
ROAM: Rule- and Motif-Based Anomaly Detection in Massive Moving

Object Data Sets∗

Xiaolei Li Jiawei Han Sangkyum Kim Hector Gonzalez

University of Illinois at Urbana-Champaign, IL, USA

Abstract

With recent advances in sensory and mobile comput-
ing technology, enormous amounts of data about mov-
ing objects are being collected. One important applica-
tion with such data is automated identification of sus-
picious movements. Due to the sheer volume of data
associated with moving objects, it is challenging to de-
velop a method that can efficiently and effectively de-
tect anomalies. The problem is exacerbated by the fact
that anomalies may occur at arbitrary levels of abstrac-
tion and be associated with multiple granularity of spa-
tiotemporal features.

In this study, we propose a new framework named
ROAM (Rule- and Motif-based Anomaly Detection in
Moving Objects). In ROAM, object trajectories are
expressed using discrete pattern fragments called motifs.
Associated features are extracted to form a hierarchical
feature space, which facilitates a multi-resolution view
of the data. We also develop a general-purpose, rule-
based classifier which explores the structured feature
space and learns effective rules at multiple levels of
granularity.

We implemented ROAM and tested its components
under a variety of conditions. Our experiments show
that the system is efficient and effective at detecting
abnormal moving objects.

1 Introduction

In recent years, the collection of historical or real-
time data on moving objects is quickly becoming a
ubiquitous task. With the help of GPS devices, RFID
sensors, RADAR, satellites, and other technologies,
mobile objects of all sizes, whether it be a tiny cellphone
or a giant ocean liner, can be easily tracked across
the globe. As a result, many new applications

∗ The work was supported in part by The Boeing Company and
the U.S. National Science Foundation NSF IIS-05-13678/06-42771

and NSF BDI-05-15813. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

are being developed. Examples include indexing and
querying of moving objects over static or continuous
queries [6, 9, 18, 20, 8], similarity search between moving
objects, and continuous clustering of moving objects
[7, 11].

Example. At any one time, there are approximately
160,000 vessels traveling in the United States’ waters.
They include military cruisers, private yachts, commer-
cial liners, and so on. It is unrealistic to manually ex-
amine each of these vessels and identify the suspicious
ones. Thus, it is possible, and highly desirable, to cre-
ate automated tools that can evaluate the behavior of
all maritime vessels and develop situational awareness
on the abnormal ones.

Example 1 shows one particular problem which is
of interest in homeland security and surveillance. It is
automated detection of suspicious or anomalous moving
objects. This is our focus in this paper.

An outlier is, in general, viewed as “an observation
(or a set of observations) which appears to be inconsis-
tent with the remainder of that set of data [2].” How-
ever, the term “inconsistent” has many far-reaching im-
plications. The decision is often subjective and depends
heavily on the context. Outliers are also rare in the
population, which makes search harder.

Though outlier detection has been studied in many
contexts [2, 13], the moving objects domain [8] poses
unique challenges. Additionally, problems such as in-
dexing [18, 20], clustering [12, 7, 11], anomaly detection
[16, 15] have been studied in moving objects domain as
well. However, they focus almost exclusively on the tra-
jectories. In practice, trajectories are associated with
non-spatiotemporal features and such associations are
often more valuable for analysis. In this paper, we take a
different approach by constructing a multi-dimensional
feature space oriented on segmented trajectories. This
allows us to analyze complex relationships between mul-
tiple features associated with different granularities and
dimensions in each trajectory.

There are in general two mechanisms for anomaly

detection: classification, which relies on labeled training
data sets, and clustering, which performs automated
grouping without the aid of training data. Although
both are interesting methods for mining moving object
outliers, classification often leads to stronger mining
results with the help of training data. Therefore, our
focus will be on constructing a classification model.

1.1 Problem Definition The problem of anomaly
detection in moving object data is defined as follows.
The input data is a set of labeled trajectories: D =
{(t1, c1), (t2, c2), . . .}, where ti is a trajectory and ci is
the associated class label. A trajectory1 is a sequence
of spatiotemporal records of a moving object, e.g., GPS
records. Each record has the geographic location as well
as a timestamp, and records can be made at arbitrary
time intervals. The set of possible class labels is
C = {c1, c2, . . .}. In simple anomaly detection, there
could just be two classes: cnormal and cabnormal.

The goal of the problem is to learn a function f

which maps trajectories to class labels: f(t) → c ∈
C. f should be consistent with D as well as future
trajectories not in D. In other words, we want to learn
a model which can classify trajectories as being normal
or abnormal.

1.2 Contributions In this paper, we propose a
framework, called ROAM (Rule- and Motif-based
Anomaly Detection in Moving Objects), for the prob-
lem of anomaly detection. Compared to related work
in classification or clustering of moving objects, ROAM

incorporates a fuller feature space and examines more
than just trajectories. At a high level, ROAM presents
three novel features.

1. Motif-based feature space: Instead of model-
ing whole trajectories, we partition them into frag-
ments (motifs) and construct a multi-dimensional
feature space oriented on the motifs with associated
attributes.

2. Automated hierarchy extraction: By examining
the patterns in the trajectories, we automatically
derive hierarchies in the feature space. This yields a
multi-resolution view of the data.

3. Hierarchical rule-based classifier: We develop a
rule-based classifier which explores the hierarchical
feature space and finds the effective regions for
classification.

1Trajectory in this paper is just data and does not imply path
prediction.

