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Summary
The segmentation and word discovery problem arises because speech does not contain any
reliable acoustic analog of the blank spaces between words of printed English. Asaresult,
children must segment the utterances they hear in order to discover the sound patterns of
individual words in their language. A number of computational models have been proposed to
explain how children segment speech and discover words, including ten new modelsin the last
five years. This paper reviews all proposed models and organizes them according to their
fundamental segmentation strategies, their processing characteristics, and the ways in which they
use memory. All proposed models are found to use one of three fundamental strategies: the
utterance-boundary strategy, the predictability strategy, or the word-recognition strategy. Selected
predictions of the models are explained, their performance in computer ssmulationsis
summarized, and behavioral evidence bearing on them is discussed. Finally, ideas about how

these diverse models might be synthesized into one comprehensive model are offered.

Keywords: Language acquisition, computational models, segmentation, statistical models,

machine learning, natural language processing, speech processing
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We experience speed in ou native language & a sequenceof discrete words. This can
lead to the impresson that speed must contain some a®ustic analog of the blank spaces that
appea between printed words in many languages. When li stening to an urfamiliar language,
however, we generally hea a continuows gream of speed broken orly by the silences at the ends
of utterances. Utterances, the units of speed that are delimited by easily recognized amustic
boundiries, typicaly consist of multi ple words. This dichatomy between the experiences of
heaing known and unknavn languages raises two questions. First, how do spegers with native
mastery of alanguage dfortlesdy and urconsciously transform a stimulus consisting of
continuows peed into a percept consisting of a sequence of discrete words? That is, how is
knowledge of a particular language brought to bea onthe problem of segmenting speed into
words? Seoond, hav doinfants and todders ssgment speed and learn new words despite their
limited knowledge of the anbient language? In particular, hov do they overcome the handicgp of
their regular encournters with uterances that contain ore or more unfamili ar words?

At afundamental level, the tasks that adults and young children face ae the same —
adults smetimes encourter and lean nowel words, and children often reaognize familiar words
within uterances. However, adults are dready familiar with avastly larger propation d the
words they encourter than children are. As aresult, reseach onadult speet segmentation hes
focused on questions of on-line lexicd access***° and cues that may help to limit the number of
unsuccesdul lexicd accessattempts,®’ setting aside the isaue of novel words. Research on
language leaning, onthe other hand, has focused primarily on cues to help limit the number of
hypothesized novel words, andis only beginning to addresson-line lexicd access® This article
reviews recent work on speet segmentation from the perspedive of language leaning, focusing

particularly on computational models.
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A language leaner heas utterances that may contain ore or more unfamiliar words, ead
of which may or may not refer to some observable objed, adion, a property. For example, let
abcde be an utterance, where ead letter stands for a perceptual unit of speed, such asa
phoreme or syllable. There ae 15 sub-sequences of abcde: a, b, ¢, d, e, ab, bc, cd, de, abc, bed,
cde, abcd, bcde, and abcede itself. One possble leaning strategy would be to store dl of thesein
memory, as candidate words, in the hopes of eventuall y figuring out a meaning and a syntadic
functionfor one or more of them. However, thiswould impose a ©nsiderable memory burden.
Further, the problem of matching sounds up with meanings would be enormously compli cated by
the presence of so many candidates for the sounds of words. From the computational perspedive,
the am of research in segmentation and word discovery is to identify medianisms that chil dren
use to reducethese mmputational burdens by reducing the number of candidate word sounds.

The segmentation and word dscovery problem has receved considerable dtention dating
bad to the work of Roger Brown?® in the 1960s (see &so Zdlig Harris'%). Recant yeas have seen
asurge of interest in thistopic, lealing to a number of propcsed cues and strategies that chil dren
might use. Among these ae threetypes of phondogicd cues. First, some languages provide what
Cutler and coll eagues have cdl ed rhythmic cues.***2 For example, most stressed syllablesin
English are word-initial,” and adult spekers of English find it more natural to segment conreded
speed in such away that stressed syll ables occur at the beginnings of words.**** Language
leaners following such a strategy might eliminate candidate words containing norinitial
stressed syll ables, thereby reducing the number of candidates. Indeed, Jusczyk and coll eagues
have shown that 7.5-month-old (but nat 10.5month-old) American infants have difficulty
reaognizing the soundpatterns of words with noninitial stress*> A secondtype of cue that

