
To appear in \Machine Learning: Proceedings of the Twelfth International Conference" (ML95)Fast E�ective Rule InductionWilliam W. CohenAT&T Bell Laboratories600 Mountain Avenue Murray Hill, NJ 07974wcohen@research.att.comAbstractMany existing rule learning systems arecomputationally expensive on large noisydatasets. In this paper we evaluate therecently-proposed rule learning algorithmIREP on a large and diverse collection ofbenchmark problems. We show that whileIREP is extremely e�cient, it frequentlygives error rates higher than those of C4.5and C4.5rules. We then propose a num-ber of modi�cations resulting in an algo-rithm RIPPERk that is very competitivewith C4.5rules with respect to error rates,but much more e�cient on large samples.RIPPERk obtains error rates lower than orequivalent to C4.5rules on 22 of 37 bench-mark problems, scales nearly linearly withthe number of training examples, and cane�ciently process noisy datasets containinghundreds of thousands of examples.1 INTRODUCTIONSystems that learn sets of rules have a number of de-sirable properties. Rule sets are relatively easy forpeople to understand [Catlett, 1991], and rule learn-ing systems outperform decision tree learners on manyproblems [Pagallo and Haussler, 1990; Quinlan, 1987;Weiss and Indurkhya, 1991]. Rule sets have a nat-ural and familiar �rst order version, namely Prologpredicates, and techniques for learning propositionalrule sets can often be extended to the �rst-order case[Quinlan, 1990; Quinlan and Cameron-Jones, 1993].Certain types of prior knowledge can also be easilycommunicated to rule learning systems [Cohen, 1994;Pazzani and Kibler, 1992].One weakness with rule learning systems is that theyoften scale relatively poorly with the sample size, par-ticularly on noisy data [Cohen, 1993]. Given the preva-lence of large noisy datasets in real-world applications,this problem is of critical importance. The goal of thispaper is to develop propositional rule learning algo-rithms that perform e�ciently on large noisy datasets,

that extend naturally to �rst-order representations,and that are competitive in generalization performancewith more mature symbolic learning methods, suchas decision trees. The end product of this e�ort isthe algorithm RIPPERk, which is competitive withC4.5rules with respect to error rates, scales nearly lin-early with the number of training examples, and cane�ciently process noisy datasets containing hundredsof thousands of examples.2 PREVIOUS WORK2.1 COMPLEXITY OF RULE PRUNINGMany of the techniques used in modern rule learn-ers have been adapted from decision tree learning.Most widely-used decision tree learning systems use anover�t-and-simplify learning strategy to handle noisydata: a hypothesis is formed by �rst growing a com-plex tree which \over�ts" the data, and then sim-plifying or pruning the complex tree [Quinlan, 1987;Mingers, 1989]. Usually (but not always) such pruningstrategies improve error rates on unseen data when thetraining data is noisy [Quinlan, 1987; Mingers, 1989;Scha�er, 1992]. A variety of methods have beenproposed to prune trees, but one e�ective techniqueis reduced error pruning (REP). REP can be easilyadapted to rule learning systems [Pagallo and Haus-sler, 1990; Brunk and Pazzani, 1991].In REP for rules, the training data is split into a grow-ing set and a pruning set . First, an initial rule setis formed that over�ts the growing set, using someheuristic method. This overlarge rule set is then re-peatedly simpli�ed by applying one of a set of pruningoperators; typical pruning operators would be to deleteany single condition or any single rule. At each stageof simpli�cation, the pruning operator chosen is theone that yields the greatest reduction of error on thepruning set. Simpli�cation ends when applying anypruning operator would increase error on the pruningset.REP for rules usually does improve generalization per-formance on noisy data [Pagallo and Haussler, 1990;Brunk and Pazzani, 1991; Weiss and Indurkhya, 1991;



