
Lightweight Rule Induction

Sholom Weiss and Nitin Indurkhya

To appear in
Proceedings of the International Conference on

Machine Learning (ICML) 2000



Lightweight Rule Induction

Sholom M. Weiss sholom@us.ibm.com

Nitin Indurkhya nitin@data-miner.com

IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA

Abstract
A lightweight rule induction method is de-
scribed that generates compact Disjunctive
Normal Form (DNF) rules. Each class has
an equal number of unweighted rules. A new
example is classi�ed by applying all rules and
assigning the example to the class with the
most satis�ed rules. The induction method
attempts to minimize the training error with
no pruning. An overall design is speci�ed
by setting limits on the size and number
of rules. During training, cases are adap-
tively weighted using a simple cumulative er-
ror method. The induction method is nearly
linear in time relative to an increase in the
number of induced rules or the number of
cases. Experimental results on large bench-
mark data sets demonstrate that predictive
performance can rival the best reported re-
sults in the literature.

1. Introduction

Decision trees and decision rules are well-known and
related types of classi�ers. The terminal nodes of a
tree can be grouped into Disjunctive Normal Form
(DNF) rules, only one of which is satis�ed for a new
case. Decision rules are also DNF rules, but allow rules
to overlap, which potentially allows for more compact
and interesting rule sets.

Decision tree induction methods are more e�cient
than those for decision rule induction{some methods
for decision rule induction actually start with an in-
duced decision tree. Procedures for pruning and opti-
mization are relatively complex (Weiss & Indurkhya,
1993; Cohen, 1995). In terms of predictive perfor-
mance, logic-based methods have di�culty with appli-
cations having complex solutions. With lesser support
for many of the rules, the induced solutions are often
bedeviled by high variance, where the training error is
far from the test error.

Single decision trees are often dramatically outper-
formed by voting methods for multiple decision trees.
Such methods produce exaggeratedly complex solu-
tions, but they may be the best obtainable with any

classi�er. In Cohen and Singer (1999), boosting tech-
niques (Schapire, 1999) are used by a system called
SLIPPER to generate a weighted set of rules that are
shown to generally outperform standard rule induc-
tion techniques. While these rules can maintain clar-
ity of explanation, they do not match the predictive
performance of the strongest learning methods, such
as boosted trees. Of particular interest to our work
is Friedman et al. (1998) where very small trees are
boosted to high predictive performance by truncated
tree induction (TTI). Small trees can be decomposed
into a collection of interpretable rules. Some of the
boosted collections of tiny trees, even tree stumps,
have actually performed best on benchmark applica-
tions.

In this paper, a lightweight rule induction method is
described that generates compact Disjunctive Normal
Form (DNF) classi�cation rules. A simple induction
technique is applied to the full set of training cases at-
tempting to minimize error with no pruning. An over-
all design is speci�ed by setting limits on the size and
number of rules. Design goals can be determined based
on a tradeo� of simplicity of explanation for predictive
performance. Although the algorithms are exception-
ally simple for a rule induction system, experimental
results on large benchmark data sets demonstrate that
predictive performance can rival the best reported re-
sults in the literature.

2. Methods and Procedures

The classical approach to rule induction is a two-step
process. The �rst step is to �nd a single covering so-
lution for all training examples. The covering rule set
is found directly by inducing conjunctive rules or indi-
rectly by inducing a decision tree. The direct solution
usually involved inducing one rule at a time, removing
the cases covered by the rule, and then repeating the
process. The second step is to prune the covering rule
set or tree into smaller structures, and pick the best
one, either by a statistical test or by applying the rule
sets to independent test cases.

A pure DNF rule for classi�cation is evaluated as sat-
is�ed or not. If satis�ed, the rule implies a speci�c
class. The conditions or components of a rule can be



tested by applying � or > operators to variables and
coding categorical values separately as 1 for true and
0 for false.

We can measure the size of a DNF rule with two mea-
surements: (a) the length of a conjunctive term and
the number of terms (disjuncts). For example,

fc1 c2 c3g OR fc1 c3 c4g ) Class

is a DNF rule for conditions ci with maximum length
of three and two terms (disjuncts). Complexity of rule
sets can be controlled by providing an upper bound on
these two measurements.

