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ABSTRACT

In many data mining domains, misclassification costs are
different for different examples, in the same way that class
membership probabilities are example-dependent. In these
domains, both costs and probabilities are unknown for test
examples, so both cost estimators and probability estimators
must be learned. After discussing how to make optimal de-
cisions given cost and probability estimates, we present deci-
sion tree and naive Bayesian learning methods for obtaining
well-calibrated probability estimates. We then explain how
to obtain unbiased estimators for example-dependent costs,
taking into account the difficulty that in general, probabil-
ities and costs are not independent random variables, and
the training examples for which costs are known are not
representative of all examples. The latter problem is called
sample selection bias in econometrics. Our solution to it
is based on Nobel prize-winning work due to the economist
James Heckman. We show that the methods we propose per-
form better than MetaCost and all other known methods,
in a comprehensive experimental comparison that uses the
well-known, large, and challenging dataset from the KDD’98
data mining contest.

1. INTRODUCTION

The design of most supervised learning algorithms is based
on the assumption that all errors, that is all incorrect pre-
dictions, are equally costly. However, this assumption is not
true in many application areas. For example:

e In one-to-one marketing, the cost of making an offer
to a person who does not respond is typically small
compared to the cost of not contacting a person who
would respond.

e In medicine, the cost of prescribing a drug to an al-
lergic patient can be much higher than the cost of not
prescribing the drug to a nonallergic patient, if alter-
native treatments are available.

e In image or text retrieval, the cost of not displaying a
relevant item may be lower or higher than the cost of
displaying an irrelevant item.

e For most animals, failing to recognize a predator and
hence not fleeing is far more costly than fleeing from
a non-predator.

In many domains where cost-sensitive learning and decision-
making is needed, including the four cases above, each exam-
ple falls into one of two alternative classes. One class is rare
(for example responders, allergic patients, or predators), but
the cost of not recognizing that an example belongs to this
class is high. In these domains, learning methods that fail
to take costs into account do not perform well. In extreme
cases, a learning method that is not cost-sensitive may pro-
duce a model that is useless because it classifies every ex-
ample as belonging to the most frequent class.

In recent years, the realization that cost-sensitive learning
methods are required in many real-world applications has
led to a substantial amount of research. Turney [22] pro-
vides a bibliography of this research. Nonetheless, the only
general method for cost-sensitive learning published so far
is a method named MetaCost due to Domingos [8]. In this
paper we present an alternative method that we call direct
cost-sensitive decision-making. Our analysis shows that the
new method is more general than MetaCost as originally
published, and our experimental results show that the new
method is preferable to MetaCost.

This paper is organized as follows. In Section 2 we ex-
plain MetaCost and direct cost-sensitive decision-making.
Then in Section 3 we show how to apply these methods
to the difficult real-world dataset used in the KDD’98 data
mining contest. Both MetaCost and direct cost-sensitive
decision-making require accurate estimates of class member-
ship probabilities. In Section 4 we present two techniques
that allow accurate probability estimates to be obtained
from a decision tree: smoothing and curtailment. We also
present binning as a technique for making naive Bayes prob-
ability estimates accurate. Previous research has been based
on the assumption that misclassification costs are the same
for all examples and known in advance, but in general these
costs are example-dependent and unknown, in the same way
that class membership probabilities are example-specific and
not known in advance. In Section 5 we discuss this issue and



the issue of how sample selection bias affects cost estimation.
Finally, experimental results using the KDD’98 dataset are
presented in Section 6 and in Section 7 we summarize the
main contributions of this paper. Related work is discussed
as necessary throughout the paper.

2. METACOST VERSUSDIRECT
COST-SENSITIVE DECISION-MAKING

In any domain where a cost-sensitive learning method is
to be applied, each training or test example z is associated
with a cost C(4, j, z) of predicting class ¢ for x when the true
class of = is j. If these costs are known for each x and for
all 7 and j then it is straightforward to compute an optimal
policy for decision-making. The optimal prediction for z,
i.e. the optimal decision concerning z or label to assign to
x, is the class ¢ that leads to the lowest expected cost

> P(il)CG, j ). (1)

Given z, for each alternative ¢ the expected cost is a weighted
average where the weight of C (4, j, ) is the conditional prob-
ability of the class j given z.

The central idea behind the MetaCost method is to change
the label of each training example to be its optimal la-
bel according to Equation (1), and then to learn a clas-
sifier that predicts these new labels. Applying MetaCost
requires knowledge of the conditional probability P(j|z) for
each training example = and each possible true class j for x.
Almost always, these probabilities are not given as part of
the training data. Instead, the training data must be used
to learn a classifier that estimates P(j|z) for each training
example x and each j.

