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Abstract. The segmentation problem arises in many applications in
data mining, A.I. and statistics, including segmenting time series, deci-
sion tree algorithms and image processing. In this paper, we consider a
range of criteria which may be applied to determine if some data should
be segmented into two or regions. We develop a information theoretic
criterion (MML) for the segmentation of univariate data with Gaussian
errors. We perform simulations comparing segmentation methods (MML,
AIC, MDL and BIC) and conclude that the MML criterion is the pre-
ferred criterion. We then apply the segmentation method to financial
time series data.

1 Introduction

We consider a particular instance of the segmentation problem. The segmenta-
tion problem arises wherever it is desired to partition data into distinct homo-
geneous segments (or regions). The segmentation problem is to decide whether
to divide a segment into one or more sub-segments and to choose where to make
the divisions.

The segmentation problem arises in applications that partition data in areas
such as data mining, A.I. and statistics. The segmentation problem arise in
applications such as segmenting time series [14, 16, 5], decision tree algorithms
[11, 10], and image processing [7, 6].

1.1 The Problem Considered

Here, we consider a univariate problem, where the segment boundarys are defined
by cut-points. We assume that the data in each segment is defined by a Gaussian
distribution. Figure 1 gives an example of the type of data we might consider.
We could ask questions such as “Does this data consist of 1, 2 or 3 segments?”;
“If it consists of 3 segments, is the behaviour in the first third the same as the
behaviour in the last third?” This paper investigates methods for determining
for some data:

(i) how many cut-points should we fit (if any at all)

(ii) the location of the cut-points, and

(iii) estimating the parameters (means and variances) for each segment.
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Fig. 1. Example Data for Segmentation

1.2 Motivating the Problem Considered

At first it would appear that the problem as given is overly simple — it would not
describe any real world situations, and it should be easy to solve. We argue that
these objections are false. Data such as that in Figure 1 might be the number of
eye movements per 5 second intervals for a sleeping person, and a doctor may
be interested in how many phases of sleep there were, and when they were [14].

A different practical example where this model seems plausible is the in-
cidence of tooth cavities. Previously dentists entertained the burst-remission
theory, and dentists spent considerable effort looking for factors that induced
remission (i.e., segments with lower means). However, it appears that the data
was consistent with the assumption that it was a random walk (i.e. that there
was only one segment).

Tong [16] has written a comprehensive book about non linear time series
(including segmentation models). We consider such problems in Section 6.

1.3 Related Work

The fit of a segmentation model to data can be expressed precisely using max-
imum likelihood estimation. However, choosing a segmentation model to max-
imize the likelihood results in a model with homogeneous regions containing
only one datum each. Therefore, heuristics for solving the segmentation problem
usually involve ‘penalizing’ a segmentation for its model complexity. A number
of methods which penalize model complexity are available including AIC [1, 7],
BIC [13, 6], Minimum Description Length (MDL) [12] and Minimum Message
Length (MML) [17, 18].

In this paper, we extend the MML approach to segmentation offered by
Baxter and Oliver [2], to the multiple cutpoint case, and apply the approach to
time series problems.



This paper is organised as follows: Section 2 defines the segmentation problem
we address here. Section 3 describes a previous MDL approach [4, 10, 11], and
describes a shortcoming of this approach. Section 4 gives an MML approach to
segmentation. The MML method proposed here differs from the MDL approach
by optimising the code for the region boundary and including coding penalties for
stating the parameters of each region. We then compare a variety of segmentation
methods on simulations in Section 5. Section 6 applies the method developed to
financial time series problem.

2 Notation

Consider some data given as follows. We have n data points, each of which
consists of a pair (z;,y;). The z; are evenly spaced between [0, R]. The range
[0, R] can be cut into C + 1 pieces by C segment boundaries (or cutpoints),
{v1, ....vc}. Each y; in segment j is distributed with a Gaussian distribution
with mean ¢;, and standard deviation o;.

We wish to estimate the following parameters: (i) C, the number of cutpoints,
(ii) the segment boundaries, {v1, ....vc}, (iii) the means, {cg, ..., cc}, and
(iv) the standard deviations, {09, ..., oc}.