Cohen, 1993; F�urnkranz and Widmer, 1994]; however,it is computationally expensive for large datasets. Inprevious work [Cohen, 1993] we showed that REP re-quires O(n4) time, given su�ciently noisy data; in fact,even the initial phase of over�tting the training datarequires O(n2) time. We then proposed an alterna-tive over�t-and-simplify method called Grow that iscompetitive with REP with respect to error rates, andwas an order of magnitude faster on a set of benchmarkproblems.We also showed that Grow was asymptotically fasterthan REP on random data|if one assumes thatGrow's hypothesis is approximately the same size asthe target concept. However, Cameron-Jones [1994]later showed that Grow systematically over�ts the tar-get concept on noisy data. This has an adverse e�ecton Grow's time complexity and as a result Grow alsorequires O(n4) time asymptotically.In another response to the ine�ciency of REP,F�urnkranz and Widmer [1994] proposed a novel learn-ing algorithm called incremental reduced error pruning(IREP). IREP was shown experimentally to be com-petitive with both REP and Grow with respect to errorrates, and much faster than either; in fact, on 18 of 20benchmark problems, IREP was faster than the initialstep of over�tting the data.In this paper, we will take as our point of departurethe promising results obtained by F�urnkranz and Wid-mer with the IREP algorithm. Our initial goal wassimply to replicate their results, to evaluate IREP ona broader set of benchmarks, and to compare IREPto more mature tree and rule induction methods. Inthe course of doing this, we discovered that IREP'sgeneralization performance could be considerably im-proved, without greatly a�ecting its computational ef-�ciency. In the remainder of the paper we will describeour implementation of the original IREP algorithm,and give evidence that it a�ords room for improve-ment. We will then outline three modi�cations: a newmetric for guiding its pruning phase, a new stoppingcondition, and a technique for \optimizing" the ruleslearned by IREP. Taken together these modi�cationsgive generalization performance that is comparable toC4.5 and C4.5rules [Quinlan, 1994] on a large set of di-verse benchmarks. The modi�ed learning algorithm,however, still scales well with the number of trainingexamples. The current implementation can e�cientlyhandle training sets of several hundred thousand ex-amples.2.2 INCREMENTAL REDUCED ERRORPRUNINGThe IREP rule-learning algorithm is described in de-tail by F�urnkranz andWidmer [1994], but we will sum-marize it below. IREP tightly integrates reduced errorpruning with a separate-and-conquer rule learning al-

procedure IREP(Pos,Neg)beginRuleset := ;while Pos 6= ; do/* grow and prune a new rule */split (Pos,Neg) into (GrowPos,GrowNeg)and (PrunePos,PruneNeg)Rule := GrowRule(GrowPos,GrowNeg)Rule := PruneRule(Rule,PrunePos,PruneNeg)if the error rate of Rule on(PrunePos,PruneNeg) exceeds 50% thenreturn Rulesetelseadd Rule to Rulesetremove examples covered by Rulefrom (Pos,Neg)endifendwhilereturn Rulesetend Figure 1: The IREP algorithmgorithm. Figure 1 presents a two-class version of thisalgorithm. (In the two-class Boolean case a \rule" issimply a conjunction of features, and a \rule set" is aDNF formula.) Like a standard separate-and-conqueralgorithm, IREP builds up a rule set in a greedy fash-ion, one rule at a time. After a rule is found, all exam-ples covered by the rule (both positive and negative)are deleted. This process is repeated until there areno positive examples, or until the rule found by IREPhas an unacceptably large error rate.In order to build a rule, IREP uses the following strat-egy. First, the uncovered examples are randomly par-titioned into two subsets, a growing set and a pruningset . In our implementation, the growing set contains2/3 of the examples.Next, a rule is \grown". Our implementation