Any learned classifier that can provide conditional probabil-
ity estimates for training examples can also provide condi-
tional probability estimates for test examples. Using these
probability estimates we can directly compute the optimal
label for each test example using Equation (1). This pro-
cess is the method that we call direct cost-sensitive decision-
making. Experimental results comparing MetaCost and di-
rect cost-sensitive decision-making are given in Section 6.

The basic MetaCost idea can be implemented in many ways.
Our implementation differs from that described by Domin-
gos [8] in two important ways. First, the original descrip-
tion of MetaCost is based on the assumption that costs are
known in advance and are the same for all examples, i.e. that
C(i,j3,z) = C(i,j) with no dependence on z. Provost and
Fawcett [17] have pointed out that this assumption is not al-
ways true: “For some problems, different errors of the same
type have different costs.” We generalize MetaCost by re-
laxing this assumption.

Second, we do not estimate probabilities using bagging [5].
Instead of bagging, we use simpler methods based on single
decision trees. As pointed out recently by Margineantu [15],
bagging gives voting estimates that measure the stability of
the base classifier learning method at an example, not the
actual class conditional probability of the example. (A clas-
sifier learning method is stable at an example if classifiers
learned from different resamples predict the same label for

the example). For experimental results confirming that bag-
ging is not a good way of improving probability estimates
obtained from decision trees, see Zadrozny and Elkan [23].

In general, bagging does not give probability estimates that
are unbiased and well-calibrated, whether or not the base
learning method is stable. If a learning method is unstable
and gives classifiers that make 0/1 predictions, then bagging
tends to be useful because voting estimates are numbers
between 0 and 1, which are preferable to 0/1 predictions
as continuous probability estimates. However, in general
these scores are not unbiased estimates. If a learning method
gives classifiers that individually yield unbiased probability
estimates, then bagging these classifiers is likely to reduce
variance beneficially, while maintaining unbiasedness. But
then the question remains of how to get individual scores
that are unbiased in the first place. Section 4 below answers
this question.

3. ATESTBED: THE KDD’98
CHARIT ABLE DONATIONS DATASET

The dataset used in the experimental work described in this
paper is a well-studied, large and challenging dataset that
was first used in the data mining contest associated with the
1998 KDD conference. This dataset and associated docu-
mentation are available in the UCI KDD repository [2]. The
dataset contains information about persons who have made
donations in the past to a certain charity. The decision-
making task is to choose which donors to request a new
donation from. This task is completely analogous to typi-
cal one-to-one marketing tasks for many other organizations,
both non-profit and for-profit. Mathematically, the task has
the same structure as all the two-class cost-sensitive learn-
ing and decision-making problems mentioned in the intro-
duction.

The KDD’98 dataset is divided in a fixed, standard way
into a training set and a test set. The training set consists
of 95412 records for which it is known whether or not the
person made a donation (a 0/1 response) and how much the
person donated, if a donation was made. The test set con-
sists of 96367 records from the same donation campaign for
which similar donation information was not published until
after the KDD’98 competition. In order to make our exper-
imental results directly comparable with those of previous
work, we use the standard training set/test set division.

Mailing a solicitation to an individual costs the charity $0.68.
The overall percentage of donors among potential recipients
is about 5%. The donation amount for persons who respond
varies from $1 to $200. Given the low response rate and the
variation in the value of gifts, it is not easy to achieve a
profit that is much higher than that obtained by soliciting
all potential donors. The profit obtained by soliciting every
individual in the test set is $10560, while the profit attained
by the winner of the KDD’98 competition was $14712.

Many participants in the KDD’98 competition submitted
entries that were worse than useless, because they achieved
profits substantially lower than $10560. One likely reason
for low success is that the individuals in the KDD’98 dataset
are already filtered to be a reasonable set of prospects. They
have been the targets of a real donation campaign, selected



using standard techniques in direct marketing such as recency-
frequency-amount (RFA) scoring. The task now for any data
mining method is to improve upon the already good perfor-
mance of the unknown method that was applied to create
the KDD’98 dataset.

Research on cost-sensitive learning has traditionally been
couched in terms of costs, as opposed to benefits or prof-
its. However, in many domains, including the charitable
donations domain, it is easier to talk consistently about
benefits than about costs. The reason is that all benefits
are straightforward cash flows relative to a baseline wealth
of $0, while some costs are counterfactual opportunity costs
[11]. Accordingly, our formulation of the problem is in terms
of benefits instead of costs. This formulation applies very
generally, including to all the scenarios mentioned in the In-
troduction, because benefits are not necessarily monetary.
Benefits are utilities that can be measured in any unit of
accounting. We use the word “benefit” here because of the
standard phrase “cost/benefit analysis.”