children might use is allophonic variation — the fad that some speed sounds are pronourced
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diff erently when they occur word-finally as oppased to word-initi all y.*"*8 A third type of
phondogicd cue derives from the phondadic properties of alanguage — which sequences of
phoremes are ommonin words of the language, which are rare, and which are not permitted at
all. For example, aleaner who krew that English dces not al ow words beginning in two stop
consonants could avoid mis-segmenting /bigkad/ (bigcat) into /bi/ and/gkad/. Thereis evidence
that both adults®*® and infants®® can make use of language-particular phondadic cues. While
rhythmic cues have been minor playersin computational models of language learning and
allophonc cues have not appeaed at al, phondadic auesin various forms have feaured
prominently in several models.*?>%

Segmentation strategies
With ore exception?* existing computational models of segmentation and word discovery do nd
addressthe interadion between segmentation and the mapping of hypothesized word formsto
their meanings or their syntadic privil eges. As aresult, the inpu they take consists entirely of
representations of speed sounds. The term phoneme will be used to describe the fundamental
units of the inpu representation, sincemost computer simulations reported in the literature use
phoremic representations. However, many of the models described below could easily be gplied
to representations based on dher units, such as g/l ables (seeBox 1).

Insert Box 1 about here

All existing modelsimplicitly impaose a onstraint against hypothesizing overlapping

words. For example, nomodel would hypathesize that two words, ab and bc, bath occur in a
single instance of the utterance abcde. Most models also forbid embedded words. For example,
they would na hypothesize that two words, ab and abc, bah occur in asingle instance of the

utterance abcde. (For exceptions, seerefs. 24and 34. In addition to these structural principles,
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all existing computational models of segmentation and word discovery are based on one of three
fundamental strategies:
1 Hypothesize word boundaries after phoneme sequences that are characteristic of the ends
of utterances (utterance-boundary strategy).
2. Hypothesize word boundaries before phonemes that would not have been predicted on the
basis of the preceding phonemes (predictability strategy).
3. Hypothesi ze whole words and recognize them when they occur in utterances (word-
recognition strategy).
The remainder of this section discusses each of these strategiesin turn.
Computational models relying primarily on the utterance-boundary strategy have been
described by both Adlin et al.?? and Christiansen et a. (Table 1).
Insert Table 1 about here
Both groups implemented this strategy using neural networks. The networks were trained to
predict, among other things, the locations of utterance boundaries in sequences of phonemes
transcribed from spontaneous speech to young children. The networks were interpreted as
predicting aword boundary when the activation on the utterance-boundary unit exceeded its
mean activation. This method is motivated by the notion that the phoneme sequences
immediately preceding utterance boundaries will bear some statistical similarity to those
immediately preceding word boundaries. This notion is plausible because the ends of utterances
are also the ends of words. As aresult, phonemes or phoneme sequences that are rare at the ends
of wordswill also be rare at the ends of utterances. Conversely, sequences that are common at
the ends of words will also be common at the ends of utterances, provided that the words they

occur in can appear at the ends of utterances. However, the fact that /e/ occurs very often at the
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ends of words like the and a does not imply that /a/ occurs frequently at the ends of utterances,
sincethe words the and a are themselves extremely rare & the ends of utterances.

The utterance-boundiry strategy relies on learning and exploiting certain phondadic
regulariti es of the inpu language — thase governing the ends of words. Thus, it isa spedal case
of the more general classof phondadicdly driven strategies. However, nomodels have yet been
propased that rely primarily onleaning more general phondadic regul arities.

