INCDROP model,

yielded the most accurate segmentations and lexicons of the algorithms tested.28 MBDP-1 had an

average segmentation accuracy of about 70%, while two algorithms based on predictabilit y

(transitional probabiliti es and Elman’s algorithm) had average accuracies in the 40%-45% range.

A predictabilit y algorithm based on mutual information (MI in Table 1), which I developed for

comparison purposes, had an average accuracy of about 55%. MBDP-1 was the only algorithm

for which the overall accuracy of the lexicon increased as more input was processed; for all other

algorithms, the percentage of newly hypothesized words that had in fact occurred as words in the

input declined as more input was processed.

Various combinations of cues have also been tested. In one simulation, input containing

stress information was provided to an utterance-boundary segmenter.23 The system learned not

only which phonemes tend to occur at the ends of utterances but whether stressed or unstressed

syllables are more likely at the ends of utterances. The results showed that, under certain

assumptions about the stressing of function words, stress information can yield a statistically

significant increase in the accuracy of an utterance-boundary segmenter, from 37% to 43%.

In another simulation, phonotactic constraints on the consonant clusters that can occur at

English word boundaries were derived by explicitl y memorizing the consonant clusters that occur

at the beginnings and ends of utterances in the input. The results showed that this phonotactic

knowledge boosted the performance of a batch recognition-based algorithm.21

Evidence from human subjects

Investigations involving human subjects have yielded several types of evidence about

how people segment speech and discover the sound patterns of novel words. These investigations

include studies of infants’ perceptual abiliti es and knowledge of the ambient language, studies of
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infants’ and adults’ patterns of inference using stimuli from auditory artificial languages, and

studies of spontaneous speech by caretakers to children. Selected results of each type are

reviewed briefly in this section.

Studies of infant speech perception have yielded a wealth of important results suggesting

that substantial adaptation to the rhythmic, phonotactic, and allophonic properties of the ambient

language occurs between the ages of 6 and 9 months.15 Studies of infants’ speech segmentation

abiliti es using natural language stimuli have also shed light on the complex interplay of pattern

recognition and rhythmic cues, and how this interplay changes during infancy.15 However, these

studies have not been aimed at differentiating among the proposed computational models.

Investigations of particular models have generally relied on auditory artificial languages.

In one such study, Saffran and colleagues constructed a continuous stream of computer-

synthesized nonsense syllables by concatenating, in random order, four three-syllable “words” .

They found that, after two minutes of exposure to this continuous stream, 8-month-old infants

did not listen as long to the “words” from which it was constructed as they did to 3-syllable foils

that had also occurred in the syllable stream but were not words.35 Saffran et al. explained this

result in terms of transitional probabiliti es, although Perruchet and Vintner33 subsequently argued

that it could also be explained by PARSER. Clearly, though, the absence of utterance boundaries

in the stimulus implies that the utterance-boundary strategy cannot be invoked to explain this

result. Similarly, an analytic recognition-based model li ke INCDROP cannot explain this result,

since they bootstrap by treating whole utterances as words.

Saffran et al.’s results suggest that, when confronted with long stretches of speech

containing no familiar words and no utterance boundaries, infants can still discover novel words.

The significance of this finding for language development depends on how often infants are
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confronted with long utterances containing no familiar words and whether such utterances are

used for word discovery. A number of studies have reported the that average length of an

utterance in speech to young children is about 3.5 words. Using very conservative methods, Jeff

Siskind and I estimated the average frequency of isolated words in the speech of 8 mothers to

their infants (ages 9.5-12.5 months) to be about 7%, excluding interjections, onomatopoeia,

social routines, and all words that did not also appear in multiword utterances. Thus, the

language learning environment seems to afford plenty of short, easily remembered utterances that

also occur as sub-sequences of longer utterances — just what would be needed to make an

analytic word-recognition strategy such as INCDROP effective.