The optimal predicted label for example z is the class i that
maximizes

ZP(ﬂm)B(i,j, x) (2)

where B(i, j, z) is the benefit of predicting class ¢ when the
true class is j. Let the label j = 0 mean the person z does
not donate, and let 7 = 1 mean the person does donate. If
the person donates, the donation is of a variable amount,
say y(x). The cost of mailing a solicitation is $0.68, so we
have the following benefit matrix B(i, j, z):

actual non-donor | actual donor
predict non-donor 0 0
predict donor (mail) —0.68 y(z) — 0.68

Notice that B(1,1,z) is example-dependent and unknown
for test examples. We shall argue later that no fixed matrix
of costs or benefits can lead to good decision-making. There
is no constant ¢ such that it would be reasonable to replace
B(1,1,z) by the same value ¢ for all z. All approaches
to this task, and to other tasks with the same structure,
that are based on a fixed cost or benefit matrix will have
poor performance. Of course, some approaches can take into
account the fact that y(z) is example-dependent without
estimating y(z) explicitly.

The expected benefit of not soliciting a person z, i.e. of
deciding ¢ = 0 for z, is

P(j =0|z)B(0,0,z) + P(j = 1|z)B(0,1,z) = 0.
The expected benefit of soliciting x is

P(j = 0]2)B(1,0,2) + P(j = 1])B(1, 1,2)
= (1= P(j = 1[))(~0.68) + P(j = l|z)(y(x) — 0.68)

= P(j = 1|z)y(z) — 0.68.

The optimal policy is to solicit exactly those people for
whom the expected benefit of mailing is greater than the

expected benefit of not mailing: individuals for whom
P(j =1|z)y(z) — 0.68 > 0.

In other words, the optimal policy is to mail to people for
whom the expected return P(j = 1|z)y(x) is greater than
the cost of mailing a solicitation:

P(j = 1|z)y(xz) > 0.68. (3)

In order to apply this policy, we need to estimate the condi-
tional probability of making a donation P(j = 1|z) and the
donation amount y(z) for each example z in the training
set, in the case of MetaCost. We need to estimate these val-
ues for both training and test examples in the case of direct
cost-sensitive decision-making.

Although we use the KDD’98 dataset for concreteness, the
methods described in this paper apply to cost-sensitive learn-
ing in general. In any cost-sensitive learning application, in
order to use Equation (1) or (2) to obtain an optimal la-
beling, we need to estimate conditional class membership
probabilities accurately. Costs or benefits must also be es-
timated whenever they are unknown for some examples.

In general, if z is a test example then C(i,j,z) will be
unknown for all ¢ and j. If z is a training example then
C(i,3,x) will be known for some 7 and j pairs, but un-
known for other pairs. Of course, if costs are not example-
dependent, that is, if C(4, 3, z) = C(i, 7, y) for all examples x
and y, then costs do not need to be estimated for any train-
ing or test examples. This special case is the only case con-
sidered in previous general research on cost-sensitive learn-
ing. In the remainder of this paper, we present new methods
for estimating costs and probabilities. All these methods can
be applied without change in a wide variety of domains.

4. PROBABILITY ESTIMATION METHODS

An estimate of the conditional probability of membership in
each class is required for each training example if MetaCost
is used, and for each test example if direct cost-sensitive
decision-making is used.

This section explains our methods for obtaining calibrated
probability estimates from decision tree and naive Bayesian
classifiers. We first explain the deficiencies that cause stan-
dard decision tree methods not to give accurate probability
estimates, and we then explain methods to overcome these
limitations. A final subsection presents a simple method
for obtaining calibrated probabilities from a naive Bayesian
classifier.

4.1 Deficienciesof decisiontreemethods
Throughout this paper, C4.5 [18] is the representative deci-
sion tree learning method used, but all our analyses and sug-

gestions apply equally to other decision tree methods such
as CART [6].

When classifying a test example, C4.5 and other decision
tree methods assign by default the raw training frequency
p = k/n as the score of any example that is assigned to a leaf
that contains k positive training examples and n total train-
ing examples. These training frequencies are not accurate
conditional probability estimates for at least two reasons:



1. High bias: Decision tree growing methods try to make
leaves homogeneous, so observed frequencies are sys-
tematically shifted towards zero and one.

2. High variance: When the number of training examples
associated with a leaf is small, observed frequencies are
not statistically reliable.