The rest of the paper is organized as follows. Sec-
tion 2 presents some key insights in ROAM. In Section
3, we introduce the overall framework. Experimental
results are shown in Section 4. Section 5 addresses the
related work. And we conclude the study in Section 6.

2 Key Insights

There have been some prior work in the area of trajec-
tory prediction [16, 15]. Markov models or other sequen-
tial models can model a single trajectory and predict its
future behavior. However, when used in the context of a
large population with many different distributions, such
approaches may not be effective.

Example. Consider the two trajectories in Fig. 1(a).
They have similar shapes except the one on the right
has an extra loop. The impact of this additional loop
depends on the task, but one would remark that the
other portions are remarkably similar.

(a) Two similar trajectories. The loop in the

right trajectory is difficult to handle in holistic

approaches.

4m4m

4m
4m

m1
m2

m2

(b) Same two trajectories after motif extraction. The
right trajectory has an extra m1.

Figure 1: Motif representation

This example presents some problems for holistic
models. It is difficult to represent the semantics of
“mostly the same with the exception of an extra loop”
using distance metrics between models. Local differ-
ences could either dominate the metric or be drowned
out by the rest of trajectory. Furthermore, it is difficult
to capture thousands or tens of thousands of trajecto-
ries in a single model. While a single object or a small
set may have clear patterns, a large population (such as
in real-world anomaly detection) presents a wide range
of patterns across all granularities of time and space
signals.

2.1 Motif-based Feature Space In this paper, we
propose that semantic analysis should be based on a rich
feature space constructed using trajectory fragments. In
ROAM, raw trajectories are partitioned into fragments.
These fragments are overlaid on top of each other and
the common patterns become what we call motifs. Mo-
tifs are represented by a tuple (motif expression) which
includes additional spatiotemporal attributes that may
be helpful in analysis. The set of motif expressions ob-
served then forms a feature space in which the original
trajectories are placed. Using such a feature space, we
can leverage algorithms in machine learning and data
mining to learn complex associations between trajec-
tory fragments and also other important information.

A motif is a prototypical movement pattern. Ex-
amples include right turn, u-turn, and loop. One could
view them as parallels to gene expressions in DNA se-
quences or entity mentions in text. Fig. 1(b) shows the
motifs in Fig. 1(a) as drawn by the dotted circles. In
this form, the two trajectories now have much in com-
mon: They share one m2 and two m4’s, and differ in
one m1 (i.e., loop motif).

2.2 Multi-Resolution Feature Hierarchies An-
other observation we make is raw recordings and se-
mantic analysis often occur at different spatiotemporal
granularities. While time recordings may be made at
the minute or second level, analysis is usually more sen-
sible on the hour level or even higher. The same scenario
applies to the location measure. One might record at
the meter level but analyze at the city block or district
level.

By using a more general representation, fewer dis-
tinct measure values are used and the analysis task
could become easier. In addition, it would improve hu-
man readability. If the final classification model pro-
duces human readable results (as ROAM does), having
high level features not only reduces the size of the results
but also increases their understandability.

Sometimes, these hierarchies are readily available,
as in the case of time. With other features, however, it
may not be obvious. In ROAM, we use a clustering-
based technique to automatically extract hierarchies
based on the behavior of the trajectories. Given such
hierarchies, it is still hard to know a priori which levels
will work the best for classification so we let ROAM

adjust dynamically.

3 Framework

Figure 2 shows the ROAM (Rule- and Motif-based
Anomaly Detection of Moving Objects) framework.
Square boxes are computation modules, round boxes
are data sources, and arrows show the flow of data.

There are three computation modules in ROAM: Motif
Extractor, Feature Generator, and Hierarchical Rule-
based Classifier. Data flows through them in that
sequence.

Rule−based Classifier
Hierarchical

Object Traces

Motif Extractor

Feature Generator Concept Hierarchies

Pre−Defined Motifs

Abnormal Traces

Figure 2: ROAM Framework

3.1 Motif Extractor The first computation module
in ROAM is the Motif Extractor. A motif is a proto-
typical movement pattern. ROAM use a sliding window
technique to process the trajectories. All windows are
overlaid on top of each other and clustering is used to
group them into representative sets. These representa-
tive ones then form the set of interesting motifs in D.

Given a trajectory, we slide a window of length ω

across it. ω could be defined with respect to time or
distance. If it is time, then different speeds (and thus
distance traveled) would result in different motifs. If it is
distance, then speed variances would be normalized. In
our experiments, we used time since speed was relatively
stable though more complex data might require more
complex normalization methods. For each resultant
window w, we compute the vector from the first point
in w to the last point in w. The width of the vector is
then expanded to accommodate all other points within
w; this bounding box allow us to smooth over noises in
the trajectory.

All bounding boxes are overlaid on top of each
other. And using the Euclidean distance, we cluster
them to find the representative patterns. The resultant
cluster centers then define the set of motifs. In ROAM,
a motif is represented just like a window: a vector with
a bounding box around it. Depending on the task,
other variables may be kept as well. Once the motifs
are set, we then go through D again using the same
sliding windows. This time, a window w in a trajectory
is similar to a motif m if ||w − m|| ≤ ǫ. And if a
particular window is similar to a motif, we say that

motif is “expressed” in the trajectory.
A natural question to raise is how to set ω. A too

small of a value could miss motifs by dividing them into
indistinguishable pieces and a too large of a value could
bundle motifs together and lose discriminative power.
Fortunately, it turns out that most reasonable values
will perform just fine. As we will show empirically in
Section 4, classification accuracy is fairly robust with
regards to different ω values.