The second segmentation strategy does naot rely on uteranceboundxries at al. Instea, it
relies onthe fad that guessng an unknavn phoreme based onadjacent phoremes in the same
word is easier than guessng on the basis of adjacent phoremesin dff erent words. For example,
most ocaurrences of the phoreme /d/ are foll owed by vowels, asin the very frequent words the,
this, that, and them, and thisimplieslogicdly that only a small percentage ae followed by other
phoremes — /m/, for instance When /m/ does follow /d/, as in bathe more, its very
surprisingness siggests that it islikely to be the first phoreme of anew word. This effed forms
the basis for anumber of segmentation models. For instance, Saffran and coll eagues®® —
treding syll ables rather than phoremes as the fundamental units of input — have proposed that
chil dren might estimate the probability of ead syllable in the language condtioned onits

predecessor as foll ows:

fregq(xy)
Pr(y[x) = ———=

freq(x)
Thisisthe same mwmputation that wasiill ustrated informally in the /dm/ example — the
condtional probability of y given x is estimated by the propation d X' s that have been foll owed
by y'sinthe leaner’s experience so far. This condtiona probability estimate is commonly caled
the transitional probability. Saffran et al. suggest that chil dren may segment utterances at low

points of the transitional probability between adjacent syll ables — that is, when a syllable occurs
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that is surprising gven its predecessor.

The predictabilit y strategy has also been implemented using neural networks by Elman?®
and Cairns et al.?” (Table 1). In this approach the network is trained to predict the next phoreme.
The network’s predictionfor ead phoreme is compared to the acua phoreme. The more
surprising the adual phoremeis, in view of the network’s prediction, the more likely it isto be
word-initial.

The word-reaogniti on strategy works by hypaothesizing word-li ke units, storing explicit
representations of them, and attempting to recognize them when they occur in utterances. The
term word-like unit, or smply unit, is used to emphasize the fad that hypothesized unts are not
necessarily adual words of the language — the hypothesis could be incorred. When aunit that is
hypothesized to occur in a particular utterance matches a unit that has previously been
hypothesized and stored it is cdled afamiliar unit; otherwise, it is cdled anovel unit. The
recognition d afamiliar unit in an uterance reduces the number of potential novel units because
of the no-overlap principle. For example, if cdeisreaognized as an occurrence of afamiliar unit
in the utterance abcde then there ae only threepatential new units: a, b, and ab. Thisisa
substantial reduction from the 15 passhiliti es when no acurrences of familiar units are
recognized in abcde.

Most recognition kesed segmentation algorithms 2 24282930 34 haye been cast in terms of
choasing a segmentation d the inpu in such away as to optimize a set of criteria or, when they
are stated more formally, to optimize an objective function. A simple example of optimizationis
fitting astraight line to a set of points in the plane, where the most commonly used oljedive
functionisthe sum of squared deviations of the points from the line. The line that minimizes the

sum of squared deviationsis taken to the be the line that fits the points best. An example of the
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optimization approach to segmentation and word discovery is the INCDROP model,*2%%3 which

can be characterized qualitatively as follows. Segment each utterance in such away asto:

1. Minimize the sum of the lengths of al hypothesized novel units in the segmentation.

2. Minimize the number of hypothesized novel unitsin the segmentation.

3. Maximize the product of relative frequencies of the unitsin the segmentation. The
relative frequency of a unit isthe number of times that unit has occurred so far asa
proportion of the total number of times all units have occurred so far.

Criterion 3 favors segmentations with fewer and hence longer units, al other things being equal.

Thisis because each relative frequency is less than one, so multiplying more of them together

leads to a smaller product, all other things being equal. However, the criteria balance each other.

For example, analyzing every utterance as asingle, long, novel unit would be favored by criterion

3, but it would be disfavored even more strongly by criterion 1. Conversely, analyzing each

utterance as a sequence of short, familiar, one-phoneme words would be favored by criterial and

2, but it would be disfavored even more strongly by criterion 3.#

The INCDROP optimization criteria can be derived rigorously from a probabilistic
generative grammar. The grammar encodes the prior knowledge that sentences are constructed by
selecting words from some finite, but initially unknown, lexicon, and stringing them together.?®
The INCDROP criteria also have anatural cognitive interpretation in terms of minimizing the
burden of memorizing new words (by minimizing the number and length of new words) and
minimizing the burden of accessing the memories of familiar words (by minimizing the number
of accesses and maximizing the frequencies of the words to be accessed).