Pruning methods as surveyed by Esposito et al. [12] can in
principle alleviate problem (2) by removing leaves that con-
tain too few examples. However, standard pruning methods
are not suitable for unbalanced datasets, because they are
based on accuracy maximization. On the KDD’98 dataset
C4.5 produces a pruned tree that is a single leaf. Since the
base rate of positive examples, that is the overall proba-
bility P(j = 1), is about 5%, this tree has accuracy 95%,
but it is useless for estimating example-specific conditional
probabilities P(j = 1|z).

In general, trees pruned with the objective of maximizing
accuracy are not useful for ranking test examples, or for es-
timating class membership probabilities. The standard C4.5
pruning method is not alone in being incompatible with ac-
curate probability estimation. Quinlan’s recent decision tree
learning method, C5.0, and CART also do pruning based on
accuracy maximization. Both C4.5 and C5.0 have rule set
generators that are a commonly used alternative to pruning
[18]. These methods are also based on accuracy maximiza-
tion, so they are also unsuitable for probability estimation.

We show how to improve directly the accuracy of decision
tree probability estimates. Our experiments use C4.5 with-
out pruning and without collapsing to obtain raw scores that
can be transformed into accurate class membership proba-
bilities. The choice to do no pruning is supported by the
results of Bradford et al. [4], who find that performing no
pruning and variants of pruning adapted to loss minimiza-
tion both lead to similar performance. Not using pruning is
also suggested by Bauer and Kohavi [1] in their Section 7.3.

The methods we propose transform the leaf scores of a stan-
dard decision tree. Completely different methods have been
suggested, but they have major drawbacks. Smyth et al. [19]
use kernel density estimators at the leaves of a decision
tree. However their algorithms are based on C4.5 and CART
with pruning, so they are unsuitable for highly unbalanced
datasets. Their experiments use only synthetic, reasonably
balanced datasets. Our experiments use an unbalanced real-
world dataset where the less probable class has a base rate
of only about 5%. Estimating probabilities using bagging
has been suggested by Breiman [5] and by Domingos [8],
but as explained above in Section 2, bagging does not give
unbiased probability estimates in general.

4.2 Smoothing

One way of improving the probability estimates given by
a decision tree is to make these estimates smoother, i.e. to
adjust them to be less extreme. Provost and Domingos [16]
suggest using the Laplace correction method. For a two-class
problem, this method replaces the conditional probability

estimate p = % by p' = Zl_'_;

The Laplace correction method adjusts probability estimates
to be closer to 1/2, which is not reasonable when the two
classes are far from equiprobable, as is the case in many real-
world applications. From a Bayesian perspective, a condi-
tional probability estimate should be smoothed towards the
corresponding unconditional probability.

We replace the probability estimate p = % by p' = ’“7;"_"_’7;",
where b is the base rate of the positive class and m is a
parameter that controls how much scores are shifted towards
b. This smoothing method is called m-estimation [7]. For
example, if a leaf contains four training examples, one of
which is positive, the raw C4.5 decision tree score of any
example assigned to this leaf is 0.25. The smoothed score
with m = 200 and b = 0.05 is

; 140.05-200 11

= av200  20a O

Previous papers have suggested choosing m by cross-validation.

Given a base rate b, we suggest using m such that bm = 10
approximately. This heuristic ensures that raw probability
estimates that are likely to have high variance, those with
k < 10, are given low credence. Experiments show that the
effect of smoothing by m-estimation is qualitatively similar
for a wide range of values of m, so, as is highly desirable,
the precise value chosen for m is unimportant.
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Figure 1: Smoothed scores and raw C4.5 scores for test
examples sorted by raw score. The figure shows how the
scores change after smoothing is applied. In particular,
examples that are assigned a score close to 0 (left-hand
side) or 1 (right-hand side) by C4.5 have their scores
significantly shifted towards the base rate by smoothing.

Figure 1 shows the smoothed scores with m = 200 of the
KDD’98 test set examples sorted by their raw C4.5 scores.
As expected, smoothing shifts all scores towards the base
rate of approximately 0.05, which is desirable given that
(C4.5 scores tend to be overestimates or underestimates. While
raw C4.5 scores range from 0 to 1, smoothed scores range
from 0.0224 to 0.1018.



4.3 Curtailment

As discussed above, without pruning decision tree learning
methods tend to overfit training data and to create leaves
in which the number of examples is too small to induce con-
ditional probability estimates that are statistically reliable
(which we call small leaves). Smoothing attempts to correct
these estimates by shifting them towards the overall average
probability, i.e. the base rate b. However, if the parent of a
small leaf contains enough examples to induce a statistically
reliable probability estimate, then assigning this estimate to
a test example associated with the leaf may be more accu-
rate then assigning it a combination of the base rate and
the observed leaf frequency, as done by smoothing. If the
parent of a small leaf still contains too few examples, we can
use the score of the grandparent of the leaf, and so on until
the root of the tree is reached. At the root, of course, the
observed frequency is the training set base rate.