Given a trajectory, the motif extractor returns the
sequence of motif expressions found in the trajectory.
Each motif expression has the form

(3.1) (mi, tstart, tend, lstart, lend)

where mi is the motif, tstart and tend are the starting
and ending times, and lstart and lend are the starting
and ending locations. The complete sequence is known
as the motif trajectory of the original trajectory.

3.1.1 Motif Expression Attributes The form of
motif expression shown in Eq. (3.1) is only the first
step in full motif expression extraction. Additional
information on when, where, and how the motif was
expressed is needed. Take Fig. 3 as an example.
There are two objects moving in an area with the
same trajectories; however, the left one is near an
important landmark. This extra piece of information
(i.e., proximity to landmark) can be crucial in decision
making. If we also knew that the left object was moving
slowly during the middle of the night, the combination
of all such information is telling in anomaly detection.

landmark

Figure 3: Two objects moving with the same trajectory.

For each motif expression, we introduce a set
of attributes in addition to the simple time and
location ones in Eq. (3.1). Some examples in-
clude duration, top speed, avg speed, radius, and
general location. Some of these attributes can be de-
rived easily from the time and location attributes, e.g.,
avg speed = path-distance(lstart, lend) ÷ (tend − tstart).
Others may require a more sophisticated motif extrac-
tor.

Let there be A such attributes: {a1, a2, . . . , aA}.
We now represent each motif expression as follows,

(3.2) (mi, v1, v2, . . . , vA)

where mi is the motif and vi is the value of attribute
ai. Note that ai may be continuous or even multi-
dimensional.

3.2 Feature Generator Once the motif expressions
have been extracted, semantic analysis can begin. One
could try the following näıve classification scheme. For
each distinct (motif, attribute, attribute value) combina-
tion we see in the trajectory data, we map it to a feature.
For example, (right-turn, speed, 11mph) would map to
a feature and (right-turn, speed, 12mph) would map to
another feature. Formally, ∀ i, j, k (mi, aj , vk) ↔ fx ∈
F where F is the resulting feature space. We then use
the following classifier.

Algorithm 1. (Flat-Classifier)

1. Transform the motif-trajectories into vectors in the F
feature space. Suppose fx ↔ (mi, aj , vk).
Then the xth component of the vector
has the value of the number of times
motif i’s attribute j expressed value k in the trajectory.

2. Feed the feature space and the data points as
input into a learning machine.

This particular transformation from trajectories to
a feature space is complete. Every motif attribute value
is preserved as a feature and the frequencies of their ex-
pressions are preserved as the feature values. However,
it is ineffective by the following observations. First, a
large number of distinct motif attribute values leads di-
rectly to a high dimensional feature space. Specifically,
suppose there are M motifs, A attributes, and each at-
tribute has V distinct possible values. The instance
space is then N

MAV . Second, the high granularity or
continuous motif attribute values make generalization
difficult. Because these distinct values are transformed
to distinct features, generalization becomes essentially
impossible. Learning on a feature that is at 10:31am

will have no bearing on a feature that is at 10:32am.

3.2.1 Feature Generalization In order to over-
come the difficulties in the Flat-Classifier, gener-
alization in the feature space is needed. For example,
(right-turn, time, 2am), (right-turn, time, 3am), and
(right-turn, time, 4am) features could be generalized
into one feature: (right-turn, time, early morning).
This not only reduces the dimensionality of the feature
space but also helps the learning machine through fea-
ture extraction.

Recall that each feature has the form (mi, aj , vk),
where each attribute aj is either numerical (1D) or
spatiotemporal (2D or 3D). We assume that each aj has
a distance metric defined on its values. Thus, features
having the same mi and aj values (i.e., (mi, aj , ∗))

can be compared with a formal distance metric. For
example, (right-turn, time, 2am) is more similar to
(right-turn, time, 2 : 02am) than (right-turn, text,
6pm). But, it does not make sense to compare features
with different mi or aj values (e.g., (right-turn, time,
2am) is not comparable to (u-turn, speed, 10mph)).

We partition the features in F into sets with distinct
(mi, aj) values. If there are M motifs and A attributes,
there are M ×A disjoint sets. We propose to generalize
the features in each (mi, aj) set into a smaller set. Fur-
ther, this new set will be hierarchical where appropriate.
This will be the task of the Feature Generator in the
ROAM framework. Specifically, it will

1. discretize or cluster continuous or high granularity
motif attribute values.

2. form a hierarchy over the attribute values, which in
turn offers a multi-resolution view of the data.

We will treat each (mi, aj) space independently.
Since the attribute values can have different forms (e.g.,
numerical values, 2D spatial locations), we will use
different methods where appropriate. We explain them
in detail in the following two sections.

3.2.2 Spatial Attributes Attributes such as
location are spatial points in a 2D or 3D space. In
such scenarios, we use a hierarchical “micro-clustering”
technique similar to BIRCH [26] to discover prototyp-
ical patterns. Features are inserted into a tree-based
data structure where nodes represent micro-clusters.
A micro-cluster is a small, tightly grouped neighbor-
hood, and features belong to the same micro-cluster
only when they are closely related. A tree of these
micro-clusters represents a concept hierarchy of the
attribute.