INCDROP makes a number of behavioral predictions, including these:

1 Utterances that contain no sequences matching stored units are analyzed as a single novel
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unit. Thisunit is gored for recognitionin later utterances.

2. A sequencethat matches a stored unt and daes not overlap any other sequences that
match stored untswill tendto be recognized as an instance of the stored unt, unessthat
unit is both very short and very rare. The mntiguous squences that remain after the
recognized unt is extraded are segmented as though they were separate utterances.

(Seeref. 32, 36for additional predictions.) These two predictions can be derived diredly from

criteria 1-3 above.3>*? The foll owing utterances, which a mother was recorded saying to her child,

ill ustrate the predictions:

That!...Isthatforthedoggy?

INCDROP predicts that a child who dd na yet know any of the words in these utterances would

trea the first utterance, that, as asingle novel unit and storeit for later reaognition. That would

then be extraded from Isthatforthedoggy. The remaining contiguous grings, is and forthedoggy,
would be segmented as though they were separate utterances. Not recognizing any familiar units

within them, the cnild would store them as novel unitsfor later recognition. In the cae of is, a

very valuable new word would be stored. Althowgh forthedoggy is nat aword, its /ntadic and

semantic coherence suggest that storing it as aword would dolittl e harm to a dhild’ s lexicon.
Under the INCDROP model, leaners can make good se of isolated words withou
identifying isolated words as such. Instead, they assume that eat utterance ®nsists of asingle
word urlessthereis evidencethat it contains afamiliar unit within it. Furthermore, isolated
words are not essential for bodstrapping segmentation. For example, if aleaner with no
knowledge of relevant words head the utterances getit? Igetit! Ican! canyou? then INCDROP
predicts the foll owing segmentation: getit? |_getit! |_can! can_you? At the ast of mistaking

getit for asingle word, the leaner is predicted to extrad |, can, and you withou ever heaing an
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isolated word.

Empirical tests of some of the INCROP predictions, as well as some predictions of the
transitional probabilities model, are discussed below. It seems likely that testable predictions can
be extracted from other segmentations models as well, but to the best of my knowledge no
explicit behaviora predictions of other models have been published.

INCDROP and its predecessor DR Optimization® are analytic recognition models, meaning
that they start with whole utterances as the default units and analyze them into smaller units as
the evidence warrants. All other proposed word-recognition models are synthetic, meaning that
they start with phonemes as the default units and join them into larger units as the evidence
warrants,? 23333 Typically, synthetic algorithms only consider novel units that can be built up
by combining either two or three familiar units; an utterance that consists of more than three
phonemes but does not contain any other familiar units cannot be analyzed as a single novel unit.

The INCDROP model isincremental, meaning that it always finalizes the segmentation of
an utterance by end of that utterance, without waiting to examine the next utterance. All other
algorithms that implement the word recognition strategy using optimization are batch, meaning
that they can store an unlimited amount of input, segment utterances out of order, and revise
earlier decisions. Because humans segment each utterance as they hear it, batch algorithms are
sometimes viewed as psychologically implausible. However, that is true only if these algorithms
are interpreted as exact descriptions of cognitive models. An alternative interpretation is that
writing about batch algorithmsin the context of human segmentation and word discovery
constitutes an implicit promissory note to the effect that there exists a closely related incremental
algorithm. INCDROP fulfills that promise with respect to its predecessor, DR Optimization, which

was implemented as a batch algorithm for optimizing the same criteria
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While the incremental processing of INCDROP constitutes progress over batch agorithms,
humans segment on-line, meaning that they decide whether there is a word boundary between
two phonemes within afixed window of time after the phonemes are heard. Further, humans
appear to use a predictive on-line algorithm, meaning that they guess at the identity of the current
word before the end of the word has been heard.*3*8 Thus INCDROP, as a cognitive model, rests
on the expectation that there exists a predictive on-line algorithm that closely resembles the
current incremental implementation in both segmentation accuracy and behavioral predictions.