We call this method of improving conditional probability
estimates curtailment because when classifying an example,
we curtail search through the decision tree as soon as we
reach a node that has less than v examples, where v is a
parameter of the method. The score of the parent of this
node is then assigned to the example in question. As for
smoothing, v can be chosen by cross-validation, or using a
heuristic such as making bv = 10. We choose v = 200 for
all our experiments. Informal experiments show that values
of v between 100 and 400 give similar results, so the exact

setting of v is not critical.
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Figure 2: Part of the decision tree obtained by curtail-
ment with v = 200. The dotted nodes are present in the
original C4.5 tree, but are effectively eliminated from the
curtailment tree because n < v.

Given the KDD’98 training set, curtailment effectively cre-
ates the decision tree shown in part in Figure 2. The dis-
tinction between internal nodes and leaves is blurred in this
tree, because a node may serve as an internal node for some
examples and as a leaf for others, depending on the attribute
values of the examples. The node in gray is an example of a

node that can serve both as an internal node and as a leaf,
because one of its branches has been eliminated from the
tree, but not all.

Curtailment is not equivalent to any type of pruning, nor
to traditional early stopping during the growing of a tree,
because those methods eliminate all the children of a node si-
multaneously. In contrast, curtailment may eliminate some
children and keep others, depending on the number of train-
ing examples associated with each child. Intuitively, cur-
tailment is preferable to pruning for probability estimation
because nodes are removed from a decision tree only if they
are likely to give unreliable probability estimates.
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Figure 3: Curtailment scores and raw C4.5 scores for
test examples. Examples are sorted by raw C4.5 score.
The figure shows that scores change significantly after
curtailment is applied, in particular for examples that
are assigned a score close to 0 (left-hand side) or 1 (right-
hand side) by C4.5.

Figure 3 shows the curtailment scores with v = 200 of the
KDD’98 test set examples sorted by their raw C4.5 scores.
The jagged lines in the chart show that many scores are
changed significantly by curtailment. Overall, the range of
scores is reduced as with smoothing, but not as much. The
minimum curtailment score is 0.0045 while the maximum is
0.1699.

4.4 Calibrating naive Bayesclassifierscores
Naive Bayesian classifiers are based on the assumption that
within each class, the values of the attributes of examples
are independent. It is well-known that these classifiers
tend to give inaccurate probability estimates [9]. Given an
example z, suppose that a naive Bayesian classifier computes
the score n(z). Because attributes tend to be positively
correlated, these scores are typically too extreme: for most
x, either n(z) is near 0 and then n(z) < P(j = 1|z) or
n(z) is near 1 and then n(z) > P(j = 1|z). However, naive
Bayesian classifiers tend to rank examples well: if n(z) <
n(y) then P(j = 1|z) < P(j = 1ly).

‘We use a histogram method to obtain calibrated probability



estimates from a naive Bayesian classifier. We sort the train-
ing examples according to their scores and divide the sorted
set into b subsets of equal size, called bins. For each bin we
compute lower and upper boundary n(-) scores. Given a test
example z, we place it in a bin according to its score n(zx).
We then estimate the corrected probability that z belongs
to class j as the fraction of training examples in the bin that
actually belong to j.

The number of different probability estimates that binning
can yield is limited by the number of alternative bins. This
number, b = 10 in our experiments, must be small in order to
reduce the variance of the binned probability estimates, by
increasing the number of examples whose 0/1 memberships
are averaged inside each bin. Binning reduces the resolution,
i.e. the degree of detail, of conditional probability estimates,
while improving the accuracy of these estimates by reducing
both variance and bias compared to uncalibrated estimates.

Binning is a discrete non-parametric method for calibrat-
ing probability estimates. In future work, we should con-
sider using continuous methods such as the super-smoother
or loess to obtain calibrated probability estimates with a
greater degree of detail. Sobehart et al. [20] use a Gaus-
sian kernel regression method in a similar context. Apply-
ing parametric methods to calibrate naive Bayes scores is
not straightforward. For example, Bennett [3] reports that
sigmoid functions cannot transform naive Bayes scores into
well-calibrated probability estimates.