ofGrowRule is a propositional version of FOIL [Quinlan,1990; Quinlan and Cameron-Jones, 1993]. It beginswith an empty conjunction of conditions, and consid-ers adding to this any condition of the form An = v,Ac � �, or Ac � �, where An is a nominal attributeand v is a legal value for An, or Ac is a continuousvariable and � is some value for Ac that occurs in thetraining data. GrowRule repeatedly adds the condi-tion that maximizes FOIL's information gain criterionuntil the rule covers no negative examples from thegrowing dataset.After growing a rule, the rule is immediately pruned.To prune a rule, our implementation considers deletingany �nal sequence of conditions from the rule, and



chooses the deletion that maximizes the functionv(Rule;PrunePos;PruneNeg ) � p+ (N � n)P +N (1)where P (respectively N ) is the total number of exam-ples in PrunePos (PruneNeg) and p (n) is the numberof examples in PrunePos (PruneNeg) covered by Rule.This process is repeated until no deletion improves thevalue of v.The IREP algorithm described above is for two-classlearning problems. Our implementation handles mul-tiple classes as follows. First, the classes are ordered.In the experiments described below the ordering is al-ways in increasing order of prevalence|i.e., the order-ing is C1; : : : ; Ck where C1 is the least prevalent classand Ck is the most prevalent. Then, IREP is used to�nd a rule set that separates C1 from the remainingclasses; this is done with a single call to IREP wherePosData contains the examples labeled C1 and Neg-Data contains the examples labeled C2, C3, : : : , orCk. Next, all instances covered by the learned rule setare removed from the dataset, and IREP is used toseparate C2 from classes C3; : : : ; Ck. This process isrepeated until a single class Ck remains; this class willbe used as the default class.We also extended the rule learning algorithm to handlemissing attributes as follows: all tests involving theattribute A are de�ned to fail on instances for whichthe value of A is missing. This encourages the learnerto separate out the positive examples using tests thatare known to succeed.2.3 DIFFERENCES FROM F�URNKRANZAND WIDMER'S IREPThis implementation di�ers from F�urnkranz and Wid-mer's in several details. In pruning rules, our imple-mentation allows deletions of any �nal sequence of con-ditions, whereas F�urnkranz and Widmer's implemen-tation allows only deletions of a single �nal condition.Our implementation also stops adding rules to a ruleset when a rule is learned that has error rate greaterthan 50%, whereas F�urnkranz and Widmer's imple-mentation stops when the accuracy of the rule is lessthan the accuracy of the empty rule.1More importantly, our implementation supports miss-ing attributes, numerical variables and multiple1Actually, F�urnkranz and Widmer described two prun-ing algorithms. The �rst, which they called IREP, prunesaccording to Equation 1, and stops when p=(p+ n) <N=(P +N). The second, which they called IREP2, prunesaccording to the metric v(Rule;PrunePos;PruneNeg) �pp+n and stops when p=(p+ n) < 1=2. Our experimentscon�rmed the conclusion of F�urnkranz and Widmer thatIREP generally outperforms IREP2; however, we also dis-covered that IREP's performance was noticibly improvedby adopting IREP2's stopping condition.

classes. This makes it applicable to a wider range ofbenchmark problems.3 EXPERIMENTS WITH IREPExperiments with IREP showed that it is indeed fast.Results for one representative arti�cial problem2 aresummarized in the �rst graph in Figure 2; the CPUtime needed by C4.5rules is also shown.3 The resultsare shown on a log-log scale; recall that polynomialsappear as lines on such a plot, with the slope of the lineindicating its degree. C4.5rules scales roughly as thecube of the number of examples, whereas IREP scalesalmost linearly. Extrapolating the curves suggests thatit would require about 79 CPU years for C4.5rules toprocess the 500,000 