3 The Straightforward MDL Approach

Rissanen [12] proposed the straight forward Minimum Description Length (MDL)
criterion, which given data y and parameters 6 approximates the length as:

number params
2

where f(y|6) is the Gaussian likelihood function, —log f(y|f) approximates the
length of describing the data, and w log n approximates the length
of describing the parameter vector. This approximation is unsuited to cutpoint-
like parameters. A number of authors [4, 10, 11] have given terms® to describe
the cost of stating a cutpoint in a message. A straightforward method of coding
a cutpoint is to assume that the cutpoint is equally likely to occur in between
x; and ;41 fori = 1...(n—1) which leads to a cost* of log(n) to describe the
cutpoint. If we wish to state C cutpoints, then this will require a codeword of

length:

DescriptionLength(y,0) = —log f(y|d) + logn

DescriptionLength(C cutpoints) = log (Z’)
Dom [4] requires that C' < %, otherwise the complexity of the term decreases
for increasing C, which is counter to prior beliefs about segmentation models in

most applications.

3 We note that these authors used this penalty measure in different, but related con-
texts and that our use of it here is not meant to imply that these authors would
advocate its use here.

4 Most authors simplify matters by allowing the cutpoint to take n possible values
rather than n — 1 values.



3.1 A Problem with the Straightforward Approach

A problem with the straightforward MDL approach is that we may use too
many bits to describe a cutpoint exactly. Consider a situation where we have
the following 17 data points, with points 1-9 been generated by the Gaussian
distribution N(u = 0.0, 02 = 1.0) and points 10-17 been generated by N(u =
1.0, 02 = 1.0):
1 2 3 4 5 6 7 8 9
2.01 -1.78 -1.16 -2.00 -1.68 0.28 0.17 -0.50 0.06

10 11 12 13 14 15 16 17
1.29 -0.43 1.70 0.74 2.69 3.75 0.81 0.66

The straightforward MDL approach requires 4 binary bits to describe a cut-
point, The negative log-likelihood — log f(y|#) is minimised if we place the cut-
point between points 11 and 12. Placing the cutpoint here, results in the following
estimates:

co=-034, ¢ =172, 09=122, o, =115
and a negative log-likelihood: —log f(y|d) = 25.68 + 13.50 = 39.18 bits. The
total description length is then:

DescriptionLength(y,0) = 39.18 +8.17+4.00 = 51.35 bits

We should also consider encoding the cutpoints less precisely. For example, we
could use an encoding scheme which restricts the cutpoints to every second
interval, thus requiring only 3 bits to specify a cutpoint. Using this scheme, and
placing the cutpoint between points 8 and 9 results in a description length of
40.28 + 8.17 + 3.00 = 51.45 bits.

We can further restrict the possible cutpoints to every fourth interval, thus
requiring only 2 bits to specify the cutpoint. Using this scheme, and placing the
cutpoint between points 8 and 9 results in a description length of 40.28 + 8.17
+ 2.00 = 50.45 bits.

Obviously there are many such schemes — the issue we raise is that we
may consider schemes where less that 4 bits are required to encode a cutpoint.
However, using fewer bits to describe the cutpoint means that our model is less
likely to fit the data well.

The MML approach requires us to determine how precisely we wish to state
parameters, and hence the mathematics in this paper optimises the choice of
coding schemes for cutpoints.

4 Applying MML to Segmentation

We consider sending a message for this data of the form:

C, co, ... Coy 00y .. OCy Vi, oo VCy Y1, «-- Yn-

The distance between successive x; is assumed known. Since the z; are evenly
spaced, one can work out the number of z; in any region from knowing the size
of the region. The range of z; is assumed to be known by the receiver a priori.



4.1 Minimum Message Length Formulas

Wallace and Freeman [18] showed that under some fairly general conditions
(a locally flat prior and quadratic log-likelihood function) the expected message
length (taking the expectation over coding schemes [8, Section 3.3.1]) for sending
y and parameters 6 is:

E(MessLen(y,8)) = —logh(f) —log f(y|0) + 0.5logdet(F(0)) + glog Kq + g

where h(#) is the assumed known prior density on 6, d is the dimension of 4,
f(y|0) is the likelihood, of y given 0, det(F(6)) is the determinant of the Fisher
Information matrix, and kg4 is the d dimensional lattice constant.