Table 1 describes the standard analysis of results for
binary classi�cation. For evaluation purposes, a rule is
applied to each case. Classi�cation error is measured
as in equation 1. For case i, FP(i) is 1 for a false pos-
itive, FN(i) is 1 for a false negative, and 0 otherwise.

Error = FP+FN ;FP =
X

i

FP (i);FN =
X

i

FN (i)

(1)

For almost all applications, more than one rule is
needed to achieve good predictive performance. In our
lightweight approach, a solution consists of a set of an
equal number of unweighted rules for each class. A
new example is classi�ed by picking the class having
the most votes, the class with the most satis�ed rules.
We are very democratic; each class has an equal num-
ber of rules and votes, and each rule is approximately
the same size.

The principal remaining task is to describe a method
for inducing rules from data. So far we have given
a brief description of binary classi�cation. Yet, this
form of binary classi�cation is at the heart of the rule
induction algorithm. Let's continue to consider binary
classi�cation. The most trivial method for rule in-
duction is to grow a conjunctive term of a rule by the
greedy addition of a single condition that minimizes er-
ror. To ensure that a term is always added (when error
is nonzero) we can de�ne a slightly modi�ed measure,
err1 in equation 2. Error is computed over candidate
conditions where TP is greater than zero. If no added
condition adds a true positive, the cost of a false nega-
tive error is doubled and the minimum cost solution is
found. The cost of a false positive remains at 1. The
minimum err1 is readily computed during sequential
search using the bound of the current best err1 value.

Err1 = FP + k �FN fwhere k = 1; 2; 4:::andTP > 0g
(2)

Frq(i) = 1 + e(i)3 (3)

FP =
X

i

FP (i)�frq(i); FN =
X

i

FN (i)�frq(i) (4)

The lightweight method is adaptive, and follows the
well-known principle embodied in boosting: Give
greater representation to erroneously classi�ed cases.
The technique for weighting cases during training is
greatly simpli�ed from the usual boosting methods.
Analogous to Breiman (1996a), no weights are used
in the induced solution. Weighting of cases during
sampling follows a simple method: Let e(i) be the cu-
mulative number of errors for case i for all rules. It is
computed by applying all prior induced rules and sum-
ming the errors for a case. The weighting given to a
case during induction is an integer value, representing
a relative frequency of that case in the new sample.
Equation 3 is the frequency that is used. It has good
empirical support, having had the best reported re-
sults on an important text-mining benchmark (Weiss
et al., 1999), and was �rst described in Weiss and In-
durkhya (1998). Thus if 10 rules have been generated,
4 of them erroneous on case i, then case i is treated as if
it appeared in the sample 65 times. Based on prior ex-
perience, alternative functions to Equation 3 may also
perform well. Unlike the results of Bauer and Kohavi
(1999) for the alternative of Breiman (1996a), Equa-
tion 3 performs well with or without random resam-
pling, and the LRI algorithm uses no random resam-
pling. The computation of FP and FN during training
is modi�ed slightly to follow Equation 4.

Err1 is computed by simple integer addition. In prac-
tice, we use only 33 di�erent values of e(i), for i=0 to
32. Whenever, the number of cumulative errors ex-
ceeds 32, all cumulative errors are normalized by an
integer division of 2.

The training algorithm for inducing a DNF rule R is
given in Table 2. The algorithm is repeated sequen-
tially for the desired number of rules. Rules are al-
ways induced for binary classi�cation, class versus not-
class. A m-class classi�cation problem is handled by
mapping it to m binary classi�cation problems { one
for each class. Each of the binary classi�cation prob-
lems can be computed independently and in parallel.
As we shall in Section 4, the equality of voting and
rule size, makes the predictive performance of rules
induced from multiple binary classi�cation problems
quite comparable.

2.1 Data Preparation

A very simple pre-processing step dramatically in-
creases the e�ciency of rule induction. Each DNF
rule is induced from the complete sample and the ex-
pectation is that rule size is relative small. To �nd the
best threshold for splitting a variable, substantial time
can be expended in sorting the full data set repeatedly.
Prior to any learning, we sort each variable only once



Table 1. Analysis of Error for Binary Classi�cation

Rule-true Rule-false
Class-true True positives (TP) False negatives (FN)
Class-false False positives (FP) True negatives (TN)

Table 2. Lightweight Rule Induction Algorithm

1. Grow conjunctive term T until the maximum
length (or until FN = 0) by greedily adding con-
ditions that minimize err1.