example dataset, which IREP han-dles in around seven CPU minutes.Although we have used an arti�cial concept with an ex-tremely large number of training examples to demon-strate these issues, similar performance issues alsoarise on natural datasets, as the two smaller graphsof Figure 2 demonstrate.For reference, the �rst graph in Figure 2 also showsthe curves kx3 and y = kx log2 x. F�urnkranz and Wid-mer's formal analysis of IREP predicts a running timeofO(m log2m), wherem is the number of examples, onany dataset that contains a �xed percentage of classi-�cation noise. Our results are consistent with this pre-diction. Analysis similar to F�urnkranz and Widmer'salso predicts the cubic behavior shown by C4.5rules.Although IREP is e�cient, experiments on real-worlddatasets showed that the generalization performanceof IREP o�ered substantial room for improvement. Wecompared IREP to C4.5 and C4.5rules on a diverseset of benchmark problems, summarized in Table 1.Where a test set associated with the benchmark is indi-cated, we ran C4.5 and C4.5rules once, and ran IREP10 times and averaged. Where no test set is indicated,we ran 10 di�erent 10-fold cross-validations for all thealgorithms and averaged the results. Due to space con-siderations we will focus on comparisons to C4.5rules,since it also learns rule sets; however, the performanceof C4.5 and C4.5rules on these datasets was similar.We used C4.5 Release 6 [Quinlan, 1994], and the mostrecent version of C4.5rules [Quinlan, 1995].2The concept ab _ bcd _ defg with 12 irrelevant bi-nary attributes, 20% classi�cation noise, and uniformlydistributed examples. CPU time was measured on a MIPSIrix 5, con�gured with 8 150 MHz R4400 processors and1Gb of memory. Since IREP is a randomized algorithm(because of its random partitioning of the examples) thecurve for IREP is the average of 10 trials.3The time for C4.5rules ignores the time needed torun C4.5. However, C4.5 is generally much faster thanC4.5rules; on this problem, C4.5 requires less than 400CPU seconds to handle the 500,000 example dataset. Therun-time of C4.5 is generally comparable to that of IREP.
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Figure 2: CPU times for C4.5rules, IREP, and RIPPER2The left-hand graph of Figure 3 contains one point foreach benchmark problem, positioned so that IREP'serror rate is the x-axis position and C4.5rules' errorrate is the y-axis position. Thus for points below theline y = x IREP's performance is inferior to C4.5rules,and for points above the line IREP's performance isbetter. From the graph one can readily see that IREPdoes worse than C4.5rules more often than it does bet-ter; speci�cally, IREP's error rate is higher 23 times,lower 11 times, and the same 3 times.Of course, it may be that IREP is in fact as likelyto outperform C4.5rules as the converse on problemsfrom this test suite, and that the won-lost-tie ratio of11-23-3 is due to random variation in the error esti-mates. Using a nonparametric sign test [Mendenhallet al., 1981, page 578], one can determine that theprobability of observing a ratio this one-sided wouldbe just under 0.05 if IREP had a 50/50 chance of bet-
tering C4.5rules on problems in this test suite. Wecan thus conclude with 95% con�dence that C4.5rulesoutperforms IREP on this test suite.4It is also evident from the graph that IREP seldomdoes much better than C4.5rules, and not infrequentlydoes much worse. It is not obvious how to best aggre-gate measurements across learning problems, but onemethod is to consider the average value of the ratioerror rate of IREPerror rate of C4.5rulesFor this set of problems the average of this ratio is4More precisely, we can conclude that C4.5rules outper-forms IREP in this sense: if a problem is drawn at randomfrom this test suite and its error rate is measured as de-scribed above, then with probability greater than 0.5, themeasured error rate of C4.5rules will be lower than that ofIREP.