Inspired by the work of Saffran et al., Dahan and Brent carried out artificial language

experiments in which stimuli consisting of 2, 3, and 5-syllable utterances were presented to adult

subjects.36 The subjects were exposed to both short (2 or 3 syllable) utterances and long (5

syllable) utterances that contained a short utterance within them. For example, subjects might

hear koshedi and, after several unrelated items, koshedifenu. The results showed that the subjects

tended to treat short utterances as a single unit by default — for example, subjects who had heard

koshedi in isolation remembered koshedi better than they remembered koshe, and conversely for

those who heard koshe in isolation. When a short utterance occurred within a longer utterance it

was segmented out and the remainder was treated as a unit. For example, subjects who heard

koshedi and koshedifenu remembered fenu better than they remembered difenu. These results and

others reported in the paper are consistent with INCDROP. Further, transitional probabiliti es alone

cannot explain the pattern of results (see ref. 36 for details).

The results of the Saffran et al. and the Brent and Dahan studies show two different

behaviors that can be observed, depending on whether the materials consist of short utterances
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with embedding or very long utterances. Although short utterances appear to be a better model of

the language learning environment, both behaviors need to be explained. It would therefore

constitute significant progress if a single model could explain both patterns, and could also

perform as well as INCDROP in simulations on input transcribed from spontaneous speech.

Summary and conclusions

In the study of segmentation and word discovery we face a wealth of good intuitions that are ripe

for integration into a more comprehensive model. Based on the simulations and empirical data

cited above, I believe that a comprehensive model should be based on word recognition. Within a

recognition-based model, both phonotactics (including the utterance-boundary strategy) and

predictabilit y can play a role in evaluating the probabiliti es that particular sound sequences are

novel words of the language being heard, and hence should be stored in memory and recognized

in future utterances. As the lexicon grows and familiar words come to dominate novel words,

recognition will naturally come to dominate phonotactics and predictabilit y in determining

segmentation behavior.

In addition to modeling the information sources used for segmentation and word

discovery, a comprehensive model should segment on-line and predict the completions of

incoming words, consistent with the experimental data on humans. Further, it should attempt to

model the limitations of human memory for speech, to the extent that these are understood.

The tools for constructing such a comprehensive model of segmentation and word

discovery appear to be at hand. Probabilit y, and generative probabilit y models in particular,

provide a universal scale for weighing information provided by sources such as word recognition,

phonotactics, and predictabilit y against one another.  Optimization — the process of evaluating

segmentations in order to find the most probable one — provides a framework within which
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different processing models can paired with different probability models. Separating memory for

hypothesized words from optimization processes that recognize words makes it possible to model

decay and interference independently of information sources and processing considerations. 

Within the framework of probability, optimization, and memory that is separate from processing,

it should be possible to create a single model that is suitable for studies of lexical access, speech

segmentation, and word discovery.

Insert Box 2 about here
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Box 1: Input representations

Computer simulations that take transcripts of spontaneous speech as input have all used

transcription systems based on either atomic phonemes or phonemic features. In a transcription

system based on atomic phonemes the first symbols of the representations of dotty and dirty are

identical, while the first vowels are distinct — they are no more similar to each other than to

consonants. In a representation based on phonemic features, phonemes are related by shared

features that define a similarity metric. For example, vowels are more similar to one another than

to consonants. A third possibilit y is to represent each syllable in the input with an atomic symbol

that does not encode any information about its relation to other syllables. For example, the first

symbols of the representations of dotty and dirty would stand for distinct syllables (pronounced

/da/ and /dG/), which would be no closer to one another than to any other syllable.