2. Record T as the next disjunct for rule R. If
less than the maximum number of disjuncts (and
FN > 0), remove cases covered by T , and con-
tinue with step 1.

3. Evaluate the induced rule R on all training cases i
and update e(i), the cumulative number of errors
for case i.

and produce a paired ordered list of the form fri; jg,
where ri is the i-th smallest real value and j is the
j-th case. This representation doubles the size of the
original data, but transforms the search for the best
condition into a sequential loop over the sorted pairs.
The expended time for this one-time sort of each at-
tribute is a �xed cost that is almost inconsequential
when compared to the overall induction time. Yet,
the remaining processing is so simple and attuned to a
modern sequential processing computer that the com-
putational complexity becomes approximately linear
in the number of rules or cases (See Section 4).

2.2 Estimating Future Performance

To select the solution with the best predictive per-
formance, decisions must be made about the two key
measures of rule size: (a) conjunctive term length and
(b) the number of disjuncts. If the goal is data min-
ing, then the best solution can be found by using an
independent test set for estimating true error. For ap-
plications with lesser data, two adjunct measures are
useful in model selection: (a) training error and (b) the
percentage of close votes (margins) in correctly clas-
si�ed cases. Unlike voted combinations of large trees,
the small size of the rules will often lead to training
errors far larger than zero. As we shall see in Section
4, the trends for training errors, margins and solution
complexity, have an important e�ect on generality.

2.3 Missing Values

A pure DNF rule induction system has strong capa-
bilities for handling missing values. Disjunction can
produce overlap and redundancy. If we apply a rule
to a case, and a term is not satis�ed because one

of its conditions has a missing value, the rule may
still be satis�ed by one of the other disjuncts of the
rule. These rules have no special conditions referring
to missing values; they look no di�erent than rules in-
duced from data with no missing values. How is this
accomplished? For the application of rules, a term is
considered not satis�ed when a missing value is en-
countered in a case. During training, the following
slight modi�cations are made to the induction proce-
dures:

� When looping to �nd the best attribute condition,
skip cases with missing values.

� Normalize error to a base relative to the frequency
of all cases.

Normk =

P
n; all frq(n)P

i; w=o missing vals frq(i)
(5)

FPk = Normk �
X

i

FP (i) � frq(i) (6)

FNk = Normk �
X

i

FN (i) � frq(i) (7)

Each feature may have a variable number of missing
values. The normalization factor is computed as in
Equation 5 for feature k. The normalization factor is
the total number of cases, n, including missing values
cases, divided by the frequency of cases without miss-
ing values. False positives and negatives are computed
as in Equations 6 and 7, a straightforward normaliza-
tion of Equation 4.

2.4 Feature Selection Speedup

In Friedman et al. (1998), a substantial speedup in
training was demonstrated by ignoring cases having
low weights. Decision trees were induced without these
cases, but tested on all cases. If su�cient errors were
encountered on the ignored cases, their weights were
increased and they were re-admitted to the training
sample.

For our lightweight rule induction method, the follow-
ing alternative speedup is also e�ective: during the
�rst k inductions of rules, record the features that are
selected. After the �rst k rules are induced, ignore all
features not selected by the �rst k rules. If the num-
ber of features selected is small relative to the total



Table 3. Comparison of High-Performance Rule Induction Methods

SLIPPER TTI LRI
Disjunction no yes yes
Pruning yes no no

Random training yes no no
Default rule yes no no
direct goal rule tree rule

Rule Size limit no yes yes
Minimizing function Z gini/entropy error

Multi-class no yes yes
Weighted solutions yes yes no
Weighted cases yes yes yes

Adaptive function boosted boosted cumulative error
Number of rules per class unequal unequal equal

Voting unequal unequal equal
Missing value rules special special same

number of features, the speedup is high. The ignored
features are not re-admitted to the pool.

3. Foundations of Lightweight Rule

Induction

Table 3 summarizes the di�erent characteristics of
methods that improve on classical rule induction by
adaptively inducing solutions. We compare SLIPPER
and TTI with our new lightweight rule induction (LRI)
method. Disjunction refers to individual DNF rules
that are voted as one unit. As will be seen in Sec-
tion 4, some applications require the more complex ba-
sis function implied by disjuncts within an individual
rule. Some systems have default rules for the largest
class, others generate rules for each class. Most adap-
tive methods weight each rule or each disjunctive rule
set. Although TTI and LRI di�er signi�cantly in the
use of direct rule induction versus small tree induc-
tion, LRI has more similarities to TTI than SLIPPER.
Yet, the LRI scheme is highly simpli�ed. It produces
unweighted rules; the class with the most votes is se-
lected. All classes have the same number of rules. The
minimizing function is simply the error and the adap-
tive function for weighting the case during training
uses the simple cumulative error of all previous rules.