Table 1: The 37 benchmark problems used in the experiments, with size of training and testing sets; number ofclasses; number of nominal (n) and continuous (c) attributes; and a brief description. Starred problems are fromthe UC/Irvine Repository.Name Train Test Classes Attributes DescriptionAP1-10 999 � 2 85-130n text categorization (10 problems)audiology� 226 � 24 60n medical diagnosisbridges1-5� 106 � 2-6 6n 1c mech. engineering (5 problems)iris� 150 � 3 4c ower classi�cationlabor� 57 � 2 8n 8c labor negotiationspromoters� 106 � 2 57n DNA promoter sequencessonar� 208 � 2 60c sonar signal classi�cationticket1-3 556 � 2 78n text categorization (3 problems)ui 373 � 18 10n text-to-speech subproblemcoding1� 5000 15000 2 15n DNA coding sequences�re 3225 608 8 11c risk of forest �resmarket 3181 1616 2 3n 7c market analysismushroom� 3988 4136 2 22n random split of mushroom datanetwk1 2500 1077 2 30c predict equipment failurenetwk2 2600 1226 2 35c predict equipment failureocr 1318 1370 2 576n image classi�cationsegment� 1133 1177 7 19n image analysissplice� 1614 1561 3 60n split of DNA splice-junction datathyroid� 2514 1258 5 22n 7c medical diagnosisvidgame 1484 1546 2 10n decide if game moves are randomvoting� 300 135 2 16n congressional voting recordsweather 1000 4597 2 35c weather prediction1.13, if one discounts a single extreme outlier; thus onaverage IREP's error rates are about 13% higher thanthose of C4.5rules. (This average is 1.52 if one includesthe mushroom dataset|on this benchmark C4.5rulesobtains an error of 0.2% to IREP's 3.1%.)As an additional point of reference, we also ran propo-sitional FOIL without any pruning mechanism. Theratio of the error rate of the hypothesis obtained by\over�tting" the data with propositional FOIL to theerror rate of C4.5rules is 1.17 excluding the mush-room dataset, and 1.14 overall. Finally, we ran IREP2(also described by F�urnkranz and Widmer [1994]) andIREP with F�urnkranz and Widmer's stopping condi-tion. The average ratio for IREP2 was 1.15 with-out the mushroom dataset, and 1.14 overall. ForIREP with the more restrictive F�urnkranz and Wid-mer stopping condition, the average ratio was 1.71without mushroom and 2.08 overall. The best won-loss-tied record of any of these three systems relative toC4.5rules was 17-20-0, achieved by propositional FOILwithout pruning. To summarize, on average, all ofthe IREP variants performed substantially worse thanC4.5rules, and none of the IREP variants performedsubstantially better than simply over�tting the data.There is also evidence that IREP fails to convergeon some natural datasets. One example is the well-known KRK-illegal problem [Muggleton et al., 1989;Quinlan, 1990]. We encoded a propositional version

of this problem, and implemented a data generator.5Without noise, IREP reliably learns an approximatetheory with an error rate of 0.6% from as few as 100examples; however, IREP does not improve this errorrate even if as many as 100,000 examples are given.In contrast C4.5rules reliably produces a perfect the-ory from only 5000 examples. Arti�cial examples canalso be constructed which show non-convergence to agreater extent; for example, IREP obtains an error of9.5% given anywhere between 100 and 100,000 noise-free examples of the concept ab_ac_ade. This is wor-risome behavior for an algorithm whose main strengthis that it e�ciently handles very large numbers of ex-amples.4 IMPROVEMENTS TO IREPBased on our experiments with IREP, we implementedthree modi�cations to the algorithm: an alternativemetric for assessing the value of rules in the pruningphase of IREP; a new heuristic for determining whento stop adding rules to a rule set; and a postpass that\optimizes" a rule set in an attempt to more closelyapproximate conventional (i.e., non-incremental) re-duced error pruning.5Our propositional encoding is the one that would beconstructed by LINUS [D�zeroski and Lavrac, 1991], andwe used a uniform distribution to generate KRK positions.