With most learning methods, in order to obtain binned esti-
mates that do not overfit the training data, we should parti-
tion the training set into two subsets. One subset would be
used to learn the classifier that yields uncalibrated scores,
while the other subset would be used for the binning pro-
cess. More training examples would be assigned to the first
subset because learning a classifier involves setting many
more parameters than setting the binned probabilities. For
naive Bayesian classifiers, however, separate subsets are not
necessary because this learning method does not overfit the
training data much. So we use the entire training set both
for learning the classifier and for binning.

4.5 Averaging probability estimates

If different methods provide noisy probability estimates that
are partially uncorrelated, it is intuitive that averaging the
probability estimates given by these methods reduces the
noise, thereby improving the probability estimates.

This intuition is formalized by Tumer and Ghosh [21]. They
show that by combining the probability estimates given by
different classifiers through averaging we can reduce the vari-
ance of the probability estimates. The reduction in the vari-
ance depends on the degree of correlation of the noise in
the probability estimates produced by each classifier and on
how many classifiers are used.

Assuming that the variance of the probability estimates given
by each classifier is approximately the same, the variance of
the averaging combiner is given by

1 N-—-1
52— +P(N )02

where o is the variance of each original classifier, N is the
number of classifiers and p is the correlation factor among
all classifiers. If the classifiers are independent (p = 0), the
combined variance is reduced by N. On the other hand, if
the classifiers are completely correlated (p = 1), the variance
is unchanged.

Since the probability estimates obtained from the decision
tree and naive Bayesian classifiers are partially uncorrelated,
averaging them should yield estimates that are more accu-
rate than those given by each individual method. In Section
6 we show experimental results that confirm this hypothesis.

5. ESTIMATING DONATION AMOUNTS

In general, in cost-sensitive learning we need to estimate

example-specific misclassification costs, in addition to example-

specific class conditional probabilities. We need to esti-
mate misclassification costs for training examples when us-
ing MetaCost, and for test examples when using direct cost-
sensitive decision-making.

If costs and probabilities are both unknown, then estimating
costs well can be more important for making good decisions
than estimating probabilities well. Cost estimates are more
important if the relative variation of costs across different
examples is greater than the relative variation of probabil-
ities. The dynamic range of costs may be greater than the
dynamic range of probabilities either because the dynamic
range of true costs is greater, or because estimating costs
accurately is easier than estimating probabilities accurately.

In the KDD’98 domain for example, estimating donation
probabilities is difficult. Owur best method for this task,
the averaging of smoothing, curtailment, and binned naive
Bayes, gives conditional probabilities in the narrow range
from 0.0172 to 0.1189. Estimating donation amounts is eas-
ier because past amounts are excellent predictors of future
amounts.

It may appear that for non-donors in the training set we
should impute a donation amount of zero, since their actual
donation amount is zero. But this imputation would be
analogous to imputing a donation probability of zero for the
non-donors based on the fact that they have not donated,
which is clearly wrong. When responding to a solicitation
a person has to make two decisions. The first is whether
to donate or not, while the second is how much to donate.
Conceptually, these decisions are governed by two different
random processes, not necessarily sequential or independent
of course. For donors in the training set, the outcome of
the random process that sets the donation amount is known,
while for non-donors, this outcome is unknown. For individ-
uals in the test set, the outcome of both random processes is
unknown. Whenever the outcome of one or both processes is
unknown, the learning task is to estimate its outcome. For
non-donors in the training set, the task is to estimate the
amounts that they would have donated, if they had made
donations.

It is also wrong to impute any fixed quantity as a donation
estimate for test examples. Using the same donation esti-
mate for all test examples means that the decision whether
or not to solicit a person is based exclusively on the probabil-



ity that they will donate. This method is equivalent to using
a fixed cost matrix for test examples. In general, whenever
misclassification costs are assumed to be fixed, different de-
cisions for different examples can only be based on different
conditional probability estimates for those examples.

For clarity, the arguments in the previous paragraphs are
expressed in language that is specific to the donations do-
main. However, similar arguments apply to any scenario
where costs or benefits are different for different examples.
These costs or benefits must be estimated for each example,
whenever they are unknown. Assuming that unknown costs
or benefits are zero or constant is incorrect.

The method we use for estimating donation amounts is least-
squares multiple linear regression (MLR). The donors in the
training set that have donated at most $50 are used as input
for the regression, which is based on one original attribute
and one derived attribute:

e lastgift: dollar amount of most recent gift,

e ampergift: average gift amount in responses to the
last 22 promotions.

Since the topic of this paper is not variable selection, we
somewhat arbitrarily choose these two attributes based on
previous work. We use the linear regression equation to esti-
mate donation amounts for all examples in both the training
and test sets.