Experienced users of conventional rule induction meth-
ods may be very surprised by LRI's egalitarian repre-
sentation of decision rules. These rules appear the
same as rules induced by classical methods, yet many
rules are approximately the same size, and each class
has an equal number of rules. Surely something is
amiss when we �nd applications where a class is read-
ily discriminated by a single short rule, and another
class requires many long rules.

The classical view of a rule or tree induction is to �nd

a strong set of rules or concepts that explain the cases.
A good solution consists of a many strong rules each
of which covers a subset of cases. A decision tree for
example will have only one rule invoked for a single
case, and to be successful, it must be a strong rule that
e�ectively captures the concept that it represents,

But the rules of LRI are not induced in the conven-
tional manner. To vote rules, each rule must be con-
sidered a complete \solution" with training and testing
on all cases in the sample. Voting methods can com-
bine many weak solutions and produce a strong overall
solution. For each DNF rule, the LRI algorithm in Ta-
ble 2 clearly tries to induce a complete solution taken
over \all cases" in the (weighted) sample. It does not
vote the number of disjuncts �red in a rule; it gives one
vote to each DNF rule, and that rule is a complete, of-
ten weak solution for all cases. Because the solutions
are induced by binary classi�cation, it is natural to
�nd an equal number of complete solutions for each
class, and then select the class with the most votes,
Although we use unweighted votes, the identical so-
lution may be replicated many times, and its relative
importance increased by tabulating the votes.

To understand why most LRI rules are approximately
the same size, i.e. bounded by a maximum number
of disjuncts and maximum length, we look to statisti-
cal learning theory. In Friedman et al. (1998), we see
boosting explained as a special form of additive logistic
regression, a voting system that can use a basis func-
tion of �xed complexity. In classical statistical fashion,
they show that the basis function need not be complex
like a full tree. Instead, they demonstrate that trun-
cated trees, i.e. trees having a maximum depth, have
the potential for very strong solutions when the right-
size basis function is used. Their trees are grown only
to a �xed depth, and the size of the implied rules are
�xed, exactly as we do in LRI. From a classical statis-



tical viewpoint, choosing a basis function of �xed com-
plexity is natural for many statistical learning meth-
ods such as regression with splines (Friedman, 1991)
or neural nets with a �xed number of hidden units
(Weiss & Kapouleas, 1989), or cost complexity prun-
ing with resampling for decision trees (Breiman et al.,
1984). Individual LRI rules of a �xed, short size may
be weaker and make more errors than those found by
classical methods, but in the context of voting they
may be considered basis functions whose �xed com-
plexity allows for estimation of just the right �t for
the best solution.

Ultimately the validity of this approach can be tested
on data. In the next section, we present our experi-
mental results.

4. Results

To test the e�cacy of lightweight rule induction, data
sets from the UCI repository (Blake et al., 1999) were
processed. Table 4 summarizes the characteristics of
these data. The number of features describes numeri-
cal features and categorical variables decomposed into
binary features. Our principle objective is data min-
ing, so we selected data sets having relatively large
numbers of training cases and designated test sets.
We also included several non-proprietary data sets de-
scribed in Cohen and Singer (1999). Both real-world
and synthetic data sets (wave, led, noise) were used.
It is well-known that decision trees do poorly on many
of the data sets that we used, for example letter, digit
and wave (as will be shown in Table 5). Two noisy
data sets are also included (a) noise - a set of random
numbers with a .3 prior for the smaller class and (b)
digit25 - the digit data set with 25% of the feature
values randomly set to missing.