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Figure 3: Comparison of generalization performances: C4.5rules vs. IREP and RIPPER2.4.1 THE RULE-VALUE METRICThe occasional failure of IREP to converge as the num-ber of examples increases can be readily traced to themetric used to guide pruning (given above in Equa-tion 1). The preferences encoded in this metric aresometimes highly unintuitive; for instance (assumingthat P and N are �xed) the metric prefers a rule R1that covers p1 = 2000 positive examples and n1 = 1000negative examples to a rule R2 that covers p1 = 1000examples and n1 = 1 negative example; note, however,that R2 is highly predictive and R1 is not. We thusreplaced IREP's metric withv�(Rule;PrunePos;PruneNeg) � p� np+ nwhich seems to have more intuitively satisfying behav-ior.4.2 THE STOPPING CONDITIONOur implementation of IREP stops greedily addingrules to a rule set when the last rule constructed has anerror exceeding 50% on the pruning data. This heuris-tic often stops too soon given moderate-sized samples;this is especially true when learning a concept con-taining many low-coverage rules. Our assessment ofthe problem is that for low-coverage rules, the esti-mate of error a�orded by the pruning data has highvariance; thus in learning a series of small rules, thereis a good chance that one of the rules in the series willhave its error rate incorrectly assessed at more than50%, causing IREP to stop prematurely. Put anotherway, IREP seemed to be unduly sensitive to the \smalldisjunct problem" [Holte et al., 1989].Our solution to this problem is the following. Aftereach rule is added, the total description length of therule set and the examples is computed. The new ver-sion of IREP stops adding rules when this description

length is more than d bits larger than the smallest de-scription length obtained so far, or when there are nomore positive examples. In the experiments of thispaper we used d = 64. The rule set is then simpli�edby examining each rule in turn (starting with the lastrule added) and deleting rules so as to reduce totaldescription length.6Together, the revised rule-value metric and stoppingheuristic substantially improve IREP's generalizationperformance. Unlike the original IREP, the modi�edversion of IREP (henceforth IREP�) converges KRK-illegal and the arti�cial concept ab_ac_ade. IREP�'swon-lost-tied record against IREP is 28-8-1; thus withhigh con�dence (p > 0:992) one can state that IREP�outperforms IREP on problems from this test suite.The error ratio to C4.5rules is also reduced from 1.13(or 1.52, including mushroom) to 1.06 (or 1.04, includ-ing mushroom.) IREP�'s won-lost-tied record againstC4.5rules is 16-21-0.6To briey summarize our MDL encoding scheme: themethod used for encoding a set of examples given a theoryis the same as that used in the latest version of C4.5rules[Quinlan, 1995]. One part of this encoding scheme allowsone to identify a subset of k elements of a known set of nelements usingS(n; k; p) � k log2 1p + (n � k) log2 11� pbits, where p is known by the recipient of the message.Thus we allow jjkjj+ S(n; k; k=n) bits to send a rule withk conditions, where n is the number of possible conditionsthat could appear in a rule and jjkjj is the number of bitsneeded to send the integer k. As in C4.5rules [Quinlan,1994, page 53] the estimated number of bits required tosend the theory is multiplied by 0:5 to adjust for possibleredundancy in the attributes.



4.3 RULE OPTIMIZATIONThe repeated grow-and-simplify approach used inIREP can produce results quite di�erent from con-ventional (non-incremental) reduced error pruning.One way to possibly improve IREP�'s incremental ap-proach is to postprocess the rules produced by IREP�so as to more closely approximate the e�ect of conven-tional reduced error pruning. For instance, one couldre-prune each rule so as to minimize the error of thecomplete rule set.After some experimentation we developed the follow-ing method for \optimizing" a rule set R1; : : : ; Rk.Each rule is considered in turn: �rst R1, then R2,etc, in the order in which they were learned. For eachrule Ri, two alternative rules are constructed. The re-placement for Ri is formed by growing and then prun-ing a rule R0i, where pruning is guided so as to mini-mize error of the entire rule set R1; : : : ; R0i; : : : ; Rk onthe pruning data. The revision of Ri is formed anal-ogously, except that the revision is grown by greedilyadding conditions to Ri, rather than the empty rule.Finally a decision is made as to whether the �nal the-ory should include the revised rule, the replacementrule, or the original rule. This decision is made us-ing the MDL heuristic.7 Optimization is integratedwith IREP� as follows. First, IREP� is used to ob-tain an initial rule set. This rule set is next optimizedas described above. Finally rules are added to coverany remaining positive examples using IREP�. Be-low, we will call this algorithmRIPPER (for RepeatedIncremental Pruning to Produce Error Reduction.).Optimization can also be iterated by optimizing therule set output by RIPPER and then adding addi-tional rules using IREP�; we will call this algorithmRIPPER2, and in general use RIPPERk for the algo-rithm that repeatedly optimizes k times.4.4 GENERALIZATION PERFORMANCERIPPER noticibly improves generalization perfor-mance over IREP�. Its won-lost-tied record againstIREP� is 28-7-2, a signi�cant improvement (p >0:9986). The error ratio to C4.5rules is also reduced:excluding mushroom, the error ratio is 1.06 for IREP�and 1.01 for RIPPER, and including mushroom, theerror ratio is 1.04 for IREP� and 0.982 for RIPPER.RIPPER's won-lost-tied record against C4.5rules is 20-15-2.One additional stage of optimization gives some fur-ther bene�t. RIPPER2 reduces the error ratio toC4.5rules to 0.995 excluding mushroom, or 0.9687More precisely, a variant of Ri is evaluated by insertingit into the rule set and then deleting rules that increase thetotal description length of the rules and examples. Thetotal description length of the examples and the simpli�edrule set is then used to compare variants of Ri.