Take the location attribute as an example. A
micro-cluster may only include features which are
within a few meters of each other. During insertion
of features into the tree, each micro-cluster has a max-
imum radius parameter. If a feature cannot fit inside a
micro-cluster, a new micro-cluster is created. The tree
also had a maximum branching factor so insertions and
rotations occur like a typical B-tree. After all features
have been inserted into the tree, the leaf nodes form the
set of micro-clusters. Each micro-cluster can be viewed
as a meta data point that represents similar features.
We then feed the set of micro-clusters into a hierarchi-
cal agglomerative clustering algorithm to construct the
final hierarchy.

The final clustering tree is hierarchical in the fol-
lowing sense: any node in the tree contains summarized
information for all data points in that node’s subtree.

For example, the root contains a summary of the en-
tire tree. The summary information is sufficient for the
calculation of the centroid and the radius of the points.
The reason we choose a BIRCH-like algorithm in our
system is two-fold. First, it performs micro-clustering,
which fits our needs better. Second, building the CF
tree is time and space efficient (O(n)). More properties
are described in [26].

3.2.3 Numerical Attributes Attributes such as
time and avg speed are numerical. Usually, in the
presence of continuous attributes, discretization is per-
formed. Doing so has many advantages. First, it makes
the learning problem easier. A decision tree, for ex-
ample, would have fewer splits to consider. A discrete
feature allows better generalization. Second, it makes
human readability easier. For instance, it is much easier
to understand the feature value of 1pm-2pm as opposed
to reading all the distinct values between 1pm and 2pm.

Discretization techniques [17] can be split into two
main groups: unsupervised and supervised. Since
we have labeled data, supervised algorithms are more
appropriate. There is an abundant number of methods
available for this; most of them would function just
fine here. An additional requirement we have is a
hierarchy over the resultant discrete values. While most
discretization methods do not have this property, we can
easily add it by performing hierarchical agglomerative
clustering as a post-processing step.

Since spatial attributes are a generalization of nu-
merical attributes, we use the same clustering methods
in our implementation of ROAM for both types of at-
tributes. Clustering in one-dimensional data still pro-
vides meaningful groupings based on behavior.

fast

all

6−10mph

...

slow

1−5mph

(right−turn, speed)

afternoon

all

8am−12pm2−8am

morning

...

(right−turn, time)

Figure 4: Two sample motif-attribute hierarchies

3.2.4 Multi-Resolution View After building hier-
archies in each of the (mi, aj) spaces, the overall feature
space is now structured as a set of hierarchies. Fig. 4
shows a partial illustration. In it, there are two motif-

attribute hierarchies: (right-turn, time) and (right-
turn, speed). Each node corresponds to a micro-cluster
feature discovered in F . For example, the black node
in Fig. 4 represents all right-turns taken between 2 and

8am. High level nodes in the hierarchies correspond to
high level features and low level nodes correspond to
low level features. By choosing different subsets of the
nodes, a user can create distinctly different views of the
data. For example, suppose one only used level one fea-
tures in Fig. 4 (i.e., “morning”, “slow”, etc). This gen-
erates a very rough view of the data and with only four
features. On the other hand, choosing the leaf nodes in
Fig. 4 generates a detailed view but with many more
features.

As mentioned previously, concept hierarchies may
already exist for some attributes (e.g., time). In such
cases, one may just choose to use them to construct
the motif-attribute hierarchy. However, in other cases
or sometimes in place of the existing hierarchies, one
could use automated techniques in ROAM to construct
the hierarchies. This has the distinct advantage that the
hierarchies are built based on the behavior of the data.
As a result, more features could be dedicated to the
dense regions and fewer features to the sparse regions.
Clustering and discretization techniques can adjust dy-
namically based on the data and could facilitate more
effective analysis.

3.3 Classification Let F ′ be the set of all nodes in
the motif-attribute hierarchies. F ′ is the largest feature
space where all resolutions are included. Though this
feature space is “complete”, it is unlikely to be the best
one for classification. It creates a high dimensional
feature space; this makes learning slow and possibly
ineffective. On the other hand, suppose we choose
only the root level nodes in all the motif-attribute
hierarchies. That is, only the “all” nodes in Fig. 4. The
problem with this feature space is that the features are
too general to be useful. What we seek is something in
between those two extremes.

To this end, we propose a rule-based classifica-
tion method: CHIP (Classification using Hierarchical
Prediction Rules). We chose a rule-based learning al-
gorithm for several reasons. First and foremost, it pro-
duces human-readable results. This is useful in practice.
Second, it is efficient. CHIP is O(N) with respect to ei-
ther the number of examples or the number of features.
Other classifiers such as Näıve Bayes or SVM are O(N2)
with respect to one. The problems we are dealing could
be large and high dimensional. Lastly, the classifica-
tion problem is unbalanced: the abnormal class has few
training examples. In such contexts, rule-based learner
have been shown to be effective [5].

3.3.1 Intuitions Before formally describing CHIP,
we give some intuitions. CHIP iteratively and greedily
searches for the best available rule until all positive

examples are covered. In addition, CHIP tries to use
high-level features whenever possible. For example,
suppose all ships that move at location X between the
hours of 12pm and 5pm are normal. Then a single
rule using the afternoon feature will suffice. Using this
principle has several benefits. First, the feature space is
kept to a small size. This speeds up learning and keeps
the problem tractable. Second, features are kept high
level whenever possible. This produces rules which are
general and easily understood by a human. Third, it
avoids the problem of over-fitting.