Table 4. Data Characteristics

Name Train Test Features Classes
adult 30162 15060 105 2
blackj 5000 10000 6 2
coding 5000 15000 60 2
digit 7291 2007 256 10
digit25 7291 2007 256 10
dna 2000 1186 180 3
isolet 6238 1559 617 26
led 5000 5000 24 10
letter 16000 4000 16 26
move 1483 1546 76 2
noise 5000 5000 20 2

satellite 4435 2000 36 6
splice 2175 1000 240 2
wave 5000 5000 40 3

LRI has 4 design parameters that a�ect results: (a)

the number of rules per class (b) the number of rules
after which feature selection is frozen (c) the maximum
length of a rule and (d) the maximum number of dis-
junctions. For all of our experiments, we set the length
of rules to 5 conditions and froze all feature selection
after 50 rules for each class. We varied the number of
disjuncts in each rule from 1, 2, 4, 8, 16, where 1 is a
rule with a single conjunctive term.

We also varied the number of rules to measure the
gain in predictive performance as the number of rules
increases versus the performance of simpler, but fewer
rules. Table 5 summarizes the results for a maximum
number of terms from 1 to 16. Also included in the
table are the published results of SLIPPER, and the
results of selecting the minimum test-error tree from
a collection of pruned trees trained by a variation of
CART applied solely to the training data. Because
the test error was used for �nding the minimum error
tree, the tree results are somewhat optimistic. Still,
for data mining applications, this procedure might be
quite reasonable (Breiman et al., 1984). The standard
error is computed for the error of the minimum tree.
A asterisk next to an LRI entry indicates that it is
the minimum training error solution. Although com-
plexity can be increased, LRI does not always decrease
its training error. Occasionally, the training error can
actually degenerate markedly, e.g. the blackjack data.
A dagger indicates that the entry is a much simpler
solution and is within 1% of the minimum training
error.

Table 5 compares the results for just 10 LRI rules with
other DNF methods. For greater numbers of rules, it
is possible to far exceed those levels of predictive per-
formance. Table 6 summarizes the results for varying
the number of rules for each class. The error listed
is for the solution with the minimum training error.
Also listed is the global minimum test error for any
of the trained solutions. The approximate minimum
error found in the literature is also given with its stan-
dard error. For noise, led, and wave, the Bayes error is
known. For satellite, this result is cited in Dietterich
(in press). For blackj, coding, move and splice, the re-
sults cited in Cohen and Singer (1999) are used since
they were based on similar train-test splits as ours. For
adult, the result in Cohen and Singer (1999) is used
even though it is based on a smaller training set (5000
cases only) than ours. For letter, the result is cited in
Friedman et al. (1998). For digit and dna, the results
are taken fromBreiman (1996b). For isolet, the results
are cited in Dietterich and Bakri (1991).

To obtain approximate timings, LRI was trained on
the digit data set with two and four terms. The num-
ber of rules was increased from 25 to 50 to 100. To
observe the e�ect of doubling the number of rules, a
baseline time for 25 rules was compared to 50 rules,
and a baseline time for 50 rules was compared to 100
rules. Figure 1 summarizes the results. The time al-



Table 5. Comparative Error for Rule Sets with Ten Rules

Number of disjuncts per rule
Name 1 2 4 8 16 SLIPPER min-tree SE
adult .158 .153 .150 .152 .143* .147 .145 .002
blackj .308 .283* .330 .281 .612 .279 .278 .004
coding .331 .332 .294 .292 .295* .302 .337 .004
digit .110 .099 .091 .089y .088* - .154 .008
digit25 .158 .142 .130 .129y .114* - - -
dna .161 .076 .063 .051y .064* - .075 .008
isolet .078 .072y .081 .083 .113* - .173 .010
led .275 .266 .284 .282y .291* - .264 .006
letter .215 .155 .114 .089 .071* - .134 .005
move .282 .278 .255 .241 .202* .239 .255 .011
noise .324 .317 .336 .332 .339* - .298 .006

satellite .141 .128 .117 .113 .116* - .146 .008
splice .227 .085 .050 .044y .045* .059 .043 .006
wave .167 .158 .160 .155y .162* - .231 .006

0 25 50 100
Number of Rules

0

0.5

1

1.5

2

2.5

In
cr

ea
se

d 
T

im
e 

F
ac

to
r

2 terms

4 terms

Figure 1. Timing Ratio on Doubling the Number of Rules

most exactly doubles for an increase from 25 to 50
rules. For 100 rules, the time factor is less than 2
because feature selection is frozen at 50 rules.

A random sample of 50% was taken from the digit
training data, and timings were made for training both
the full sample and the half-sample. Figure 2 summa-
rizes the results. In all variations, a doubling of the
number of cases takes approximately twice the time
for the same number of rules.