Table 2: Summary of generalization resultswon-loss-tied error ratiovs C4.5rules to C4.5rulesaIREPb 9-28-0 2.08 1.71 1.93IREP2 11-25-1 1.15 1.15 1.22IREPc 11-23-3 1.51 1.13 1.20IREP� 16-21-0 1.04 1.06 1.09RIPPER 20-15-2 0.98 1.01 1.03RIPPER2 21-15-1 0.97 0.99 1.01aFormat: all datasets; all datasets except mushroom; alldatasesets except mushroom and weighting similar datasetstogether.bUsing F�urnkranz and Widmer's stopping criterion.cAs described in Section 2.3.including mushroom, and RIPPER2's won-lost-tiedagainst C4.5rules is improved to 21-15-1. RIPPER2is not statistically signi�cantly better than C4.5rules;however, RIPPER2 is certainly quite competitive onthe problems in this test suite. To make this concrete,let q be the probability that RIPPER2's measured er-ror rate will be less than or equal to that of C4.5ruleson a problem taken at random from the test suite. Thewon-lost-tied record of 21-15-2 means we can be 93%con�dent that q is at least 0.5, 95% con�dent that qis at least 0.488, and 99% con�dent that q is at least0.431.The right-hand graph in Figure 3 gives a more de-tailed comparison of the error rates of RIPPER2 andC4.5rules, and Table 2 summarizes some of the gener-alization results given in this section.One problem with averaging error ratios is that whenthe actual error rates are very small, ratios tend tohave extreme values. (This is the reason why we havereported all averages with and without the mushroomdataset: for this dataset the actual error rates rangefrom 0.0% to 3.1% and the ratios range from 0.0 to17.5.) The following remarks may help reassure read-ers of the stability of our comparison:� If groups of similar datasets are weightedtogether,8 then the average ratio of RIPPER2 toC4.5rules is 0.957. If mushroom is excluded, thenthe weighted average ratio is 1.005.� If the two largest and the two smallest ratios areexcluded, then the average ratio of RIPPER2 toC4.5rules is 0.986. (The ratio formushroom is oneof the four extreme values.)� The average di�erence between RIPPER2's errorrate and C4.5rules' error rate is -0.1%.8\Weighting similar datasets together" means that theratios for the ten AP datasets, the �ve bridges datasets, thethree ticket datasets and the two network datasets are eachaveraged together before being averaged with the ratios forthe remaining seventeed datasets.