In machine learning research, the study of feature
space simplification or generalization is known as feature
selection [10]. Given a set features, choose a subset
which will perform better (in terms of efficiency and/or
accuracy) in the learning task. A typical approach
scores each feature and iteratively inserts or removes
them. In our setting, however, we have something
that is different than the standard setting: there are
hierarchical structures over the features. Thus, selection
should be a little smarter.

With this in mind, we propose a top-down search
in the feature hierarchies. We start with an initial high
level feature space and try to describe the data (in the
rules sense). If these features produce accurate rules,
we are satisfied. But if at some point we find that
a more specific feature will produce a better rule, we
expand the existing feature space to include that specific
feature. This process repeats until all the training data
is sufficiently covered.

3.3.2 CHIP We introduce some definitions first.
CHIP learns a set of rules, much like FOIL [19] and CPAR

[25]. A single rule r has the conjunctive form of:

l1 ∧ l2 ∧ . . . ∧ ln → c

where each li is a literal (or predicate) of the form
(feature = value) and c is the class label. An example
is “covered” by r if all the literals in r are satisfied
in the example. Next, recall that F ′ is the complete
set of features. For any feature f in F ′, let Exp(f)
return the set of f ’s children in F ′’s hierarchy. For
example, Exp(morning) = {2-8am, 8am-12pm}. At any
time, CHIP uses a subset of the features in F ′. Let FC

be this set.
A rule is learned one literal at a time. Literals are

selected according to a weighted version of Foil Gain

[19], which is based on the positive and negative cover-
age of the rule before and after adding the literal. Let
p0 and n0 be the number of positive and negative exam-
ples covered by rule r without literal l. Let p1 and n1 be
the number of positive and negative examples covered

by rule r ∧ l. Foil Gain(l, r) is then defined as

p1

(

log2

p1

p1 + n1
− log2

p0

p0 + n0

)

The weighted version of Foil Gain [25] allows previ-
ously covered positive examples to be used again but
just weighs them down. This adjusts the p and n values
appropriately in the above equation.

In the previous section, we gave the intuitive notion
of discovering that a more specific feature will perform
better than a current feature. Here, we formalize this
notion in the function Exp Gain(f, r) where f is a
feature and r is a rule. It is defined as

Exp Gain(f, r) = max
(l,fi)∀l,fi∈Exp(f)

Foil Gain(l, r)

The Exp Gain (expansion gain) of a feature is the
maximum Foil Gain achieved by any literal in any of
its child features. It is defined with respect to a non-
empty rule similar to Foil Gain. We chose this function
because it allows sensible direct numerical comparisons
between Foil Gain and Exp Gain.

Algorithm 2. (CHIP)

Input: (1) Training set D = P ∪N , where P and N are
the positive and negative examples. (2) Initial feature
set FC ∈ F ′.

Output: Set of classification rules R.

Method:

1. while not all of P is covered
2. initialize new rule r

3. while true

4. find literal l with highest Foil Gain(l, r)
5. find feature f with highest Exp Gain(f, r)
6. if both gains < min gain then break

7. if Foil Gain(l, r) > β · Exp Gain(f, r) then

8. add l to r

9. else

10. add feature f to FC

11. add r to R

12. return R

Discussion CHIP starts with all examples uncovered
and iteratively searches for the best rule to cover the
positive examples. The search is greedy and halts when
enough positive examples are covered. Rules are learned
one literal at a time, choosing them based on Foil Gain

(line 4). In line 5, the Exp Gain of each feature is
calculated. If the better gain is Foil Gain, the literal
is added to the current rule (line 8). Otherwise, the
feature space is expanded (line 10) and the process
repeats.

Complexity CHIP has running time of O(nSR) where
n is the number of examples, S is the size of the used
feature space, and R is the number of learned rules. In
our implementation, we collapsed examples (trajecto-
ries) which appear the same into meta-examples. Thus,
with a high initial feature space, n can be quite small if
the data is skewed. S can also be small initially since
there are only a few high level features. As the algo-
rithm executes, both n and S will increase with feature
expansion. This is another reason to avoid careless ex-
pansion.

4 Experiments

In this section, we show our framework’s performance in
a variety of settings. We conduct our experiments using
both real and generated data to show efficiency and
effectiveness. For data generation, we used GSTD [21]
(which generates raw trajectories) and also our own data
generator (which generates motif-trajectories). The
latter allows us to test some parts of the framework
independently of others. Efficiency experiments were
run on an Intel Pentium 4 2.6GHz machine with 1.5GB
of memory. The Motif Extractor was written in Python
and the rest was written in C++ and compiled with
GCC.

Each dataset consists of two classes: normal and
abnormal. In GSTD, we achieve this by generating two
datasets with slightly different parameters. In our own
generator, the base data is motif-trajectories. A set of
motif-expression seeds are initialized in the model and a
Gaussian mixture model is used to create randomness.
We generate the abnormal class by mixing “abnormal”
motifs with a background model that is shared between
both the normal and abnormal classes.

There are two parameters which controls CHIP. One
is the starting level in the motif-attribute hierarchy.
Level 0 denotes the root level. The other is β, the
feature expansion weight. These two parameters are
indicated as ROAM(starting level, β). Finally, since
the number of abnormal examples is small, we used
the standard F1 metric instead of accuracy. F12 is
a harmonic mean of recall and precision and better
reflects the effectiveness of the classifier. An F1 score of
100 indicates 100% recall and precision. F1 scores were
the result of 10-fold cross validation. Experiments were
run 5 times to get an average.