Donations of more than $50 are very rare in our domain: 46
of 4843 donations recorded in the training set. We eliminate
these examples from the regression training set as a heuristic
attempt to reduce the impact of outliers on the regression.
If included, these examples have the most influence on the
regression equation, because they have the highest y values
and the regression equation is chosen to minimize the sum of
squared y errors. However, it is less important to estimate y
values accurately for these individuals, because the optimal
decision is always to solicit them, given that predicted dona-
tion probabilities are always over 1.5%. Accurate predicted
donation probabilities are never close to zero because of the
intrinsic difficulty of predicting whether or not a person will
donate. In future work, we shall consider using non-linear
regression methods that are able to cope adaptively with
outliers.

5.1 The problemof sampleselectionbias
When estimating donation amounts, a fundamental prob-
lem is that any estimator, for example a regression equation,
must be learned based on examples of people who actually
donate. But this estimator must then be applied to a dif-
ferent population, i.e. both donors and non-donors. This
problem is known in general as sample selection bias. It oc-
curs whenever the training examples used to learn a model
are drawn from a different probability distribution than the
examples to which the model is applied.

In the donations domain, the donation amount and the prob-
ability of donation are negatively correlated. People who are
more likely to respond to a solicitation tend to make smaller

donations, while people who make larger donations are less
likely to respond. This relationship is illustrated in Figure 4.
Since examples of people who actually donate are the only
training examples for the regression, donation amounts es-
timated by the regression equation tend to be too low for
test examples that have a low probability of donation.
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Figure 4: Actual donation amount versus estimated
probability of donation, for all donors in the training
set. A negative correlation between donation amount
and probability of donation is visible.

As we have explained previously [10], the standard method
of compensating for sample selection bias in econometrics
is a two-step procedure due to James J. Heckman of the
University of Chicago [13]. In October 2000 Heckman was
awarded the Nobel prize in economics for developing and ap-
plying this procedure. Expressed using our notation, Heck-
man’s procedure is applicable when each example x belongs
to one of two classes, i.e. j(z) = 0 or j(z) = 1, and the
dependent variable to be estimated y(z) is observed for a
training example if and only if j(z) = 1. The first step of
the procedure is to learn a probit linear model to estimate
conditional probabilities P(j = 1|z). A probit model is a
variant of logistic regression where the cumulative Gaus-
sian probability density function is the sigmoid function.
The second step of Heckman’s procedure is to estimate y(x)
by linear regression using only the training examples = for
which j(z) = 1, but including for each z a transformation
of the estimated value of P(j = 1|z). Heckman has proved
that this procedure yields estimates of y(z) that are unbi-
ased for all z, regardless of whether j(z) = 0 or j(z) = 1,
under certain conditions [13].

Our second method for estimating donation amounts is a
nonlinear variant of Heckman’s procedure. Instead of using
a linear estimator for P(j = 1|z), we use a decision tree or
a naive Bayes classifier to obtain probability estimates, as
described in Section 4. We then include these probability
estimates directly as an additional attribute when applying
a learning method to obtain an estimator for y(z). This
learning method could be a nonlinear method, for example a
neural network method, but in order to investigate carefully



Without Heckman With Heckman
Probability estimation method | Training set | Test set | Training set | Test set
Smoothed C4.5 (sm) $19256 $14093 $18583 $14321
C4.5 with curtailment (cur) $16722 $13670 $17037 $14161
Binned naive Bayes (binb) $14262 $14208 $14994 $15094
Average(sm, cur) $18591 $14518 $18474 $14879
Average(sm, cur, binb) $18140 $14877 $17400 $15329

Table 1: Profit attained on the training and test sets using each probability estimation method.

the usefulness of Heckman’s idea, we hold everything else
constant and just provide the estimated P(j = 1|z) values as
a third attribute of z to a linear regression that is otherwise
the same as in the first method.

6. EXPERIMENTAL RESULTS

In this section, we investigate experimentally how the new
probability and cost estimation methods described above
affect the profit attained on the KDD’98 data set. We first
report our results, and then discuss the issue of statistical
significance.

For each of the probability estimation methods described in
Section 4, Table 1 shows the profit obtained when we use
the multiple linear regression that includes only lastgift
and ampergift as attributes, and when we apply Heckman’s
procedure by including the probability estimates as an addi-
tional attribute to the regression. When we use Heckman’s
procedure, the profit on the test set increases for all proba-
bility estimation methods, on average by $484. The fact that
the improvement is systematic indicates that Heckman’s
procedure succeeds in correcting sample selection bias.

To implement MetaCost, probability and donation estimates
obtained as described in Sections 4 and 5 are used to relabel
the training set according to Equation 1. We train C4.5,
with pruning and collapsing, on the relabeled training ex-
amples and apply the resulting decision tree to the training
and test examples. The profit obtained from mailing the
people who are labeled positive by the decision tree is given
in Table 2.