When working with very large databases, the follow-
ing e�ects can be noted: (a) Memory is not a major
limiter. The data are processed in linear order, and

25 50 100
Number of Rules

0

0.5

1

1.5

2

2.5
In

cr
ea

se
d 

T
im

in
g 

F
ac

to
r

2 terms

4 terms

Figure 2. Timing Ratio on Doubling the Number of Cases

all data could reside completely on disk with minimal
use of real memory. (b) Computational time for in-
creased number of rules or cases is nearly linear as
demonstrated by Figures 2 and 3. (c) One need not
repeat experiments for di�erent number of rules. For
a �xed size rule, the �rst k rules are the same no mat-
ter how many additional rules are induced. in gen-
eral results improve or stabilize with more rules and
smaller numbers of rules can be extracted from a single
run of a larger number of rules. Therefore the num-
ber of rules is not a factor requiring repeated exper-
iments. (d) Separate training for di�erent rules sizes
increases computational costs. It's balanced by the



Table 6. Comparative Error for Di�erent Number of Rules

Number of rules in LRI-solution
Name 25 50 100 250 500 LRI-min Best report SE
adult .135 .133 .133 .131 .132 .131 .147 .003
blackj .273 .274 .275 .276 .276 .273 .278 .004
coding .276 .256 .251 .249 .246 .246 .302 .004
digit .073 .067 .062 .060 .059 .059 .062 .005
digit25 .096 .088 .087 .082 .082 .082 - -
dna .051 .046 .042 .046 .045 .042 .042 .006
isolet .056 .048 .049 .050 .052 .048 .033 .005
led .284 .265 .263 .265 .266 .263 .260 .006
letter .048 .043 .039 .039 .040 .039 .029 .003
move .228 .205 .195 .200 .195 .195 .239 .011
noise .318 .311 .309 .305 .305 .299 .300 .006

satellite .094 .093 .093 .091 .092 .092 .085 .006
splice .042 .040 .038 .039 .039 .035 .043 .006
wave .151 .147 .149 .150 .148 .142 .140 .005

fast training. (e) By far the biggest expense is multi-
class application, which can be solved in parallel as
independent problems. For sequential processing, the
computational costs are proportional to the number of
classes.

5. Discussion

Lightweight Rule Induction has a very simple repre-
sentation: pure DNF rules for each class. It is egal-
itarian, each class has the same number of rules of
approximately the same-size rules. Scoring is trivial
to understand: the class with the most satis�ed rules
wins.

The method is about as simple as any rule induction
method can be. The algorithm is rudimentary, and
our C code implementation is less than 300 lines. It
produces designer rules, where the size of the rules are
speci�ed by the application designer.

The central question in Section 4 is: How well does
LRI do on practical applications? For best predictive
performance, a number of parameters must be selected
prior to running. We have concentrated on data min-
ing applications where it can be expected that su�-
cient tests are available for easy estimation. Thus, we
have included results that describe the minimum test
error. With big data, its easy to obtain more than
one test sample, and for estimating a single variable,
a large single test set is adequate in practice (Breiman
et al., 1984). For purposes of experimentation, we
�xed almost all parameters, except for maximumnum-
ber of disjuncts and the number of rules. The number
of disjuncts is clearly on the critical path to higher
performance. As already shown for boosting and all
forms of adaptive resampling, most of the gains in per-

formance are achieved with the initial smaller set of
classi�ers.

How good is predictive performance? For even small
numbers of rules, performance is generally superior to
its rule induction competitors, some of which only op-
erate on binary classi�cation. When the number of
rules is increased, LRI can compete with the best clas-
si�ers.

Once the features are pre-sorted, timings suggest that
training is nearly linear in most directions. Intuitively
this makes sense. The program merely loops on linear
lists for each condition that is added to a rule. Un-
less the complexity of the solutions changes drastically,
adding cases or specifying more rules, just lengthens
the sorted list or the number of rules. Speedup can also
improve on linear performance when only a subset of
features are detected as useful during initial training.

Of special interest is the natural capability of pure
DNF rules to train and process examples with missing
values. The inherent redundancy of disjunction was
demonstrated in the digit25 example, where 25% of
the feature values were destroyed, yet predictive per-
formance was almost maintained. And most impor-
tantly, the solution's rules had no special mention of
missing values. The rules look like rules generated
without missing values.