One proposed model, PARSER,® is based on the word-recognition strategy but not on
optimization. Starting from the beginning of the input, PARSER repeatedly segments out
(recognizes) the longest section of input that matches a stored unit. This longest-match approach,
which is used instead of choosing the segmentation that maximizes the product of relative
frequencies, makes PARSER nearly on-line. However, it seems likely that this approach will
impair segmentation accuracy when PARSER is applied to natural language input. Nonethel ess,
PARSER isinteresting because it is the only recognition-based model that was designed around
psychological principles like on-line processing, decay of memory traces, and interference among
similar memory traces. PARSER challenges to model ers starting from mathematical principles to
fulfill the promise of on-line algorithms and to address the limitations of human memory.

No currently proposed model of segmentation and word discovery has been implemented
as a predictive on-line algorithm. However, the algorithms based on the utterance-boundary
strategy and the predictability strategy are conservative on-line, meaning that they are on-line but
do not guess at the identity of the current word whileit is still being read in. On the one hand,
these algorithms are a step closer to the predictive on-line behavior of humans than INCDROP, and

that constitutes a significant achievement. On the other hand, predictive on-line segmentation
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requires stored representations of hypothesized words,?* so utterance-boundary and predictability
algorithms cannot be made predictive without, in effect, making them recognition algorithms
(though not necessarily optimization algorithms). Recognition agorithms do have stored
representations of hypothesized words and hence they can, in principle, be adapted to do
predictive on-line segmentation.
Memory usein computational models

In the theory of computation, afundamental distinction is made between bounded
memory systems, which can use only afixed amount of memory regardless of the input, and
unbounded memory systems, whose use of memory can grow as needed with no fixed limit.
Proposed algorithms based on the utterance-boundary and predictability strategies have bounded
memory, while those based on recognizing hypothesized words use more memory as they
hypothesize more words (Table 1). In human languages the number of distinct words
encountered appears to grow without limit as more input is processed, since new words are
continually being coined, so the word-recognition strategy will use more memory to store the
new words as more input is processed. Of course, a bounded-memory system with alarge enough
memory could store all the words that one individua is likely to encounter in his or her lifetime.

Proposed segmentation models also differ in terms of what is represented in memory
(Table1). All currently proposed bounded-memory a gorithms work primarily by representing
sub-lexical units. Algorithmsthat are based on neural networks store implicit, distributed,
connectionist-style representations, while the rest store explicit statistics about the frequency of
individual phonemes and pairs of phonemes. Recognition-based model s represent hypothesized
units explicitly.

Different models also differ in whether their stored representations are stable or subject to
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interference and/or decay (Table 1). Thisisimportant from the perspedive of psychologicd
plausibility, since human memory appeas to be subjed to interference and decay under certain
conditions. All currently proposed models that use neural networks are subjed to interference
when their memory load approacdhes cgpadty. Models based onfeeal forward networks (e.g., ref.
22) are not subjed to decgy that depends only ontime, but those based onreaurrent networks
(e.g., ref. 23, 26,and 27 can experience memory decg with time. The dgorithms that store
explicit representations, including the locd statistics gored by transiti onal-probability models
and the lexicd representations gored by word-reaogniti on systems, generall y use stable memory.
The exceptionis PARSER,*® aword-recognition model with explicit representations of phoreme-
strings that are subjed to bah interference and decay cdculated acrding to explicit functions.

The development of new memory models for reaogniti on-based algorithmsis a promising
avenue of research. Whil e recogniti on-based algorithms use an unbounéd amourt of memory,
reducing the rate & which memory usage grows by introducing forgetting mecanisms might
enhancethe psychadogicd plausibility of these models.

I mplementations and simulations

In principle, any fad abou chil dren’s discovery of the sound patterns of words, including
the types of errors they make, isrelevant to dedding among aternative segmentation models.
However, very littl e reliable, reproducible data out children’s ssgmentation errorsis avail able.
But onefad istruly robust: Children eventually succeeal at segmenting speed and aajuiring a
lexicon. Computer simulations have therefore focused oninvestigating the degreeto which
competing segmentation models can explain this central fad.