4.1 Real Data We obtained real ship navigational
data from the Monterey Bay Aquarium Research In-
stitute (MBARI3). Under the MUSE project, several

2F1 = (2 × recall × precision) ÷ (recall + precision)
3http://www.mbari.org/MUSE/platforms/ships.htm

ships traveled in ocean waters near Northern Califor-
nia to conduct various aquatic experiments. The ships’
navigational data, which includes time, longitude, and
latitude, were recorded. Depending on the ship, the
sampling rate varied from 10 seconds to a few minutes;
the end result are fairly continuous paths. Figure 5
shows a typical path of a vessel named Point Sur.

 0

 1

 2

 3

 4

 5

 6

 7

-0.05 0 0.05 0.1 0.15 0.2 0.25

K
m

Km

Figure 5: Sample path of ship Point Sur from 16:00 to
24:00 on 8/23/00 starting at point (0, 0).

We collected data from two different ships (namely
Point Sur and Los Lobos) and assigned different class
labels to them. The two ships carried out different tasks
and thus naturally had different movement patterns.
There was a total of 23 paths (11 of one, 12 of another),
each with 1500 to 4000 points. Using ROAM, we
extracted 40 motifs, constructed features, and tried to
recover the class labels using CHIP. Figure 6 shows two
sets of trajectory segments that were marked as motifs
10 and 14. Motif 10 is a simple straight trajectory
towards the northeastern corner. Motif 14 is a 3-part
move of going north, northwest, and then north again.

Motifs were extracted from a window of approxi-
mately 3 minutes, and had two additional attributes.
One is the distance traveled, which indicates speed, and
the other is the general Euclidean distance to the stored
motif. We did not include the time-of-day attribute
since the two ships had regular but different schedules
and including them would make the problem too easy.
Motif-attribute hierarchies (branching factor of 4) were
also generated, which ranged from 2 levels deep to 7
levels deep.

An issue raised before was the setting of ω, the
width of the window to extract motifs. Figure 7
shows the effect on classification as ω increases from 4
minutes to 60 minutes on the MBARI data. As shown,
accuracy with too small or too large of a window is poor,
but in the intermediate, it is relatively stable. Thus,
we believe that as long as the window is reasonable,
performance should not be affected too much. Another

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Extracted motif 10

-45 -40 -35 -30 -25 -20 -15 -10 -5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Extracted motif 14

Figure 6: Extracted motifs from MBARI data.

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

F
1

M
ea

su
re

Window Size (minutes)

ROAM(1,0)

Figure 7: Effect of ω on classification accuracy.

issue is how many motifs to extract. This was set to
40 in Figure 7, and Figure 8 shows the effect as that
number changes from 5 to 60. The curve shows that
we were able to achieve 100% classification accuracy
with 10 and 15 motifs. And as the number increases,
accuracy decreases but not too drastically. In general,
a reasonable number should not be too difficult to find.

4.2 Synthetic Data While the real data experi-
ments provided some validation of our methods, we were
unable to thoroughly test other aspects due to the small
dataset size. To combat this, we experimented with syn-
thetic data from GSTD and also our own data genera-
tor.

 70

 75

 80

 85

 90

 95

 100

 105

 0 10 20 30 40 50 60

F
1

M
ea

su
re

Number of Motifs

ROAM(1,0)

Figure 8: Effect of number of motifs on classification
accuracy.

4.2.1 Notation For our own data generator, we use
the following notation to denote the parameters used
in generation. Each data set’s name is in the form
of “N#B#M#A#S#L#”, where N is the number
of normal trajectories, B is the number of abnormal
ones, M is the number of motifs, A is the number of
attributes, S is the standard deviation in the Gaussian
mixture distributions, and L is the average length of the
trajectory.

4.2.2 Classification Accuracy First, we tested ac-
curacy using GSTD. In GSTD, we generate two differ-
ent classes of data using Gaussian distributed movement
centers. The two models shared the same parameters
except the mean of the centers differed by 0.01 (0.50
vs. 0.51). Fig. 9 shows the results as we also varied
the variance in the distributions. As expected, accu-
racy improves as the trajectories differ more from each
other. But even at small differences, ROAM was able to
distinguish the two classes.

 100

 95

 90

 85

 80

 75
 0.25 0.2 0.15 0.1 0.05

F
1

M
ea

su
re

Difference in Variance

ROAM(1,0.0)
ROAM(2,0.0)
ROAM(2,0.4)

Figure 9: GSTD N2000B200M30: Accuracy with
respect to difference in variance.

Next, we tested the accuracy using our own data
generator. Fig. 10 shows F1 results as the number of
motifs in the data increased from 10 to 100 on the y-axis.
For comparison, we used SVM4 (nu-SVC with radial
kernel) with the Flat-Classifier as described before and
also SVM with level 2 features. The first thing we notice
is that SVM with Flat-Classifier is hopeless, as expected.
We also observe that ROAM with level 1 features and a
little bit expansion is almost as good as SVM with level
2 features. ROAM with level 2 and a little bit expansion
is equal to or better than SVM.

We note that the size of the classification feature
space is much larger than the number of motifs. For
example, when the number of motifs equals 100, the
number of level 2 features equals nearly 1200.

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 100 80 60 40 20 0

N
um

be
r

of
 M

ot
ifs

F1 Measure

Flat-SVM
SVM(2)

ROAM(1,0.3)
ROAM(2,0.3)

Figure 10: N4kB200A3S5.0L20: Accuracy with respect
to number of motifs.