Comparing the results in Table 2 with the results in the
second half of Table 1, we see that MetaCost performs con-
sistently less well than direct cost-sensitive decision-making.
On average, the profit achieved with MetaCost on the test
set is $1751 lower than the profit achieved with direct cost-
sensitive decision-making. The best result with MetaCost
is $14113, while the best result with the direct method is
$15329, which is better than the result obtained by the win-
ner of the KDD’98 contest, $14712.

We conclude that direct cost-sensitive decision-making is
preferable to MetaCost. We attribute the worse perfor-
mance of MetaCost to the difficulty that any single model
must have in estimating costs and probabilities as accurately
as two separate models. Learning a single classifier from re-
labeled training data causes more errors in approximating
the ideal decision boundary than learning two estimators.

It is difficult to make definite statements about the statis-

Probability estimation method | Training set | Test set
Smoothed C4.5 (sm) $17359 $12835
C4.5 with curtailment (cur) $15869 $11283
Binned naive Bayes (binb) $13608 $14113
Average(sm, cur) $17547 $13284
Average(sm, cur, binb) $16531 $13515

Table 2: Profit attained on the training and test sets us-
ing MetaCost with each probability estimation method.
Donation amount estimates are obtained from the MLR
with the Heckman adjustment.

tical significance of the experimental results above. There
are 4872 donors in the fixed test set. For these individ-
uals, the average donation is $15.62. On a different test
set drawn randomly from the same probability distribution,
one would expect a one standard deviation fluctuation up
or down of v/4872 in the number of donors. This fluctuation
would cause a change of about $15.62 - /4872 = $1090 in
total profit. Therefore, a profit difference of less than $1090
between two methods is not statistically significant.

Many of the profit differences between methods that we ob-
serve are less than $1090. There are several avenues we could
follow to obtain statistically significant differences between
methods. One avenue would be to use cross-validation, in-
stead of a single training set and a single test set. However,
the training set/test set split we use is standard. If we did
not use it, our results would not be comparable with those
of previous work using the same dataset.

Another avenue would be to use multiple datasets for com-
paring different methods, as done for example by Domingos
[8]. But, despite the unquestioned importance of differen-
tial costs in many learning tasks, the KDD’98 dataset is the
only dataset in the UCI repositories for which real-world
misclassification cost information is available. Most previ-
ous experimental research on cost-sensitive learning has used
arbitrary cost matrices. We prefer to use real cost data, es-
pecially since we are interested in the situation where costs
are different for different examples.

The purpose of the experiments reported here is not so much
to identify a single best method for cost-sensitive learning
and decision-making, but rather to compare the usefulness
of the alternative submethods proposed in previous sections.
In all trials, the test set profit achieved using MetaCost is
lower and using Heckman’s procedure is higher. We choose
not to quantify the level of this statistical significance be-
cause doing so would require making assumptions that are



certainly false, and therefore give misleading conclusions. In
particular, because all trials use the same training and test
sets, they are not statistically independent. Always using
the same training and test set removes one source of vari-
ance, so even small differences in performance between data
mining methods are in fact likely to be genuine [14].

7.

CONCLUSIONS

The main contributions of this paper are the following:

1. We explain a general method of cost-sensitive learning

that performs systematically better than MetaCost in
our experiments.

. We provide a solution to the fundamental problem of

costs being different for different examples, and un-
known in general.

. As part of (2), we identify and solve the problem of

sample selection bias, i.e. the fact that the training set
available for learning to estimate costs is not repre-
sentative of test examples, or indeed of other training
examples.

All the methods we propose are evaluated carefully with ex-
periments using a large, difficult and highly cost-sensitive

real-world dataset.

Previous research has tended to use

small datasets with synthetic cost data.

We have used simple methods for both probability estima-
tion and cost estimation in this paper in order to illustrate
our general cost-sensitive learning approach and to provide
a baseline for future research. Our recommended methods
already perform better than the methods of the winners of
the KDD’98 and KDD’99 contests. Using a more sophisti-
cated regression method for estimating donation amounts,
we already have preliminary results that are a further im-
provement.

Our experiments are designed so that both MetaCost and
the alternative we propose use the same methods for es-
timating costs and probabilities. Therefore, we expect our

conclusion that direct cost-sensitive decision-making is prefer-

able to remain valid with other estimation methods. In par-
ticular, both MetaCost and direct cost-sensitive decision-
making will be improved by any improvement in techniques
for probability estimation.
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