Computer simulations using phoremic transcripts of sportaneous, child-direded speed

have been reported for anumber of the dgorithms described abowve. In the most extensive



Brent, Segmentation and Word Discovery

pubished comparisonto date, | foundthat MBDP-1, an implementation d the INCDROP mode!,
yielded the most acarate segmentations and lexicons of the dgorithms tested. 2 MBDP-1 had an
average segmentation acauracy of abou 70%, whil e two algorithms based on pedictability
(transitional probabiliti es and Elman’s algorithm) had average acaradesin the 40%-45% range.
A predictability algorithm based onmutual information (MI in Table 1), which | developed for
comparison puposes, had an average acaracy of abou 55%. MBDP-1 was the only algorithm
for which the overall acaracy of the lexiconincreased as more inpu was processd; for all other
algorithms, the percentage of newly hypothesized words that had in fad occurred as words in the
inpu dedined as more inpu was processed.

Various combinations of cues have dso been tested. In ore smulation, input containing
stressinformation was provided to an uterance-boundiry segmenter.?® The system learned na
only which phoremestendto occur at the ends of utterances but whether stressed or unstressed
gyllables are more likely at the ends of utterances. The results showed that, uncer certain
asumptions abou the stressng of function words, stressinformation can yield a statisticaly
significant increase in the acarracy of an uterance-boundiry segmenter, from 37% to 43%.

In ancther simulation, phontadic constraints onthe @nsonant clusters that can occur at
English word boundries were derived by expli citly memorizing the consonant clusters that occur
at the beginnings and ends of utterancesin the input. The results showed that this phondadic
knowledge boosted the performance of a batch recogniti on-based a gorithm.?*

Evidence from human subjects

Investigations invalving human subjeds have yielded several types of evidence dou

how people segment speed and dscover the sound @tterns of novel words. These investigations

include studies of infants' perceptual abiliti es and knavledge of the anbient language, studies of



Brent, Segmentation and Word Discovery 16

infants’ and adults' patterns of inference using stimuli from auditory artificial languages, and
studies of sportaneous peedt by caretakersto children. Seleded results of ead type ae
reviewed lriefly in this dion.

Studies of infant speed perception have yielded awedth of important results siggesting
that substantial adaptation to the rhythmic, phondadic, and all ophonc properties of the anbient
language occurs between the ages of 6 and 9months.™ Studies of infants' speed segmentation
abiliti es using natural language stimuli have dso shed light onthe mmplex interplay of pattern
reaognition and rhythmic aues, and haw this interplay changes during infancy.* However, these
studies have not been aimed at diff erentiating among the proposed computational models.

Investigations of particular models have generaly relied onauditory artificial |anguages.
In ore such study, Saffran and coll eagues constructed a wntinuows grean of computer-
synthesized norsense syll ables by concatenating, in randam order, four three-syllable “words”.
They foundthat, after two minutes of expasure to this continuows grean, 8-month-old infants
did na listen aslong to the “words’ from which it was constructed as they did to 3-syll able foil s
that had also occurred in the syll able stream but were not words.*® Saffran et al. explained this
result in terms of transitional probabiliti es, altthough Perruchet and Vintner® subsequently argued
that it could also be explained by PARSER. Clealy, though, the dsence of utterance boundries
in the stimulus implies that the utterance-boundxry strategy canna be invoked to explain this
result. Similarly, an analytic recognition-based model li ke INCDROP canna explain this result,
sincethey bodstrap by treaing whole utterances as words.

Saffran et al.’ s results suggest that, when confronted with long stretches of speet
containing no familiar words and no uterance boundxries, infants can still discover novel words.

The significanceof thisfinding for language development depends on hav often infants are
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confronted with long utterances containing no famili ar words and whether such uterances are
used for word discovery. A number of studies have reported the that average length of an
utterancein speed to yourg children is abou 3.5words. Using very conservative methods, Jeff
Siskind and | estimated the average frequency of isolated words in the speed of 8 mothersto
their infants (ages 9.5-12.5months) to be &ou 7%, excluding interjedions, onanatopoeia,
socia routines, and all words that did na also appea in multiword uterances. Thus, the
language leaning environment seemsto afford plenty of short, easily remembered uterances that
also ocaur as ub-sequences of longer utterances — just what would be needed to make an
analytic word-reaogniti on strategy such as INCDROP effedive.