The binary classi�cation model requires a separate in-
duction of rules for each class. Although theoretically
compensated by parallel and independent processing,
separate induction is a drawback for multi-class induc-
tion of mutually exclusive classes. One might consider
the alternative of inducing small truncated trees us-
ing our adaptive scheme. We did try this approach;
it was not successful. Ignoring the issues of equal-



ity of rule numbers and redundancy, we found that
for unweighted rules, very large trees were needed to
match the performance of LRI. Otherwise for smaller
trees, coverage of classes was insu�cient and could not
compete with the faster converging weighted boosting
methods.

We examined a good portion of the large data sets that
are freely available for analysis. We added some noisy
data sets, including one with 100% noise. Although
there is still some tendency to over�t, the e�ect seems
less than found for boosting (Dietterich, in press), and
the results suggest that over�tting is avoidable by test-
ing with varying complexity.

Increasing the margins of votes for correct and incor-
rect answers has been described as the key mechanism
of boosting (Schapire et al., 1998). LRI directly im-
proves margins of voting in binary classi�cation. In
addition to recording training error, we also recorded
the percentage of correct cases with a margin of less
than 10% for the second highest vote getter. These
results were not used directly in our tables of results,
but the margin can be very helpful in estimating gen-
eralization. For example in the noise application, the
training error decreases for increase complexity, yet
the margins of correct cases show a marked decrease.

Overall, results for lightweight rule induction are very
promising, and as with any new method, additional
real-world experience is needed to determine its weak-
nesses and its ultimate potential.

References

Bauer, E., & Kohavi, R. (1999). An empirical com-
parison of voting classi�cation algorithms: Bagging,
boosting and variants. Machine Learning, 36, 105{
139.

Blake, C., Keogh, E., & Merz, C. (1999). Uci

repository of machine learning databases (Tech-
nical Report). University of California Irvine.
www.ics.uci.edu/�mlearn/MLRepository.html.

Breiman, L. (1996a). Bagging predictors. Machine
Learning, 24, 123{140.

Breiman, L. (1996b). Bias, variance, amd arcing clas-
si�ers (Technical Report 460). University of Cali-
fornia, Berkeley.

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984). Classi�cation and regression trees. Monter-
rey, CA.: Wadsworth.

Cohen, W. (1995). Fast e�ective rule induction. Pro-
ceedings of the Twelfth International Conference on

Machine Learning (pp. 115{123).

Cohen, W., & Singer, Y. (1999). A simple, fast, and
e�ective rule learner. Proceedings of Annual Con-

ference of American Association for Arti�cial Intel-

ligence (pp. 335{342).

Dietterich, T. (in press). An experimental comparison
of three methods for constructing ensembles of de-
cision trees: Bagging, boosting, and randomization.
Machine Learning.

Dietterich, T., & Bakri, G. (1991). Error-correcting
output codes: A general method for improving mul-
ticlass inductive learning programs. Proceedings of

American Association on Arti�cial Intelligence (pp.
572{577).

Friedman, J. (1991). Multivariate adaptive regression
splines. Annals of Statistics, 19, 1{141.

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Ad-
ditive logistic regression: A statistical view of boost-

ing (Technical Report). Stanford University Statis-
tics Department. www.stat-stanford.edu/�tibs.

Schapire, R. (1999). A brief introduction to boost-
ing. Proceedings of International Joint Conference

on Arti�cial Intelligence (pp. 1401{1405).

Schapire, R., Freund, Y., Bartlett, P., & Lee, W.
(1998). Boosting the margin: A new explanation
for the e�ectiveness of voting methods. The Annals

of Statistics, 26, 1651{1686.

Weiss, S., Apt�e, C., Damerau, F., & et al. (1999). Max-
imizing text-mining performance. IEEE Intelligent

Systems, 14, 63{69.

Weiss, S., & Indurkhya, N. (1993). Optimized rule
induction. IEEE EXPERT, 8, 61{69.

Weiss, S., & Indurkhya, N. (1998). Predictive data

mining: A practical guide. Morgan Kaufmann.
DMSK Software: www.data-miner.com.

Weiss, S., & Kapouleas, I. (1989). An empirical com-
parison of pattern recognition, neural nets, and ma-
chine learning classi�cation methods. Proceedings of
International Joint Conference on Arti�cial Intelli-

gence (pp. 781{787). Detroit, Michigan.