The Wallace and Freeman approximation does not apply to cutpoint-like
parameters because the log-likelihood function is not continuous, and hence the
Fisher Information matrix is not defined for this type of parameter.

4.2 The One Segment, C = 0, case

For fitting a constant with no cut points C' = 0, our 8 consists of two parameters,
¢co and og. We choose a non-informative (improper) prior based on the population
variance of y; [17, 9]:

1

2
20'pop

h(607 00) =

where o, is the standard deviation of the y;.
Since the likelihood is Gaussian N(cg, 03), the Fisher Information matrix in
this case has two diagonal entries and is:

2n?
det(F(Co, 0'0)) = —a

0o

For a Gaussian likelihood, the negative log-likelihood, Lg simplifies:
- - ~ (yi —co0)® _ n
Lo = —log f(yld) = nlog(V2moo) + E ~——— = nlog(V2mo0) + - (1)
i=1 20 2

Hence, we get the following expression for the expected message length:

logka d

E(MessLen) = —log h(co, 00) + 0.5 log det(F'(co, 00)) +nlog(Vv2mao) + g + —g + 3

where d = 2 and Ky = 5~ [3].



4.3 The C =1 case

We now consider the effect of stating the cut point, v, imprecisely. Let the cut
point have precision AOPYV, (an acronym for Accuracy Of Parameter Value).

Let € be the difference in the v stated in the message, and the maximum
likelihood v estimated from the data. Assume € is uniformly distributed in the
range [%, %]. We now need to state ¢y and ¢y, the constants fitted to
the data in the regions on each side of the cut point and also the cut point itself.

In the following we denote the set of z; in region 0 fitted by constant ¢ as
So. We do the same for the set of z; in region 1 fitted by constant ¢;, denoting
it S1. Let ng be the number of items in Sy and n; be the number of items in
S1. The residual errors are assumed to be distributed as N (0, 03) for region Sp
and as N(0,0?) for region S;. We assume that the v is uniformly distributed,
and hence h(v) = %. The message length expression for the parameters is then
written as follows:

MessLen(0) = —log h(co, o¢) —logh(c1, o1) —logl/R
+0.5logdet(F (co, 00)) + 0.5logdet(F(c1, o1)) — log AOPYV,
+2 + 2log K4 (2)
We note that, given our assumptions about evenly spaced z, we expect n(1— %)

nlel

data items will lie in their correct regions, but we expect = data items will be

put in the ‘wrong’ region.
Let MLC; be the per item data cost of stating an item correctly put in
segment j. Hence,

MLCO = log(\/%ag) + Z M

2
i€Sg 20-0 o
Let M LW; be the per item data cost of stating an item wrongly put in segment
j and hence, X
i —C
MLW, = log(v2701) + Y (v > )
: 20{ng
i€So
The message length expression for the data is then:
MessLen(y|6) = MessLen(y € correct region|f) + MessLen(y € wrong region|6)
which we approximate as:

ML ML
MessLen(y|0) ~ ngMLCy + niMLC; — M (M) +

2 R

2 R

We wish to determine the expected message length. The expected cost of stating
incorrectly identified data is simplified by letting D = ¢g — ¢1:

RSSq + ng D2
20’%’)10

MLWo + MLW, (@ )

E(MLW,) = log(V2ro1) +



where RSSy is the residual sum of squares (RSSo = > ;g (¥i — co)?).

The expected value of the absolute value of € is %, since
AOPV
2 2 AOPYV,
E = —— d = v
e = Zopy, J, == 4

Hence, the expected message length for the data is:

nAOPV,

E(MessLen(y|6)) = Lo + L1 + ( SR

) E(MLWy, — MLCo + MLW; — MLC4)
3)
where Ly and L; are the negative log likelihoods of segment 0 and segment 1
respectively (as defined in Equation (1)).
We now sum the terms which contain AOPYV, from Equations (2) and (3):

nAOPYV,

—log AOPYV, (7
og + SR

) E(MLWo — MLCo + MLW; — MLCy)  (4)

We take the partial derivative of Expression (4) w.r.t. AOPYV,, set the result
to 0 and solve for the optimal AOPYV, to minimize the expected message length
expression:

8R/n

AOPV, =
E(MLW() — MLCo + MLW; — MLCl)

The AOPV,, can be interpreted as a volume in the parameter space. As ng and
ny grow, we see that the volume decreases because the estimate of v can be
stated more accurately.