Fig. 11 shows F1 as the motif-trajectory length
varies. As the length increases, the data gets denser
and we observe that SVM’s performance deteriorates.
However, ROAM with its various configurations were
fairly stable. Fig. 12 shows the effect as standard
deviation is increases from 5 to 40. As expected, F1
decreases as the values get more spread out. One
might have noticed that we have rather large standard

4http://www.csie.ntu.edu.tw/∼cjlin/libsvm

deviation values. This is because the range of values is
large (∼1000).

 100

 90

 80

 70

 60

 50
 50 40 30 20 10

F
1

M
ea

su
re

Length of Trajectories

SVM(2)
ROAM(1,0.3)
ROAM(2,0.0)
ROAM(2,0.3)

Figure 11: N4kB200A3S5.0L20: Accuracy with respect
to length of motif-trajectories.

 70

 75

 80

 85

 90

 95

 100

 40 30 20 15 10 5

F
1

M
ea

su
re

Standard Deviation

ROAM(1,0.3)
ROAM(2,0.0)
ROAM(2,0.3)

Figure 12: N5kB100M20A3L20: Accuracy with re-
spect to standard deviation.

Recall that a larger value of β, the expansion factor,
increases the chances that CHIP will expand the feature
space during learning. The effect of different β values
vary from one dataset to another. Fig. 13 shows a
typical result. In the ROAM(1,∗) curve, ROAM starts
with level 1 features and improves significantly with
expansion. In the ROAM(2,∗) curve, F1 is high initially.
It improves slightly with some expansion but eventually
drops down. This is the effect of over-fitting. In other
words, CHIP has expanded too greedily and the feature
space has become too specific.

Finally, Fig. 14 compares a general feature space
vs. a specific one. One is ROAM(2,0), which is level 2
features with no expansion. The other is ROAM(MAX),
which is only the leaf features. We see that ROAM(2,0)
is significantly better in accuracy. Furthermore, it is
also faster. With 60 motifs, ROAM(2,0) took an average
of 84 seconds with 705 features while ROAM(MAX) took

 50

 60

 70

 80

 90

 100

 1 0.8 0.6 0.4 0.2 0

F
1

M
ea

su
re

Expansion Weight

ROAM(1,*)
ROAM(2,*)

Figure 13: N500B100M20A3S25L20: Accuracy with
respect to β.

850 seconds with approximately 4350 features.

 100

 95

 90

 85

 80
 60 50 40 30 20

F
1

M
ea

su
re

Number of Motifs

ROAM(2,0.0)
ROAM(MAX)

Figure 14: N15kB500A3S25L20: Accuracy with re-
spect to number of motifs.

4.2.3 Efficiency With regards to efficiency, we first
check sensitivity to the number of trajectories. Fig 15
shows a plot broken down into ROAM’s components,
note the log scale. As we can see, all components scale
nicely with respect to the number of trajectories. The
Motif Extractor is the slowest, but it was implemented
in Python (10–30 slower than C++) while the other
components were in C++.

Another aspect of efficiency is sensitivity to the
length of the trajectories. Fig. 16 shows the running
time as the length was increased from 10 to 100 in our
own data generator. Fig 17 shows a similar experiment
using GSTD data. Again, we see a linear increase
in running time as trajectory length increased. The
reason is that with longer trajectories, there is a linear
increase in the number of motif expressions ROAM has
to process.

 0.1

 1

 10

 100

 1000

 2600 2100 1600 1100 600

R
un

tim
e

(S
ec

on
ds

)

Number of Trajectories

Motif Extractor
Feature Generator

CHIP(1,0.0)
CHIP(2,0.4)

Figure 15: GSTD: B200M20: Efficiency with respect
to number of trajectories.

 0

 20

 40

 60

 80

 100

 100 90 80 70 60 50 40 30 20 10

R
un

tim
e

(S
ec

on
ds

)

Average Length of Trajectories

Feature Generator
ROAM(2,0.0)
ROAM(2,0.2)
ROAM(2,0.4)

Figure 16: N20000B1000M20A3S10.0: Efficiency with
respect to length of motif-trajectories.

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

R
un

tim
e

(S
ec

on
ds

)

Length of Trajectories

Motif Extractor
Feature Generator

CHIP(1,0.0)
CHIP(2,0.4)

Figure 17: GSTD: N2000B100M10: Efficiency with
respect to length of trajectories.

5 Related Work

Prior work in moving object databases (MOD) has
addressed problems similar to ours. Discrete data
model of moving objects was introduced in [6] and
used subsequently in [16, 3, 15]. However, to our

knowledge, ROAM is the first work to represent tra-
jectories in a feature space oriented on the discrete
units (fragments). Prior work used fragments as a
dimensionality-reduction technique and still retained a
trajectory model.

In [16, 15], the authors construct models to predict
trajectories as well as recognize anomalies. However,
both works assume the existence of a single trajectory
model. This works well when there is only a few
objects ([16] experimented with one object and [15]
experimented with three). In such cases, the object(s)
have clear individual patterns and could be captured in
a compact model. However with anomaly detection in a
large population, it is unclear whether such approaches
will work. Within the population, there is a very large
variation of trajectories and anomalies could occur in
any form. In ROAM, we do not assume the existence of
a single or a few global trajectory models. The classifier
can learn rules specific to any scenario.