Inspired by the work of Saffran et a., Dahan and Brent carried ou artificial language
experiments in which stimuli consisting of 2, 3,and 5syllable utterances were presented to adult
subjeds.*® The subjeds were exposed to bah short (2 or 3 syllable) utterances and long (5
gyllable) utterances that contained a short utterance within them. For example, subjeds might
hea koshedi and, after severa unrelated items, koshedifenu. The results showed that the subjeds
tended to tred short utterances as a single unit by default — for example, subjeds who hed head
koshedi in isolation remembered koshedi better than they remembered koshe, and conversely for
those who head koshe in isolation. When a short utterance occurred within alonger utteranceit
was gmented out and the remainder was treaed as a unit. For example, subjeds who head
koshedi and koshedifenu remembered fenu better than they remembered difenu. These results and
others reported in the paper are ansistent with INCDROP. Further, transitional probabiliti es alone
canna explain the pattern of results (seeref. 36for detail s).

The results of the Saffran et al. and the Brent and Dahan studies $how two dff erent

behaviors that can be observed, depending onwhether the materials consist of short utterances
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with embedding or very long utterances. Although short utterances appea to be abetter model of
the language leaning environment, bah behaviors need to be explained. It would therefore
constitute significant progressif asingle model could explain bah petterns, and could also
perform aswell as INCDROP in simulations oninpu transcribed from sportaneous eed.
Summary and conclusions
In the study of segmentation and word dscovery we face avedth of goodintuitions that are ripe
for integration into a more comprehensive model. Based onthe simulations and empiricd data
cited abowe, | believe that a comprehensive model shoud be based onword reaognition. Within a
recognition-based model, bath phondadics (including the utterance-boundxry strategy) and
predictability can play arolein evaluating the probabiliti es that particular soundsequences are
novel words of the language being head, and hence shoud be stored in memory and recognized
in future utterances. As the lexicon grows and familiar words come to daminate novel words,
recognition will naturally cometo daminate phondadics and predictability in determining
segmentation behavior.

In addition to modeling the information sources used for segmentation and word
discovery, a mmprehensive model shoud segment on-line and predict the completions of
incoming words, consistent with the experimental data on humans. Further, it shoud attempt to
model the limitations of human memory for speed, to the extent that these ae understood.

Thetodl s for constructing such a mmprehensive model of segmentation and word
discovery appea to be & hand. Probability, and generative probability modelsin particular,
provide auniversal scde for weighing information provided by sources such as word recognition,
phondadics, and predictability against one another. Optimization —the processof evaluating

segmentationsin order to find the most probable one — provides aframework within which
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different processing models can paired with different probability models. Separating memory for
hypothesized words from optimization processes that recognize words makes it possible to model
decay and interference independently of information sources and processing considerations.
Within the framework of probability, optimization, and memory that is separate from processing,
it should be possible to create a single model that is suitable for studies of lexical access, speech
segmentation, and word discovery.

Insert Box 2 about here
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Box 1: Input representations
Computer simulations that take transcripts of sportaneous peed asinpu have dl used
transcription systems based oneither atomic phoremes or phoremic feaures. In atranscription
system based onatomic phoremes the first symbad's of the representations of dotty and dirty are
identicd, whil e the first vowels are distinct — they are no more similar to ead ather than to
consonants. In arepresentation based on phoemic feaures, phoremes are related by shared
fedures that define asimil arity metric. For example, vowels are more similar to ore anather than
to consonants. A third passhility isto represent ead syllable in the inpu with an atomic symbal
that does not encode any information abou itsrelationto ather syll ables. For example, the first
symbals of the representations of dotty and dirty would stand for distinct syll ables (pronourced
/dal and /de+/), which would be no closer to one another than to any other syllable.