4.4 Message Length Expression
To simplify the algebra, let
X =EMLWy — MLCy) + EIMLW; — MLC),

so that the optimal AOPYV, is 81;2(/". We substitute the optimal AOPYV, into

the message length expression obtained by summing Equations (2) and (3) and
simplifying:

E(MessLen(y,6)) = —log h(co, o0) —logh(c1, o1) —logl/R
+0.5log det(F(co, 00)) + 0.5logdet(F(c1, o1)) — log AOPV,

X
+2+2logka +Lo + L1 + X (5)



4.5 Multiple Cutpoints

We now generalise Equation (5) to C > 1 cutpoints. Let M LC; be the per item
data cost of stating an item correctly put in segment j. Let M LW ; be the per
item data cost of stating an item from segment j wrongly put into segment k.
For each cutpoint (j = 1..C) let

Xj = E(MLW]'_LJ' — MLCj_l) + E(MLWj,j_l — MLC])
so that the optimal AOPV,; for cutpoint j is:

8R/(nj—1+mn )

AOPV,; = X,
With C' > 1 cutpoints, we have:
c c
E(MessLen(y,0)) = —Zlogh(cj, oj) — Clogl/R + 0.5Zlogd6t(F(cj, oj))

j=0 j=0

c 4 d c
—log C! _.Z:logAOPV” + 5 + 5 log ra +2%Lj +C  (6)

j= j=

5 Simulation Results

We ran simulations comparing the following criteria:
(i) MML, using Equation (6) of this paper.

(ii) AIC, using — log f(y|0) + number params [7].
(i) BIC, using — log f(y|f) + 2umber params |40y [6].
(

iv) MDL, using — log f(y) + w logn + log (g)

5.1 The Search Method

It is impractical to consider every possible segmentation of data once we consider
multiple cutpoints. We therefore used the following search method. Given a set
of data, we consider every binary segmentation (i.e., one cutpoint) and identify
those cutpoints which are local maxima in likelihood. We then perform an ex-
haustive search of segmentations using the cutpoints which are local maxima
in likelihood. The segmentations are also required to have a minimum segment
length of 3.



kE [1 2 3 4 5]Av.KL k [1 23 4 5[]Av.KL
n=20 n=20
MML[99 0 1 0 0| 0.085| [MML[6928 3 0 0 0.324
AIC |39 3522 4 0| 23.926| |AIC (154730 8 0| 24.172
BIC |78 157 0 0| 23.058) |BIC 4838 9 5 0| 23.510
MDL|92 5 3 0 0] 20.238] |MDL|7021 6 3 0| 23.061
n=40 n=40
MML[98 2 0 0 0| 0.033] [MML[3760 3 0 0 0.140
AIC |30 203114 5| 9.089| |AIC |4 403221 3| 13.559
BIC |87 10 3 0 0| 7.487| |BIC|295812 1 0| 12.412
MDL|98 2 0 0 0| 0424 |MDL|5341 6 0 0| 10.166
n=_80 n=_380
MML[99 0 0 0 1] 0020 [MML[1181 6 1 1| 0.088
AIC |12 9 302524 4.446] |AIC|0 17273026 7.246
BIC|95 4 1 0 0| 0483 |BIC[1676 7 0 1| 0.816
MDL|99 1 0 0 0| 0.265| |MDL|3463 3 0 0| 0.770
n=160 n=160
MML[99 1 0 0 0| 0.007| [MML[0 98 2 0 0] 0.025
AIC| 6 9 233131 3.961] |AIC|0 23322619 2.777
BIC |99 1 0 0 0| 0.08)] [BIC|1972 0 0| 0.108
MDL|100 0 0 0 0| 0.007| |MDL|2 98 0 0 0| 0.027