Clustering moving objects [7, 11] and time series
[12] as well as classification of time series [24, 23] are
also related to this work. However, most of them fo-
cus analysis on the raw trajectories using techniques
such as dynamic time warping. In ROAM, the interac-
tions between the trajectories and non-spatiotemporal
attributes play a crucial role that is usually ignored in
previous work. In real world cases, such interactions
often convey the most useful information.

In addition to specific problems, representation in
MOD [8] is a core issue. In [9], abstract data types
are added to a DBMS to model the geometries. In
[6], a discrete data model is proposed. Trajectories are
decomposed into “slices” where each slice is represented
by a simple function. In comparison to our work,
these slices are simpler motifs and do not translate to
features. Related to representation, indexing and query
processing [18, 20] are also key MOD issues. However,
they focus analysis on the raw spatial and trajectory
data and query processing. For example, discovering
which moving objects are physically located within a
certain query window. In ROAM, we focus on the
semantic problem of anomaly detection which requires
higher level analysis.

Work in time series and traditional anomaly detec-
tion also touches on our problem. [1] presents tech-
niques which can query for shapes in time series, and
[4] automatically discovers motifs in time series. Al-
gorithms in this area are helpful and could be applied
in ROAM, but our framework does more than just mo-
tif discovery. It builds a hierarchical feature space us-
ing the motifs and performs high level feature analysis.
Traditional outlier detection [13] is closely tied to our
problem. However, they are only concerned with fixed

data points in 2D space. We focus on moving object
data.

In data mining, there is work which focuses on
finding frequent patterns related to moving objects.
[22] mines sequential patterns in spatial locations, and
[14] mines co-location association rules. However, such
studies are often at a higher semantic level than ROAM.
That is, they capture associations between locations
but ignore patterns in raw trajectories (as well as their
associations).

6 Discussion and Conclusion

In this paper, we have proposed the ROAM framework
for the problem of anomaly detection in massive moving
object data sets. With advances in tracking technology
and increases in the need for better security, automated
solutions for detecting abnormal behavior in moving
objects such as ships, planes, vehicles, etc. are needed
more than ever. However, this is a difficult problem
since patterns of movement linked with the environment
are complex. In ROAM, we use a novel motif-based
feature space representation with automatically derived
hierarchies. Combined with a rules-based classification
model that explores the hierarchies, ROAM is shown to
be both effective and efficient in our testing.

With ROAM, we can also start thinking about other
data types in the moving object domain. Objects that
move in transportation networks have structured data
that can be easily translated to ROAM. In addition, we
have been thinking about indexing, query processing,
clustering, local anomaly detection, and frequent pat-
tern analysis in the ROAM framework. A motif feature
based approach changes the model of many problems
and could generate many interesting solutions.

References

[1] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait.
Querying shapes of histories. In VLDB’95.

[2] V. Barnett and T. Lewis. Outliers in Statistical Data.
John Wiley & Sons, 1994.

[3] H. Cao and O. Wolfson. Nonmaterialized motion
information in transport networks. In ICDT’05.

[4] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic
discovery of time series motifs. In KDD’03.

[5] François Denis. Pac learning from positive statistical
queries. In ALT’98.

[6] L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schnei-
der. A data model and data structures for moving ob-
jects databases. In SIGMOD’00.

[7] S. Gaffney and P. Smyth. Trajectory clustering with
mixtures of regression models. In KDD’99.

[8] G. H. Güting and M. Schneider. Moving Objects

Databases. Morgan Kaufmann, 2005.

[9] R. H. Güting, M. H. Bohlen, M. Erwig, C. S. Jensen,
N. A. Lorentzos, M. Schneider, and M. Vazirgiannis.
A foundation for representing and querying moving
objects. In TODS’00.

[10] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. In Journal of Machine Learning

Research, 2003.
[11] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering

moving clusters in spatio-temporal data. In SSTD’05.
[12] E. J. Keogh and M. J. Pazzani. An enhanced rep-

resentation of time series which allows fast and accu-
rate classification, clustering and relevance feedback.
In KDD’98.

[13] E. Knorr and R. Ng. Algorithms for mining distance-
based outliers in large datasets. In VLDB’98.

[14] K. Koperski and J. Han. Discovery of spatial asso-
ciation rules in geographic information databases. In
SSD’95.

[15] V. Kostov, J. Ozawa, M. Yoshioka, and T. Kudoh.
Travel destination prediction using frequent crossing
pattern from driving history. In ITSC’05.

[16] L. Liao, D. Fox, and H. Kautz. Learning and inferring
transportation routines. In AAAI’04.

[17] H. Liu, F. Hussain, C. L. Tan, and M. Dash. Dis-
cretization: An enabling technique. Data Mining and

Knowledge Discovery, 6:393–423, 2002.
[18] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel ap-

proaches to the indexing of moving object trajectories.
In VLDB’00.

[19] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A
midterm report. In ECML’93.

[20] S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez.
Indexing the positions of continuously moving objects.
In SIGMOD’00.

[21] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento.
On the generation of spatiotemporal datasets. In
SSD’99.

[22] I. Tsoukatos and D. Gunopulos. Efficient mining of
spatiotemporal patterns. In SSTD’01.

[23] L. Wei and E. Keogh. Semi-Supervised Time Series
Classification. In KDD’06.

[24] X. Xi, E. Keogh, C. Shelton, and L. Wei. Fast Time
Series Classification Using Numerosity Reduction. In
ICML’06.

[25] X. Yin and J. Han. CPAR: Classification based on
predictive association rules. In SDM’03.

[26] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
an efficient data clustering method for very large
databases. In SIGMOD’96.