� The won-loss-tied record of RIPPER2 to the C4.5decision tree learner (with pruning) is 23-12-2.The average ratio of RIPPER2 to C4.5 with prun-ing is 0.964 with mushroom, and 0.991 without.4.5 EFFICIENCY OF RIPPERkImportantly, none of the modi�cations we have de-scribed have a major e�ect on computational e�-ciency. Figure 2 also shows how RIPPER2 scales withthe number of examples on three concepts: one arti�-cial concept, and two of the larger and noisier naturaldatasets in our test suite. The fact that the lines forRIPPER2 and IREP are parallel shows that the mod-i�cations we have introduced a�ect only the constantfactors, and not the asymptotic complexity of the al-gorithm. The constant factors for RIPPER2 are alsostill reasonably low: RIPPER2 requires only 61 CPUminutes to process 500,000 examples of the arti�cialconcept of Figure 2. RIPPERk is also quite space e�-cient, as it requires no data structures larger than thedataset.In previous work [Cohen, 1993] we sought formal ex-planations for the e�ciency or ine�ciencies of REPand other rule-pruning algorithms. While space doesnot permit such an analysis here, we would like topresent some of the intuitions as to why RIPPERk isso much faster on large noisy datasets.The basic strategy used by RIPPERk to �nd a rule-set that models the data is to �rst use IREP� to �ndan initial model, and then to iteratively improve thatmodel, using the \optimization" procedure describedin 4.3. This process is e�cient because building theinitial model is e�cient, because the initial model doesnot tend to be large relative to the target concept, andbecause the optimization steps only require time linearin the number of examples and the size of the initialmodel.C4.5rules also constructs an initial model and theniteratively improves it. However, for C4.5rules, theinitial model is a subset of rules extracted from a un-pruned decision tree, and the improvement processgreedily deletes or adds single rules in an e�ort to re-duce description length. C4.5rules repeats this processfor several di�erent-sized subsets of the total pool ofextracted rules and uses the best ruleset found as itshypothesis; the subsets it uses are the empty ruleset,the complete ruleset, and randomly-chosen subsets of10%, 20%, : : : , and 90% of the rules.Unfortunately, for noisy datasets, the number of rulesextracted from the unpruned decision tree grows as m,the number of examples. This means that each initialmodel (save the empty model) will also be of size pro-portional to m, and hence if m is su�ciently large,all of the initial models will be much larger than thetarget hypothesis. This means that to build a theoryabout the same size as the target concept always re-

quires many (on the order of m) changes to the initialmodel, and at each step in the optimization, many (onthe order of m) changes are possible. The improve-ment process is thus expensive; since it is a greedysearch, it is also potentially quite likely to miss �ndingthe best ruleset.9In summary, both RIPPERk and C4.5rules start withan initial model and iteratively improve it using heuris-tic techniques. However, for large noisy datasets,RIPPERk generally seems to start with an initialmodel that is about the right size, while C4.5rulesstarts with an over-large initial model. This meansthat RIPPERk's search is more e�cient. We conjec-ture also that RIPPERk's search is also more e�ectiveon large noisy datasets. (RIPPER2 generally seemsto do better compared to C4.5rules on larger datasets;in particular for datasets with no more than 150 ex-amples, the average ratio of RIPPER2 to C4.5rules is1.051, and for datasets with more than 150 examples,the average ratio of RIPPER2 to C4.5rules is 0.944.)5 CONCLUSIONSIncremental reduced error pruning (IREP) is a recentrule learning algorithmthat can e�ciently handle largenoisy datasets. In this paper we have presented someexperiments on a large collection of benchmark prob-lems with an extended implementation of IREP whichallows continuous variables and multiple classes. Weshowed that IREP does not perform as well as themore mature (but also more expensive) rule learningalgorithm C4.5rules.We also proposed a series of improvements to IREPthat make it extremely competitive with C4.5rules,without seriously a�ecting its e�ciency. IREP� in-corporates a new metric to guide rule pruning and anMDL-based heuristic for determining how many rulesshould be learned. RIPPERk adds to this k iterationsof an optimization step that more closely mimics thee�ect of non-incremental reduced error pruning.IREP� and RIPPERk were shown statistically to beclear improvements over IREP on problems from ourtest suite. RIPPER2 is also extremely competitivewith C4.5rules; in fact on 22 of 37 problems in thetest suite RIPPER2 achieves error rates lower than orequivalent to those of C4.5rules.However, on noisy datasets, RIPPERk is much moree�cient than C4.5rules. It scales nearly linearly withthe number of examples in a dataset; in contrastC4.5rules scales as the cube of the number of examples.This asymptotic improvement translates to speedups9This situation should be contrasted to decision treepruning, in which even a large tree can be pruned e�cientlyand, in certain senses, optimally; for instance, the prunedtree with the lowest error on a pruning set can be found inlinear time.
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