Table 1. (a) True no. of segments = 1 Table 1. (b) True no. of segments = 2

k 1 2 3 4 56|Av. KL k |12 3 4 5 6|Av. KL
n=20 n=80

MML|(3165 4 0 00| 0.320 MML{05050 0 0 0| 0.106
AIC |3 4943 4 10| 17.441 AIC |0 4 343523 4| 6.089
BIC |156122 2 00| 16.884 BIC|06136 3 0 0| 2.786
MDL|34 5213 1 00| 16.034 MDL|07722 1 0 O 1.358
n=40 n=160
MML|3 812 0 00| 0.191 MML[0 8 92 0 0 0| 0.044
AIC |0 28 41 264 1| 10.379 AIC |0 0 322821 19| 2.729
BIC |3 7916 1 10| 9.337 BIC|02179 0 0 0| 1.416
MDL|1078 10 1 10| 9.255 MDL|04654 0 0 0| 1.316

Table 2. True no. of segments = 3

5.2 Results

In Tables 1(a), 1(b) and 2, we give the results when we presented simulated data
to the criteria given in Section 5. The data used in the simulations was generated
according to the following distributions:

Table 1(a) — One segment with distribution N(u = 0,02 = 1),

Table 1(b) — Two segments with the first half distributed as N(u = 0,02 = 1)
and the second half distributed as N(u = 1,02 = 1), and

Table 2 — Three segments with the first third distributed as N(u = 0,02 = 1),



the middle third distributed as N(u = 1,02 = 1) and the last third distributed
as N(u=2,0%=1).

In each simulation, we generated n points from the appropriate distribution. We
applied the search method described in Section 5.1. We applied the criteria from
Section 5 and listed the number of times the criteria estimated each value of &
from 100 simulations. Tables 1(a), 1(b) and 2 also give the average Kullback-
Liebler distance (Av. KL) between the predicted distribution, and the underlying
distribution®.

6 Time Series Applications
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Fig. 2. The US GNP 1947 — 1966

We may model time series of the form: 2,41 = 2 + ¢; + €(0,07) by setting
Y+ = 241 — Z¢. This may be a reasonable method for segmenting data from
examples such as: (i) economic time series, (ii) electrocardiogram measurements
and (iii) eye movement measurements from a sleeping person.

We segmented the quarterly gross national product (GNP) for the United
States from 1947 — 1966 [14]. Figure 2¢ shows the preferred MML segmentation
for this data. The BIC and MDL criteria also preferred this segmentation, while
the AIC criterion preferred a segmentation with 7 segments.

5 The Kullback-Liebler distance (given for example in [15, Chp. 9]) between a true
distribution N(u:, o) and a fitted distribution N(uy, a?) is

log 7- — 5 + ﬁ(af + (e — pg)?)-

6 The units in the figure are billions of (non constant) dollars.
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Fig. 3. The Canadian 10 year bond yield 1989 — 1996 with 12 cut points

We then considered segmenting a larger data set, namely the Canadian 10
year bond yield. The data set consists of 1514 values of the Canadian 10 year
bond (measured in Canadian dollars) for the period 1989 — 1996. The segmenta-
tion program took 24 minutes and 31 seconds to examine segmentations of up to
30 segments on a DECstation 5000/20 using a greedy search strategy. The MML
criterion found evidence for there being at least 8 cut points since the message
length of the data with no cut points was 5501.9 nits and the message length
with 8 cut points was 5295.1 nits. The minimum message length (with 12 cut
points — see Figure 3) was 5282.8 nits.

7 Conclusion

We have derived a message length criterion for the segmentation of univariate
data with Gaussian noise. We tested the criterion and found that it outperformed
other criteria (AIC, BIC, MDL) in determining the number of regions in the
simulations conducted here. Of the methods considered in this paper, the average
Kullback-Liebler distance between the fitted distribution and true distribution
was far smaller for the MML method. The method was successfully applied to
two financial time series problems; the method scaled up reasonably to handle
a data set with 1514 data points.
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