Simulations of models based on the utterance-boundary strategy have used phonemic

features because a featural representation makes it easier to learn generalizations about which

sequences of phonemes tend to occur before utterance boundaries. (The utterance boundary

strategy, discussed in the main text, is to hypothesize word boundaries after phoneme sequences

that are characteristic of the ends of utterances.) The success of this strategy is expected to be

sensitive to the input representation, so these models make some theoretical commitment to an

input representation based on a featural decomposition of either phonemes or syllables. Featural

representations may provide some robustness against the natural variability in the pronunciation

of a word, since alternative pronunciations are likely to be nearer to one another by the feature

metric than by the atomic phoneme metric. Simulations based on the predictability strategy and

the word-recognition strategy have used input transcribed into atomic phonemes. However, these

strategies do not imply any theoretical commitment about the input representation, since they
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treat the input as a string of arbitrary symbols.

There is substantial evidence that the atomic syllable is a salient perceptual unit for 

infants,a,b while evidence that the phoneme is also a salient unit for infants is, at present, lacking.c 

This would seem to suggest that simulations should use a syllabic representation. However, there

are complications. The experiments with infants have been done primarily with consonant-vowel

(CV) syllables, the canonical syllable type that occurs in all l anguages. In languages with more

complex syllables, including English, words are typically resyllabified in context in such a way

that the syllables can cross word boundaries. For example, the phrase teak rail in fluent speech

arguably consists of the two syllables /ti/ (tea) and /krel/ (krail). A listener who hears the atomic

syllables /ti/ and /krel/, but who represents the corresponding words in her lexicon using the

atomic syllables /tik/ (teak) and /rel/ (rail), would fail to retrieve the correct lexical entries. If a

word-recognition algorithm is to have any chance of succeeding on syllabic input, the

syllabification must be consistent with word boundaries. But such a syllabification seems to

encode a non-trivial portion of the word-boundary information that segmentation models are

designed to uncover. Further, most of the experiments that failed to find evidence of phonemic

representation have been done with infants that are much too young to learn words, and there is

some evidence that finer-grained representations begin to develop even by six months.d
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Box 2: Outstanding questions

• How can rhythmic and allophonic cues best be characterized and incorporated in

segmentation models?

• How can the set of potential meanings that children entertain for each potential novel

word best be characterized? How can the information provided by these sets of candidate

meanings best be incorporated in segmentation models?

• How can the limitations of human memory for speech, both long term and working

memory, best be characterized and incorporated in segmentation models?

• Is word discovery primarily analytic, starting with utterances as the default words, or

synthetic, starting with small perceptual units as the default words?

• How can the utterance-boundary and predictabilit y strategies best be used to assess the

degree to which hypothesized novel words are plausible words of the language being

learned?

• How can the word-recognition strategy be implemented as a predictive on-line algorithm,

thereby making it more psychologically plausible?
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Table 1: Characteristics of the computational models reviewed here. Dotted lines separate groups

of models that do not differ in any of the characteristics li sted here. For models that are stated

abstractly the “Processing” characteristic is determined by the best implementation to date (e.g.,

the MBDP-1 implementation of INCDROP) which is described in one of the papers cited for the

model. The notation “ trees” in the “Memory Content” column indicates models that allow

embedded word-like units and use parse trees rather than strings to represent units.

Model Principle Processing Memory

Growth Content Stabilit y

Aslin22 utt. boundary on-line bounded implicit statistics interference

CAS23 utt. boundary on-line bounded implicit statistics interference,

decay

Elman26 predictabilit y on-line bounded implicit statistics interference,

decay

Cairns27 predictabilit y on-line bounded implicit statistics interference,

decay

T.P.25,28 predictabilit y on-line bounded explicit statistics stable

M.I.28 predictabilit y on-line bounded explicit statistics stable

PARSER33 recognition on-line,

synthetic

unbounded strings, strengths decay,

interference

INCDROP28 recognition incremental,

analytic

unbounded strings, frequencies stable

DR Opt.21 recognition batch, analytic unbounded strings, frequencies stable

Olivier29 recognition batch, synthetic unbounded strings, frequencies stable

Redlich30 recognition batch, synthetic unbounded strings, frequencies stable

de Marcken24 recognition batch, synthetic unbounded trees, frequencies stable

MK10H34 recognition batch, synthetic unbounded trees, frequencies stable