Simulations of models based on the utterance-boundary strategy have used phonemic
features because a featural representation makes it easier to learn generalizations about which
sequences of phonemes tend to occur before utterance boundaries. (The utterance boundary
strategy, discussed in the main text, isto hypothesize word boundaries after phoneme sequences
that are characteristic of the ends of utterances.) The success of this strategy is expected to be
sensitive to the input representation, so these models make some theoretical commitment to an
input representation based on afeatural decomposition of either phonemes or syllables. Featural
representations may provide some robustness against the natural variability in the pronunciation
of aword, since aternative pronunciations are likely to be nearer to one another by the feature
metric than by the atomic phoneme metric. Simulations based on the predictability strategy and
the word-recognition strategy have used input transcribed into atomic phonemes. However, these

strategies do not imply any theoretical commitment about the input representation, since they
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trea theinpu as astring of arbitrary symbals.

Thereis substantial evidencethat the aomic syllable is a salient perceptual unit for
infants,®® while evidencethat the phoremeis also asdient unit for infants s, at present, ladking.°
Thiswould sean to suggest that simulations shoud use asyll abic representation. However, there
are omplicaions. The experiments with infants have been dore primarily with consonant-vowel
(CV) gyllables, the canonicd syll able type that occursin all |anguages. In languages with more
complex syllables, including English, words are typicdly resyll abified in context in such away
that the syllables can crossword boundries. For example, the phrase teak rail in fluent speet
arguably consists of the two syll ables /ti/ (tea) and /krel/ (krail). A listener who heasthe aomic
syllables /ti/ and /krel/, but who represents the crrespondng wordsin her lexicon wsing the
atomic syll ables /tik/ (teak) and /rel/ (rail), would fail to retrieve the mrred lexicd entries. If a
word-reaognition agorithm isto have aty chance of succeeling on syll abic inpu, the
gyll abification must be mnsistent with word boundries. But such a syll abification seans to
encode anontrivia portion d the word-boundary information that segmentation models are
designed to urcover. Further, most of the experiments that fail ed to find evidence of phoremic
representation have been dore with infants that are much too young to lean words, and thereis
some evidencethat finer-grained representations begin to develop even by six months.
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Box 2: Outstanding questions
How can rhythmic and all ophonc aues best be charaderized and incorporated in
segmentation models?
How can the set of patential meanings that chil dren entertain for eat pdential novel
word best be haraderized? How can the information provided by these sets of candidate
meanings best be incorporated in segmentation models?
How can the limitations of human memory for speed, bah long term and working
memory, best be charaderized and incorporated in segmentation models?
Isword discovery primarily analytic, starting with utterances as the default words, or
synthetic, starting with small perceptual units as the default words?
How can the utterance-boundiry and predictabilit y strategies best be used to asessthe
degreeto which hypathesized nowel words are plausible words of the language being
leaned?
How can the word-recognition strategy be implemented as a predictive on-line dgorithm,

thereby making it more psychologicdly plausible?
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Table 1. Charaderistics of the cmmputational models reviewed here. Dotted lines sparate groups
of modelsthat do nd differ in any of the dharaderistics listed here. For models that are stated
abstradly the “Processng” charaderistic is determined by the best implementation to date (e.g.,
the MBDP-1 implementation d INcbror) which is described in ore of the papers cited for the
model. The natation “trees’ in the “Memory Content” column indicates models that all ow

embedded word-like units and use parse trees rather than strings to represent units.

Model Principle Procesdng Memory
Growth Content Stability
Adlin® utt. boundry online boundkd implicit statistics interference
CAS® utt. boundry online boundkd implicit statistics interference,
decay
Elman?® predictability on-line boundkd implicit statistics interference,
decy
Cairns*’ predictability ortline boundd implicit statistics interference,
decay
T.p.2528 predictability on-line boundkd explicit statistics stable
M.|.28 predictability on-line boundkd explicit statistics stable
PARSER* reqognition ortline, unbounad  strings, strengths decy,
synthetic interference
INCDROP?® reqognition incremental, unbouna&d  strings, frequencies  stable
analytic

Olivier®® reqognition batch, synthetic  unbounad  strings, frequencies  stable
Redli ch® reqognition batch, synthetic  unbounad  strings, frequencies  stable
de Marcken?®  recognition batch, synthetic  unboundd trees, frequencies stable

MK 1034 reqognition batch, synthetic  unboundd trees, frequencies stable




